Non-autonomous stomatal control by pavement cell tur-<i>AtKC1</i>

Plant Cell 34, 2019-2037

DOI: 10.1093/plcell/koac038

Citation Report

#	ARTICLE	IF	CITATIONS
1	OUP accepted manuscript. Plant Cell, 2022, , .	6.6	0
3	Automated 3D segmentation of guard cells enables volumetric analysis of stomatal biomechanics. Patterns, 2022, 3, 100627.	5.9	2
4	Revisiting the relationship between turgor pressure and plant cell growth. New Phytologist, 2023, 238, 62-69.	7.3	13
5	Inhibition of <scp>SISKOR</scp> by <scp>SICIPK23â€SICBL1</scp> /9 uncovers <scp>CIPKâ€CBL</scp> â€target network rewiring in land plants. New Phytologist, 2023, 238, 2495-2511.	7.3	4
6	Mechanisms of salinity tolerance and their possible application in the breeding of vegetables. BMC Plant Biology, 2023, 23, .	3.6	18
7	Response network and regulatory measures of plant-soil-rhizosphere environment to drought stress. Advances in Agronomy, 2023, , 93-196.	5.2	2
8	Theoretical Analyses of Turgor Pressure during Stress Relaxation and Water Uptake, and after Changes in Expansive Growth Rate When Water Uptake Is Normal and Reduced. Plants, 2023, 12, 1891.	3.5	1
9	Leaf starch metabolism sets the phase of stomatal rhythm. Plant Cell, 2023, 35, 3444-3469.	6.6	3
11	Engineering stomata for enhanced carbon capture and water-use efficiency. Trends in Plant Science, 2023, 28, 1290-1309.	8.8	4
12	Potassium deficiency stress reduces Rubisco activity in Brassica napus leaves by subcellular acidification decreasing photosynthetic rate. Plant Physiology and Biochemistry, 2023, 201, 107912.	5.8	1
13	Engineering ATP activated reversible nanochannel for gating of ion transport. Sensors and Actuators B: Chemical, 2024, 402, 135100.	7.8	0
14	Synthesis and import of GDPâ€ <scp>l</scp> â€fucose into the Golgi affect plant–water relations. New Phytologist, 2024, 241, 747-763.	7.3	0
15	The Effect of Leaf Plasticity on the Isolation of Apoplastic Fluid from Leaves of Tartary Buckwheat Plants Grown In Vivo and In Vitro. Plants, 2023, 12, 4048.	3.5	0
16	Mechanical advantage of subsidiary cells depends on the stomatal complex structure. Flora: Morphology, Distribution, Functional Ecology of Plants, 2024, 311, 152457.	1.2	0
17	Integrative regulatory mechanisms of stomatal movements under changing climate. Journal of Integrative Plant Biology, 2024, 66, 368-393.	8.5	0
18	Surrounded by luxury: The necessities of subsidiary cells. Plant, Cell and Environment, 0, , .	5.7	0