An Ultrahighâ€Flux Nanoporous Graphene Membrane f using Lowâ€Grade Heat

Advanced Materials 34, e2109718 DOI: 10.1002/adma.202109718

Citation Report

#	Article	IF	CITATIONS
1	Low-Dimensional Nanomaterial Systems Formed by IVA Group Elements Allow Energy Conversion Materials to Flourish. Nanomaterials, 2022, 12, 2521.	4.1	1
2	A convenient, low-cost graphene UV-cured additive manufacturing electronic process to achieve flexible sensors. Chemical Engineering Journal, 2023, 451, 138521.	12.7	7
3	Redox-induced thermocells for low-grade heat harvesting: mechanism, progress, and their applications. Journal of Materials Chemistry A, 2022, 10, 20730-20755.	10.3	11
4	Electronic-level deciphering of the desalination mechanism of high-performance graphenylene membranes. Journal of Membrane Science, 2022, 664, 121068.	8.2	9
5	Toward a universal framework for evaluating transport resistances and driving forces in membrane-based desalination processes. Science Advances, 2023, 9, .	10.3	16
6	Solar Interfacial Evaporation at the Water–Energy Nexus: Bottlenecks, Approaches, and Opportunities. Solar Rrl, 2023, 7, .	5.8	2
7	Directing the research agenda on water and energy technologies with process and economic analysis. Energy and Environmental Science, 2023, 16, 714-722.	30.8	13
8	Construction of anti-swelling circuit board-like activated graphene oxide lamellar nanofilms with functionalized heterostructured 2D nanosheets. Separation and Purification Technology, 2023, 313, 123431.	7.9	2
9	Difunctional MOF-wrapped graphene membranes for efficient photothermal membrane distillation and VOCs interception. Journal of Membrane Science, 2023, 676, 121592.	8.2	5
10	An experimental study on recovering and concentrating ammonia by sweep gas membrane distillation. Chemical Engineering Research and Design, 2023, 171, 555-560.	5.6	7
11	Quantifying the Benefits of Membranes with Ultrahigh Vapor Permeability for Membrane Distillation. ACS ES&T Engineering, 2023, 3, 981-988.	7.6	3
12	Enhanced Antiâ€Wetting Methods of Hydrophobic Membrane for Membrane Distillation. Advanced Science, 2023, 10, .	11.2	3
13	Applications of electrically conductive membranes in water treatment via membrane distillation: Joule heating, membrane fouling/scaling/wetting mitigation and monitoring. Water Research, 2023, 244, 120511.	11.3	1
14	Ultrahigh-water-flux desalination on graphdiyne membranes. , 2023, 1, 800-807.		5
15	Dual-bioinspired fabrication of Janus Micro/nano PDA-PTFE/TiO2 membrane for efficient oil-water separation. Separation and Purification Technology, 2024, 330, 125201.	7.9	1
16	Extreme salt-resisting multistage solar distillation with thermohaline convection. Joule, 2023, 7, 2274-2290.	24.0	6
17	Engineering In Situ Catalytic Cleaning Membrane Via Prebioticâ€Chemistryâ€Inspired Mineralization. Advanced Materials, 2023, 35, .	21.0	15
18	Ground-Breaking and Safe Recycling of Hazardous Hyperaccumulators. ACS ES&T Engineering, 0, , .	7.6	0

CITATION REPORT

#	Article	IF	CITATIONS
19	Interfacial Assembly of 2D Grapheneâ€Derived Ion Channels for Waterâ€Based Green Energy Conversion. Advanced Materials, 2024, 36, .	21.0	0
20	Lowâ€Friction Graphene Oxideâ€Based Ion Selective Membrane for Highâ€Efficiency Osmotic Energy Harvesting. Advanced Energy Materials, 0, , .	19.5	1
21	Photothermal interface with high-adhesive superhydrophobicity to construct vapor splitting module for hydrogen evolution from seawater. Applied Catalysis B: Environmental, 2024, 346, 123743.	20.2	0
22	In situ MIL-101 growth on cotton cloth to fabricate multifunctional phase change composites driven by solar and magneto-thermal for all-day desalination. Journal of Colloid and Interface Science, 2024, 659, 905-913.	9.4	2
23	Alkadiyne–Pyrene Conjugated Frameworks with Surface Exclusion Effect for Ultrafast Seawater Desalination. Journal of the American Chemical Society, 2024, 146, 3075-3085.	13.7	1
24	Recent advances in graphene-based nano-membranes for desalination. Chemical Engineering Journal, 2024, 483, 149108.	12.7	1
25	Incorporating TiO2 nanocages into electrospun nanofibrous membrane for efficient and anti-fouling membrane distillation. Journal of Membrane Science, 2024, 698, 122614.	8.2	0