Bacterial ring rot of potato caused by <i>Clavibacter sep of defeating the enemy under international regulations

Molecular Plant Pathology 23, 911-932 DOI: 10.1111/mpp.13191

Citation Report

#	Article	IF	CITATIONS
1	Bacterial ring rot of potato caused by <i>Clavibacter sepedonicus</i> : AÂsuccessful example of defeating the enemy under international regulations. Molecular Plant Pathology, 2022, 23, 911-932.	4.2	15
2	Concept Note: Toward Metagenomic Sequencing for Rapid, Sensitive, and Accurate Detection of Bacterial Pathogens in Potato Seed Production. PhytoFrontiers, 2023, 3, 82-90.	1.6	2
3	<i>Clavibacter nebraskensis</i> causing Goss's wilt of maize: Five decades of detaining the enemy in the New World. Molecular Plant Pathology, 2023, 24, 675-692.	4.2	5
4	A rapid <scp>DNA</scp> extraction method for the detection of <i>Clavibacter sepedonicus</i> and <i>Ralstonia solanacearum</i> in potato samples in a multiplex <scp>PCR</scp> test. EPPO Bulletin, 0, , .	0.8	0
5	Field surveys indicate taxonomically diverse <i>Pectobacterium</i> species inducing soft rot of vegetables and annual crops in Iran. Plant Pathology, 2023, 72, 1260-1271.	2.4	2
6	Symbiotic Antimicrobial Effects of Celluloseâ€Based Bioâ€Nanocomposite for Disease Management of Agricultural Crops. Chemistry and Biodiversity, 2023, 20, .	2.1	0
7	Biosafety Assessment of a Selenium-Containing Nanocomposite Based on a Polysaccharide Matrix of Starch. Nanobiotechnology Reports, 2023, 18, 397-406.	0.6	0
8	POTENTIALLY DANGEROUS CAUSES OF BACTERIAL DISEASES OF POTATOES IN UKRAINE. Biological Systems Theory and Innovation, 2023, 14, .	0.1	0
9	Clavibacter lycopersici sp. nov.: a peach-colored actinobacterium isolated from symptomless tomato plant. International Journal of Systematic and Evolutionary Microbiology, 2023, 73, .	1.7	0
10	Antibacterial Activity of Dihydroquercetin Separated from Fructus Polygoni orientalis against Clavibacter michiganensis subsp. sepedonicus via Damaging Cell Membrane. Foods, 2024, 13, 23.	4.3	0
11	Latent Infestation of Potato Tubers with Soft Rot and Ring Rot Pathogens under Changing Weather Conditions in Ukraine. MikrobiolohichnyÄ-Zhurnal, 2023, 85, 26-40.	0.6	0
12	Wild mushrooms as potential reservoirs of plant pathogenic bacteria: a case study on <i>Burkholderia gladioli</i> . Microbiology Spectrum, 2024, 12, .	3.0	0
13	Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, and their limitations. Frontiers in Plant Science, 0, 15, .	3.6	0
14	Inhibition of Potato Fusarium Wilt by Bacillus subtilis ZWZ-19 and Trichoderma asperellum PT-29: A Comparative Analysis of Non-Targeted Metabolomics. Plants, 2024, 13, 925.	3.5	0
15	Multi-omics approaches to understand pathogenicity during potato early blight disease caused by Alternaria solani. Frontiers in Microbiology, 0, 15, .	3.5	0