Longitudinal analysis reveals high prevalence of Epstein multiple sclerosis

Science 375, 296-301 DOI: 10.1126/science.abj8222

Citation Report

#	Article	IF	CITATIONS
1	Epstein-Barr virus and multiple sclerosis. Science, 2022, 375, 264-265.	6.0	68
2	Epstein–Barr virus and MS — a causal link. Nature Reviews Neurology, 2022, , .	4.9	1
3	Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature, 2022, 603, 321-327.	13.7	343
4	Markers of Epstein-Barr virus and Human Herpesvirus-6 infection and multiple sclerosis clinical progression. Multiple Sclerosis and Related Disorders, 2022, 59, 103561.	0.9	10
5	Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science, 2022, 375, 296-301.	6.0	892
6	EBV linked to multiple sclerosis. Nature Reviews Microbiology, 2022, 20, 189-189.	13.6	3
7	Is EBV the cause of multiple sclerosis?. Multiple Sclerosis and Related Disorders, 2022, 58, 103636.	0.9	11
9	Epstein-Barr Virus Load Correlates with Multiple Sclerosis-Associated Retrovirus Envelope Expression. Biomedicines, 2022, 10, 387.	1.4	7
11	New Evidence for Epstein-Barr Virus Infection as a Cause of Multiple Sclerosis. Neurology, 2022, 98, 605-606.	1.5	6
12	Linking Epstein-Barr virus infection to multiple sclerosis. Nature Reviews Immunology, 2022, 22, 143-143.	10.6	4
13	Epstein–Barr virus and multiple sclerosis. Nature Reviews Neuroscience, 2022, 23, 133-133.	4.9	2
14	A Final Frontier in Environment-Genome Interactions? Integrated, Multi-Omic Approaches to Predictions of Non-Communicable Disease Risk. Frontiers in Genetics, 2022, 13, 831866.	1.1	5
17	Pandemics disable people $\hat{a} \in$ " the history lesson that policymakers ignore. Nature, 2022, 602, 383-385.	13.7	9
20	Epstein–Barr virus sparks brain autoimmunity in multiple sclerosis. Nature, 2022, 603, 230-232.	13.7	9
23	Genetic predisposition and the variable course of infectious diseases. Deutsches Ärzteblatt International, 2022, , .	0.6	4
25	Neurological Benefits, Clinical Challenges, and Neuropathologic Promise of Medical Marijuana: A Systematic Review of Cannabinoid Effects in Multiple Sclerosis and Experimental Models of Demyelination. Biomedicines, 2022, 10, 539.	1.4	16
26	Multiple sclerosis: two decades of progress. Lancet Neurology, The, 2022, 21, 211-214.	4.9	16
27	The gut-brain axis goes viral. Cell Host and Microbe, 2022, 30, 283-285.	5.1	5

ATION REDOL

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
28	Targeting Epstein-Barr virus to treat MS. Med, 2022, 3, 159-161.	2	.2	1
30	Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Clia, 2023, 71,	103-126. 2	.5	15
32	How does Epstein-Barr virus trigger MS?. Immunity, 2022, 55, 390-392.	6	.6	13
33	Immune Privilege Furnishes a Niche for Latent Infection. Frontiers in Ophthalmology, 2022, 2,	. о).2	3
34	Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilamer Therapeutic Considerations. International Journal of Molecular Sciences, 2022, 23, 3383.	its and 1	.8	9
35	Mono a Mano: ZBP1's Love–Hate Relationship with the Kissing Virus. International Jour Molecular Sciences, 2022, 23, 3079.	nal of 1	.8	5
36	Sclérose en plaquesÂ: un virus d'herpès en cause. , 2022, Nº 142, 16-19.			0
37	The link between circulating follicular helper T cells and autoimmunity. Nature Reviews Immur 2022, 22, 567-575.	nology, 1	0.6	57
38	Ponesimod in the Treatment of Relapsing Forms of Multiple Sclerosis: An Update on the Emer Clinical Data. Degenerative Neurological and Neuromuscular Disease, 2022, Volume 12, 61-7	ging o 3.).7	8
39	High prevalence of intrathecal IgA synthesis in multiple sclerosis patients. Scientific Reports, 2 4247.	2022, 12, 1	.6	1
40	Antibodies to blood coagulation components are implicated in patients with multiple sclerosi Multiple Sclerosis and Related Disorders, 2022, 62, 103775.	s. 0).9	7
41	The quest to prevent MS $\hat{a} \in \tilde{~}$ and understand other post-viral diseases. Nature, 2022, 603, 78	i4-786. 1	3.7	2
42	CD8+ T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and C International Journal of Molecular Sciences, 2022, 23, 3374.	Cancer. 1	.8	25
44	Polygenic risk score association with multiple sclerosis susceptibility and phenotype in Europe Brain, 2023, 146, 645-656.	eans. 3	.7	15
45	Multiple Sclerosis and Microbiome. Biomolecules, 2022, 12, 433.	1	.8	14
46	The Human Myelin Proteome and Sub-Metalloproteome Interaction Map: Relevance to Myelin Neurological Diseases. Brain Sciences, 2022, 12, 434.	1-Related 1.	.1	2
47	Kaleidoscope. British Journal of Psychiatry, 2022, 220, 249-250.	1	.7	0
48	The Expanding Role of the Infectious Disease Expert in the Context of the MS Centre. Journal Personalized Medicine, 2022, 12, 591.	of	.1	0

#	Article	IF	CITATIONS
49	Verwechslung zwischen Virus und Gehirn: molekulare Mimikry erklÃ ¤ Verbindung zwischen EBV und MS. DGNeurologie, 0, , 1.	0.0	0
50	Vaccination and immunotherapies in neuroimmunological diseases. Nature Reviews Neurology, 2022, 18, 289-306.	4.9	27
51	Neurotropic RNA Virus Modulation of Immune Responses within the Central Nervous System. International Journal of Molecular Sciences, 2022, 23, 4018.	1.8	4
52	Myasthenia Gravis: An Acquired Interferonopathy?. Cells, 2022, 11, 1218.	1.8	9
53	Fluvoxamine and long COVID-19; a new role for sigma-1 receptor (S1R) agonists. Molecular Psychiatry, 2022, , .	4.1	13
54	Epstein-Barr virus and multiple sclerosis: supporting causality. Lancet Neurology, The, 2022, 21, 300-301.	4.9	8
55	Early clues regarding the pathogenesis of long-COVID. Trends in Immunology, 2022, 43, 268-270.	2.9	79
56	Epstein-Barr virus as a driver of multiple sclerosis. Science Immunology, 2022, 7, eabo7799.	5.6	33
57	Effects of Oxysterols on Immune Cells and Related Diseases. Cells, 2022, 11, 1251.	1.8	15
58	T-cell surveillance of the human brain in health and multiple sclerosis. Seminars in Immunopathology, 2022, 44, 855-867.	2.8	12
59	Major advances in neuroinfectious diseases in the past two decades. Lancet Neurology, The, 2022, 21, 308-310.	4.9	1
60	Natural Killer Cells in Multiple Sclerosis: Entering the Stage. Frontiers in Immunology, 2022, 13, 869447.	2.2	10
61	Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology, 2022, 209, 109023.	2.0	38
62	Long-term outcomes of pediatric infections: from traditional infectious diseases toÂlongÂCovid. Future Microbiology, 2022, 17, 551-571.	1.0	62
63	Sociodemographic and clinical characteristics of people with multiple sclerosis and neuro-myelitis optica spectrum disorder in a central northern region of Chile: A prevalence study. Multiple Sclerosis and Related Disorders, 2022, 61, 103750.	0.9	2
64	The dysregulation of autophagy and ER stress induced by HHV-6A infection activates pro-inflammatory pathways and promotes the release of inflammatory cytokines and cathepsin S by CNS cells. Virus Research, 2022, 313, 198726.	1.1	2
66	Four Decades of Prophylactic EBV Vaccine Research: A Systematic Review and Historical Perspective. Frontiers in Immunology, 2022, 13, 867918.	2.2	7
67	The Conundrum of Lung Disease and Drug Hypersensitivityâ€like Reactions in Systemic Juvenile Idiopathic Arthritis. Arthritis and Rheumatology, 2022, 74, 1122-1131.	2.9	24

ARTICLE IF CITATIONS # Multiple Sclerosis Treatment in the COVID-19 Era: A Risk-Benefit Approach. Neurology International, 1.3 5 68 2022, 14, 368-377. B Cells Specific CpG Induces High IL-10 and IL-6 Expression In Vitro in Neuro-Beh§et's Disease. Cells, 1.8 2022, 11, 1306. Tissue donations for multiple sclerosis research: current state and suggestions for improvement. 70 1.5 4 Brain Communications, 2022, 4, fcac094. Nonresolving inflammation redux. Immunity, 2022, 55, 592-605. Virus-specific antibody indices may supplement the total IgG index in diagnostics of multiple sclerosis. 72 1.1 2 Journal of Neuroimmunology, 2022, 367, 577868. Infectious agents breaking the immunological tolerance: The holy grail in rheumatoid arthritis reconsidered. Autoimmunity Reviews, 2022, 21, 103102. 2.5 Gut microbiome-mediated regulation of neuroinflammation. Current Opinion in Immunology, 2022, 76, 74 2.4 30 102177. Humoral immune defense of the central nervous system. Current Opinion in Immunology, 2022, 76, 2.4 102179. Role of Dendritic Cells in Viral Brain Infections. Frontiers in Immunology, 2022, 13, 862053. 2.2 7 76 Biological Markers in Early Multiple Sclerosis: the Paved Way for Radiologically Isolated Syndrome. 2.2 Frontiers in Immunology, 2022, 13, 866092. Exploring epigenetic reprogramming during central nervous system infection. Immunological Reviews, 78 7 2.8 2022, 311, 112-129. SARS-CoV-2 and Multiple Sclerosis: Potential for Disease Exacerbation. Frontiers in Immunology, 2022, 79 2.2 13, 871276. Vaccination Coverage against Tetanus, Diphtheria, Pertussis and Poliomyelitis and Validity of 80 Self-Reported Vaccination Status in Patients with Multiple Sclerosis. Journal of Personalized 1.1 3 Medicine, 2022, 12, 677. Changes in Brain Neuroimmunology Following Injury and Disease. Frontiers in Integrative 1.0 Neuroscience, 2022, 16, 894500. Toward identification of personalized immunological profiles in multiple sclerosis. Science Advances, 83 4.7 1 2022, 8, eabq4849. The enigmatic links between Epstein-Barr virus infection and multiple sclerosis. Journal of Clinical 84 3.9 Investigation, 2022, 132, . Phage ImmunoPrecipitation Sequencing (PhIP-Seq): The Promise of High Throughput Serology. 85 1.2 8 Pathogens, 2022, 11, 568. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines, 2022, 10, 1077. 1.4

#	Article		CITATIONS
87	Onset of multiple sclerosis is preventable – time to act now!. Multiple Sclerosis and Related Disorders, 2022, 62, 103875.	0.9	1
88	Multiple sclerosis genetic and non-genetic factors interact through the transient transcriptome. Scientific Reports, 2022, 12, 7536.	1.6	4
90	Guilty by association: Epstein–Barr virus in multiple sclerosis. Nature Medicine, 2022, 28, 904-906.	15.2	15
91	Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. International Journal of Molecular Sciences, 2022, 23, 5330.	1.8	11
92	Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1763-1775.	2.0	15
93	Immune checkpoints in T cells during oncogenic γâ€herpesvirus infections. Journal of Medical Virology, 2023, 95, .	2.5	3
94	Association between cytomegalovirus infection and tuberculosis disease: A systematic review and meta-analysis of epidemiological studies. Journal of Infectious Diseases, 2022, , .	1.9	1
95	Azetidine-2-Carboxylic Acid-Induced Oligodendrogliopathy: Relevance to the Pathogenesis of Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2022, 81, 414-433.	0.9	5
96	The immunology of multiple sclerosis. Nature Reviews Immunology, 2022, 22, 734-750.	10.6	96
97	A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Science Translational Medicine, 2022, 14, eabf3685.	5.8	34
98	miRNAs in multiple sclerosis: A clinical approach. Multiple Sclerosis and Related Disorders, 2022, 63, 103835.	0.9	2
99	Using MS induced pluripotent stem cells to investigate MS aetiology. Multiple Sclerosis and Related Disorders, 2022, 63, 103839.	0.9	7
100	Trained immunity in viral infections, Alzheimer's disease and multiple sclerosis: A convergence in type I interferon signalling and IFNβ-1a. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166430.	1.8	8
102	Vitamin D as a Risk Factor for Multiple Sclerosis: Immunoregulatory or Neuroprotective?. Frontiers in Neurology, 2022, 13, .	1.1	17
103	Involvement of age-associated B cells in EBV-triggered autoimmunity. Immunologic Research, 2022, 70, 546-549.	1.3	5
104	Unexplained post-acute infection syndromes. Nature Medicine, 2022, 28, 911-923.	15.2	231
105	T cell help in the autoreactive germinal center. Scandinavian Journal of Immunology, 2022, 95, e13192.	1.3	4
106	Serum MOG-IgG in children meeting multiple sclerosis diagnostic criteria. Multiple Sclerosis Journal, 2022, 28, 1697-1709.	1.4	12

#	Article		CITATIONS
107	Therapeutic Implications of the Microbial Hypothesis of Mental Illness. Current Topics in Behavioral Neurosciences, 2022, , 315-351.	0.8	5
110	$\hat{I}^{\hat{J}}\hat{I}$ T Cells in Brain Homeostasis and Diseases. Frontiers in Immunology, 2022, 13, .	2.2	8
111	Current and Future Biomarkers in Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 5877.	1.8	34
113	Glycoprotein B Antibodies Completely Neutralize EBV Infection of B Cells. Frontiers in Immunology, 2022, 13, .	2.2	4
114	Neurology of Acute Viral Infections. Neurohospitalist, The, 0, , 194187442211047.	0.3	1
115	Antisense modulation of IL7R splicing to control sIL7R expression in human CD4 ⁺ T cells. Rna, 2022, 28, 1058-1073.	1.6	1
116	Le virus d'Epstein-Barr. Medecine/Sciences, 2022, 38, 422-424.	0.0	1
117	Framework to Segment and Evaluate Multiple Sclerosis Lesion in MRI Slices Using VGG-UNet. Computational Intelligence and Neuroscience, 2022, 2022, 1-10.	1.1	10
118	The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. Pathophysiology, 2022, 29, 243-280.	1.0	6
119	Frequent intrathecal production of antibodies to the viral capsid antigen of Epstein-Barr virus in patients with central nervous system post-transplant lymphoproliferative disorder. Journal of Neuroimmunology, 2022, 369, 577902.	1.1	1
120	Mycobacterium paratuberculosis zoonosis is a One Health emergency. EcoHealth, 2022, 19, 164-174.	0.9	9
121	Distinguishing CNS neurosarcoidosis from multiple sclerosis and an approach to "overlap―cases. Journal of Neuroimmunology, 2022, 369, 577904.	1.1	5
122	Alterations in brainstem respiratory centers following peripheral inflammation: A systematic review. Journal of Neuroimmunology, 2022, 369, 577903.	1.1	4
123	Multiple sclerosis and the microbiota. Evolution, Medicine and Public Health, 2022, 10, 277-294.	1.1	5
124	History and prospects of multiple sclerosis treatment. Clinical Neurology, 2022, , .	0.0	0
125	Two Studies Probe and Clarify Factors Linked to †Long COVID'. Neurology Today: an Official Publication of the American Academy of Neurology, 2022, 22, 25-26.	0.0	0
126	It Takes Two to Tango: A Review of Oncogenic Virus and Host Microbiome Associated Inflammation in Head and Neck Cancer. Cancers, 2022, 14, 3120.	1.7	7
127	Editorial: Advances in Multiple Sclerosis. Current Opinion in Neurology, 2022, 35, 259-261.	1.8	0

		CITATION REPORT		
#	Article		IF	CITATIONS
129	Therapeutic Role of Vitamin D in Multiple Sclerosis: An Essentially Contested Concept.	. Cureus, 2022, , .	0.2	6
130	Dental Care and Education Facing Highly Transmissible SARS-CoV-2 Variants: Prospect Setting: Prospective, Single-Arm, Single-Center Study. International Journal of Environ Research and Public Health, 2022, 19, 7693.	ive Biosafety mental	1.2	16
131	What SARS-CoV-2 does to our brains. Immunity, 2022, 55, 1159-1172.		6.6	28
132	Open problems in human trait genetics. Genome Biology, 2022, 23, .		3.8	33
134	Revisiting IgG Antibody Reactivity to Epstein-Barr Virus in Myalgic Encephalomyelitis/C Syndrome and Its Potential Application to Disease Diagnosis. Frontiers in Medicine, 0,		1.2	7
135	The Potential for EBV Vaccines to Prevent Multiple Sclerosis. Frontiers in Neurology, O	, 13, .	1.1	17
136	New drugs for multiple sclerosis: new treatment algorithms. Current Opinion in Neuro 262-270.	logy, 2022, 35,	1.8	14
137	Fatty acids role in multiple sclerosis as "metabokinesâ€: Journal of Neuroinflamma	tion, 2022, 19, .	3.1	20
138	Microbiome–Gut Dissociation in the Neonate: Obesity and Coeliac Disease as Exam Function Deficiency Disorder. Gastrointestinal Disorders, 2022, 4, 108-128.	ples of Microbiome	0.4	3
139	Microglial Priming in Infections and Its Risk to Neurodegenerative Diseases. Frontiers i Neuroscience, 0, 16, .	n Cellular	1.8	9
140	Is post-COVID syndrome an autoimmune disease?. Expert Review of Clinical Immunolo 653-666.	ogy, 2022, 18,	1.3	18
142	Innate Lymphoid Cells - Neglected Players in Multiple Sclerosis. Frontiers in Immunolog	gy, 0, 13, .	2.2	7
143	SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic pafter recovery. Science Translational Medicine, 2022, 14, .	perturbations	5.8	129
144	Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protec mice against lethal viral challenge. Cell Reports Medicine, 2022, 3, 100658.	rts humanized	3.3	12
145	Genome-wide analysis of schizophrenia and multiple sclerosis identifies shared genom mixed direction of effects. Brain, Behavior, and Immunity, 2022, 104, 183-190.	ic loci with	2.0	8
146	VirScan: High-throughput Profiling of Antiviral Antibody Epitopes. Bio-protocol, 2022,	12,.	0.2	7
147	What Have Failed, Interrupted, and Withdrawn Antibody Therapies in Multiple Scleros Neurotherapeutics, 2022, 19, 785-807.	is Taught Us?.	2.1	10
148	Serum Cytokines Predict Neurological Damage in Genetically Diverse Mouse Models. 0 2044.	Cells, 2022, 11,	1.8	2

#	Article	IF	CITATIONS
149	Oral Dysbiosis and Neurodegenerative Diseases: Correlations and Potential Causations. Microorganisms, 2022, 10, 1326.	1.6	6
150	Early symptoms and diagnosis of multiple sclerosis by the general practitioner. MedicÃna Pro Praxi, 2022, 19, 169-172.	0.0	0
151	Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Communications, 2022, 4, .	1.5	30
152	Preclinical Autoimmune Disease: a Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes. Frontiers in Immunology, 0, 13, .	2.2	27
153	What causes multiple sclerosis? Getting closer to the answers. Medical Journal of Australia, 0, , .	0.8	0
154	EBV Infection and Its Regulated Metabolic Reprogramming in Nasopharyngeal Tumorigenesis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	10
155	Age-associated B cells in autoimmune diseases. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	40
156	Predictors of progression from first demyelinating event to clinically definite multiple sclerosis. Brain Communications, 0, , .	1.5	2
157	From the prodromal stage of multiple sclerosis to disease prevention. Nature Reviews Neurology, 2022, 18, 559-572.	4.9	23
158	The Possible Role of Neural Cell Apoptosis in Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 7584.	1.8	14
159	Resurrecting Epstein–Barr Virus. Pathogens, 2022, 11, 772.	1.2	1
161	Contribution of B cells to cortical damage in multiple sclerosis. Brain, 2022, 145, 3363-3373.	3.7	15
162	Autoimmunity and SARSâ€CoVâ€2 infection: Unraveling the link in neurological disorders. European Journal of Immunology, 2022, 52, 1561-1571.	1.6	11
164	Epstein-Barr virus infection: the leading cause of multiple sclerosis. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	2
165	Multisystem Inflammatory Syndrome in Children and Long COVID: The SARS-CoV-2 Viral Superantigen Hypothesis. Frontiers in Immunology, 0, 13, .	2.2	56
166	Assessing clinical utility of machine learning and artificial intelligence approaches to analyze speech recordings in multiple sclerosis: A pilot study. Computers in Biology and Medicine, 2022, 148, 105853.	3.9	10
167	Multiple Sclerosis Management: Current Clinical Approaches to Disease-Modifying Therapy. Current Physical Medicine and Rehabilitation Reports, 0, , .	0.3	0
168	Viral Nucleases from Herpesviruses and Coronavirus in Recombination and Proofreading: Potential Targets for Antiviral Drug Discovery. Viruses, 2022, 14, 1557.	1.5	1

#	Article	IF	CITATIONS
169	Efficacy of Vafidemstat in Experimental Autoimmune Encephalomyelitis Highlights the KDM1A/RCOR1/HDAC Epigenetic Axis in Multiple Sclerosis. Pharmaceutics, 2022, 14, 1420.	2.0	3
170	EBV as the "gluten of MS―hypothesis provides a rationale for trialing antiviral therapies. Multiple Sclerosis and Related Disorders, 2022, 64, 104007.	0.9	0
171	The role of antiviral CD8+ T cells in cognitive impairment. Current Opinion in Neurobiology, 2022, 76, 102603.	2.0	8
172	Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight, 2022, 7, .	2.3	12
173	EBNA2-EBF1 complexes promote MYC expression and metabolic processes driving S-phase progression of Epstein-Barr virus–infected B cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
174	Multiple sclerosis and the risk of infection: Association of British Neurologists consensus guideline. Practical Neurology, 2022, 22, 344-357.	0.5	1
175	CD4+ Cytotoxic T Cells Involved in the Development of EBV-Associated Diseases. Pathogens, 2022, 11, 831.	1.2	5
176	Serum IgG levels to Epstein-Barr and measles viruses in patients with multiple sclerosis during natalizumab and interferon beta treatment. BMJ Neurology Open, 2022, 4, e000271.	0.7	8
177	Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. International Journal of Molecular Sciences, 2022, 23, 8418.	1.8	8
178	Antibody indices of infectious pathogens from serum and cerebrospinal fluid in patients with schizophrenia spectrum disorders. Fluids and Barriers of the CNS, 2022, 19, .	2.4	4
180	Exploring the Effect of Genetic, Environmental and Lifestyle Factors on Multiple Sclerosis Susceptibility. , 0, , .		0
181	Relevance of Pathogenetic Mechanisms to Clinical Effectiveness of B-Cell-Depleting Monoclonal Antibodies in Multiple Sclerosis. Journal of Clinical Medicine, 2022, 11, 4288.	1.0	2
182	Divergent complement system activation in two clinically distinct murine models of multiple sclerosis. Frontiers in Immunology, 0, 13, .	2.2	3
183	The role of the complement system in Multiple Sclerosis: A review. Frontiers in Immunology, 0, 13, .	2.2	11
184	The gut microbiome molecular mimicry piece in the multiple sclerosis puzzle. Frontiers in Immunology, 0, 13, .	2.2	11
185	IFI16 Partners with KAP1 to Maintain Epstein-Barr Virus Latency. Journal of Virology, 2022, 96, .	1.5	9
186	A case of ANCA-associated vasculitis in a 16-year-old female following SARS-COV-2 infection and a systematic review of the literature. Pediatric Rheumatology, 2022, 20, .	0.9	14
187	Investigating <scp>EBV</scp> biology with <scp>Flowâ€FISH</scp> : Implications for <scp>EBV</scp> â€mediated malignancies and the treatment thereof. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2023, 103, 5-7.	1.1	1

#	Article	IF	CITATIONS
188	Prevalence of chronic comorbidities in people with multiple sclerosis: descriptive study based on administrative data in Tuscany (Central Italy). Neurological Sciences, 2022, 43, 6407-6414.	0.9	3
189	Epstein–Barr Virus (EBV) and Multiple Sclerosis Disease: A Biomedical Diagnosis. Computational Intelligence and Neuroscience, 2022, 2022, 1-4.	1.1	5
191	Infectious mononucleosis is associated with an increased incidence of multiple sclerosis: Results from a cohort study of 32,116 outpatients in Germany. Frontiers in Immunology, 0, 13, .	2.2	13
192	Deconvolution of B cell receptor repertoire in multiple sclerosis patients revealed a delay in tBreg maturation. Frontiers in Immunology, 0, 13, .	2.2	3
193	Proteomic Profiling of Hypoplastic Lungs Suggests an Underlying Inflammatory Response in the Pathogenesis of Abnormal Lung Development in Congenital Diaphragmatic Hernia. Annals of Surgery, 2023, 278, e411-e421.	2.1	7
194	Pediatric Acquired Demyelinating Disorders. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 1104-1130.	0.4	2
195	Epidemiology and Pathophysiology of Multiple Sclerosis. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 988-1005.	0.4	24
196	Juvenile Idiopathic Arthritis, Uveitis and Multiple Sclerosis: Description of Two Patients and Literature Review. Biomedicines, 2022, 10, 2041.	1.4	1
197	Epstein–Barr virus and multiple sclerosis. Nature Reviews Microbiology, 2023, 21, 51-64.	13.6	151
198	COVID-19 associated myopathy. Current Opinion in Neurology, 2022, 35, 622-628.	1.8	6
199	Editorial: Epigenetic aspects of autoimmune diseases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
200	Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Frontiers in Immunology, 0, 13, .	2.2	5
201	How does age determine the development of human immune-mediated arthritis?. Nature Reviews Rheumatology, 2022, 18, 501-512.	3.5	4
202	Younger age at multiple sclerosis onset is associated with worse outcomes at age 50. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 1112-1119.	0.9	1
203	B cells going viral in the <scp>CNS</scp> : Dynamics, complexities, and functions of B cells responding to viral encephalitis. Immunological Reviews, 2022, 311, 75-89.	2.8	5
204	High Predictive Value of the Soluble ZEBRA Antigen (Epstein-Barr Virus Trans-Activator Zta) in Transplant Patients with PTLD. Pathogens, 2022, 11, 928.	1.2	3
205	The association between blood MxA mRNA and long-term disease activity in early multiple sclerosis. Frontiers in Neurology, 0, 13, .	1.1	1
206	NLRP3 inflammasome in neurodegenerative disease. Translational Research, 2023, 252, 21-33.	2.2	25

#	Article	IF	CITATIONS
207	EBV as the â€~̃gluten of MS' hypothesis: Bypassing autoimmunity. Multiple Sclerosis and Related Disorders, 2022, 66, 104069.	0.9	0
208	Effect of ocrelizumab on leptomeningeal inflammation and humoral response to Epstein-Barr virus in multiple sclerosis. A pilot study. Multiple Sclerosis and Related Disorders, 2022, 67, 104094.	0.9	14
209	The age at onset of relapsing-remitting multiple sclerosis has increased over the last five decades. Multiple Sclerosis and Related Disorders, 2022, 68, 104103.	0.9	21
210	The oncogenic gamma herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) hijack retinoic acid-inducible gene I (RIC-I) facilitating both viral and tumour immune evasion. Tumour Virus Research, 2022, 14, 200246.	1.5	4
211	Targeting NMDA Receptors at the Neurovascular Unit: Past and Future Treatments for Central Nervous System Diseases. International Journal of Molecular Sciences, 2022, 23, 10336.	1.8	16
214	G ₁ /S Cell Cycle Induction by Epstein-Barr Virus BORF2 Is Mediated by P53 and APOBEC3B. Journal of Virology, 2022, 96, .	1.5	2
215	MINI-review of Epstein-Barr virus involvement in multiple sclerosis etiology and pathogenesis. Journal of Neuroimmunology, 2022, 371, 577935.	1.1	6
216	Therapeutic approaches to Epstein–Barr virus cancers. Current Opinion in Virology, 2022, 56, 101260.	2.6	7
217	Transcriptomic changes in autophagy-related genes are inversely correlated with inflammation and are associated with multiple sclerosis lesion pathology. Brain, Behavior, & Immunity - Health, 2022, 25, 100510.	1.3	3
218	EBV and multiple sclerosis: Setting the research agenda. Multiple Sclerosis and Related Disorders, 2022, 67, 104158.	0.9	2
219	Revisiting the antiviral theory to explain interferon-beta's effectiveness for relapsing multiple sclerosis and Related Disorders, 2022, 67, 104155.	0.9	5
220	When a 17-Year-Old Girl Is Diagnosed with Myalgic Encephalomyelitis: A Case Study from the Swedish Health Care System—A Parent Perspective. Case Reports in Clinical Medicine, 2022, 11, 280-296.	0.1	0
221	Neurofilament light chain and mercury amalgam fillings in monozygotic twins discordant for multiple sclerosis case report. Neuroimmunology Reports, 2022, 2, 100140.	0.2	0
222	The feasibility of an online educational lifestyle program for people with multiple sclerosis: A qualitative analysis of participant semi-structured interviews. Digital Health, 2022, 8, 205520762211237.	0.9	4
223	Neuroinflammation in Multiple Sclerosis. , 2022, , .		0
224	At the Root of 3 "Long―Diseases: Persistent Antigens Inflicting Chronic Damage on the Brain and Other Organs in Gulf War Illness, Long-COVID-19, and Chronic Fatigue Syndrome. Neuroscience Insights, 2022, 17, 263310552211148.	0.9	9
225	Microglia in antiviral immunity of the brain and spinal cord. Seminars in Immunology, 2022, 60, 101650.	2.7	1
227	Toward Precision Phenotyping of Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	22

			2
#		IF	CITATIONS
228	Current Advancement of Immunomodulatory Drugs as Potential Pharmacotherapies for Autoimmunity Based Neurological Diseases. Pharmaceuticals, 2022, 15, 1077.	1.7	4
229	Time-resolved transcriptomes reveal diverse B cell fate trajectories in the early response to Epstein-Barr virus infection. Cell Reports, 2022, 40, 111286.	2.9	14
230	Drosophila as a Model for Human Viral Neuroinfections. Cells, 2022, 11, 2685.	1.8	2
231	Are Viral Infections Key Inducers of Autoimmune Diseases? Focus on Epstein–Barr Virus. Viruses, 2022, 14, 1900.	1.5	10
232	Declining Epstein-Barr Virus Antibody Prevalence in College Freshmen Strengthens the Rationale for a Prophylactic EBV Vaccine. Vaccines, 2022, 10, 1399.	2.1	2
233	Breastfeeding and Risk of Multiple Sclerosis: A Systematic Review and Meta-Analysis of Observational Studies. Neuroepidemiology, 2022, 56, 391-401.	1.1	2
234	Moyamoya disease emerging as an immune-related angiopathy. Trends in Molecular Medicine, 2022, 28, 939-950.	3.5	22
235	Peptide Microarrays for Studying Autoantibodies in Neurological Disease. Methods in Molecular Biology, 2023, , 17-25.	0.4	5
236	Melatonin ameliorates disease severity in a mouse model of multiple sclerosis by modulating the kynurenine pathway. Scientific Reports, 2022, 12, .	1.6	4
237	Similar Time Trends of Hodgkin Lymphoma, Multiple Sclerosis, and Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2023, 68, 1455-1463.	1.1	2
238	The Immunobiology and Pathogenesis of Celiac Disease. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 47-70.	9.6	34
239	From real-world electronic health record data to real-world results using artificial intelligence. Annals of the Rheumatic Diseases, 2023, 82, 306-311.	0.5	24
240	Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Frontiers in Immunology, 0, 13, .	2.2	21
241	Altered Immune Response to the Epstein–Barr Virus as a Prerequisite for Multiple Sclerosis. Cells, 2022, 11, 2757.	1.8	9
242	Transcriptional abnormalities in induced pluripotent stem cell-derived oligodendrocytes of individuals with primary progressive multiple sclerosis. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	2
243	Team victory, yellow helmets for a computational tour de force. Cell, 2022, 185, 3459-3461.	13.5	1
244	Peroxisomal very long-chain fatty acid transport is targeted by herpesviruses and the antiviral host response. Communications Biology, 2022, 5, .	2.0	6
245	Multiple Sclerosis in a Patient With Prior West Nile Encephalitis. Cureus, 2022, , .	0.2	1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
246	The role of virus infections in Sjögren's syndrome. Frontiers in Immunology, 0, 13, .		2.2	11
247	Training the next generation of Sudanese immunologists: a case for mentorship. Immunolo Biology, 2022, 100, 687-690.	ogy and Cell	1.0	2
248	Falling down the biological rabbit hole: Epstein-Barr virus, biography, and multiple sclerosis. Jou of Clinical Investigation, 2022, 132, .	rnal	3.9	9
249	Evolution of functional antibodies following acute Epstein-Barr virus infection. PLoS Pathogens 2022, 18, e1010738.	5	2.1	5
250	Epstein–Barr Virus Detection in the Central Nervous System of HIV-Infected Patients. Pathog 11, 1080.	ens, 2022,	1.2	2
251	Epstein-Barr Virus and multiple sclerosis in a Spanish cohort: A two-years longitudinal study. Frontiers in Immunology, 0, 13, .		2.2	7
252	Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metabolism, 2 1280-1297.e9.	2022, 34,	7.2	16
253	Whole Exome Sequencing in Multi-Incident Families Identifies Novel Candidate Genes for Multi Sclerosis. International Journal of Molecular Sciences, 2022, 23, 11461.	ple	1.8	3
254	Immunoinformatics Approach to Design Novel Subunit Vaccine against the Epstein-Barr Virus. Microbiology Spectrum, 2022, 10, .		1.2	10
255	A shared B-cell clonotype in patients with Interstitial Cystitis/Bladder Pain Syndrome presenting Hunner lesions. , 2022, , 100015.	gwith		1
256	Inhibition of Th1 activation and differentiation by dietary guar gum ameliorates experimental autoimmune encephalomyelitis. Cell Reports, 2022, 40, 111328.		2.9	9
258	Epstein-Barr virus: Biology and clinical disease. Cell, 2022, 185, 3652-3670.		13.5	78
259	Cellâ€based experimental strategies for myelin repair in multiple sclerosis. Journal of Neuroscie Research, 2023, 101, 86-111.	nce	1.3	0
260	Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Frontiers in Immunology, 0, 13, .		2.2	10
262	Broader Epstein–Barr virus–specific T cell receptor repertoire in patients with multiple scle Journal of Experimental Medicine, 2022, 219, .	rosis.	4.2	24
264	ZBP1: A Powerful Innate Immune Sensor and Double-Edged Sword in Host Immunity. Internatic Journal of Molecular Sciences, 2022, 23, 10224.	pnal	1.8	20
265	Haplotype-specific chromatin looping reveals genetic interactions of regulatory regions modula gene expression in 8p23.1. Frontiers in Genetics, 0, 13, .	ıting	1.1	3
266	COVID-19 and cellular senescence. Nature Reviews Immunology, 2023, 23, 251-263.		10.6	54

#	Article	IF	CITATIONS
267	EBVerified TCRs and multiple sclerosis. Science Immunology, 2022, 7, .	5.6	0
268	Targeting Environmental Risks to Prevent Rheumatic Disease. Rheumatic Disease Clinics of North America, 2022, , .	0.8	0
269	Microbiome epidemiology and association studies in human health. Nature Reviews Genetics, 2023, 24, 109-124.	7.7	17
270	Linking X to MS: Immunity and demyelination on the X-chromosome in MS. Multiple Sclerosis and Related Disorders, 2022, 66, 104190.	0.9	0
271	Epstein-Barr virus, interleukin-10 and multiple sclerosis: A ménage à trois. Frontiers in Immunology, 0, 13, .	2.2	6
272	Two phases of macrophages: Inducing maturation and death of oligodendrocytes in vitro co-culture. Journal of Neuroscience Methods, 2022, 382, 109723.	1.3	2
273	Comparison of Elecsys and Liaison immunoassays to determine Epstein–Barr virus serological status using further diagnostic approaches to clarify discrepant results. Journal of Medical Virology, 2023, 95, .	2.5	5
274	<scp>Epstein–Barr</scp> virus infection, Bâ€cell dysfunction and other risk factors converge in gutâ€associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: aÂhypothesis. Clinical and Translational Immunology, 2022, 11, .	1.7	6
275	Introduction: Trends, Puzzles, and Hopes for the Future of Healthcare. Future of Business and Finance, 2022, , 1-24.	0.3	1
276	A letter to the editor concerning "Geochemistry of multiple sclerosis in Finlandâ€: Science of the Total Environment, 2023, 856, 159606.	3.9	1
277	A gene regulatory network approach harmonizes genetic and epigenetic signals and reveals repurposable drug candidates for multiple sclerosis. Human Molecular Genetics, 2023, 32, 998-1009.	1.4	5
278	The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines, 2022, 10, 2492.	1.4	4
279	An Update on Diagnostic Laboratory Biomarkers for Multiple Sclerosis. Current Neurology and Neuroscience Reports, 2022, 22, 675-688.	2.0	9
281	MicroRNA-mediated control of Epstein–Barr virus infection and potential diagnostic and therapeutic implications. Current Opinion in Virology, 2022, 56, 101272.	2.6	5
282	EBV-associated diseases: Current therapeutics and emerging technologies. Frontiers in Immunology, 0, 13, .	2.2	15
283	Thermodynamic and structural characterization of an EBV infected B-cell lymphoma transcriptome. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	2
284	Human cerebral organoids — a new tool for clinical neurology research. Nature Reviews Neurology, 2022, 18, 661-680.	4.9	49
285	Updates and advances in multiple sclerosis neurotherapeutics. Neurodegenerative Disease Management, 2023, 13, 47-70.	1.2	29

#	Article	IF	CITATIONS
286	Immunopathogenesis, Diagnosis, and Treatment of Multiple Sclerosis. Neurologic Clinics, 2023, 41, 87-106.	0.8	3
287	Theiler's virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	8
288	Effect of teriflunomide on Epstein–Barr virus shedding in relapsing-remitting multiple sclerosis patients: Outcomes from a real-world pilot cohort study. Multiple Sclerosis and Related Disorders, 2022, 68, 104377.	0.9	3
289	Molecular disease mechanisms of human antineuronal monoclonal autoantibodies. Trends in Molecular Medicine, 2023, 29, 20-34.	3.5	11
290	Association between Epstein-Barr virus serological reactivation and psychological distress: a cross-sectional study of Japanese community-dwelling older adults. Aging, 0, , .	1.4	1
291	How EBV Infects: The Tropism and Underlying Molecular Mechanism for Viral Infection. Viruses, 2022, 14, 2372.	1.5	15
292	Crystal Structures of Epstein–Barr Virus Bcl-2 Homolog BHRF1 Bound to Bid and Puma BH3 Motif Peptides. Viruses, 2022, 14, 2222.	1.5	1
293	Increased expression of PD-1 in CD8 + CD3 + T cells correlates with EBV viral load in MS patient of NeuroVirology, 0, , .	s Journal 1.0	1
294	A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines, 2022, 10, 2604.	1.4	6
295	Epstein-Barr virus gH/gL has multiple sites of vulnerability for virus neutralization and fusion inhibition. Immunity, 2022, 55, 2135-2148.e6.	6.6	7
297	Studying the Interactions of U24 from HHV-6 in Order to Further Elucidate Its Potential Role in MS. Viruses, 2022, 14, 2384.	1.5	2
298	Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing. Frontiers in Immunology, 0, 13, .	2.2	5
299	Single-Cell Analysis to Better Understand the Mechanisms Involved in MS. International Journal of Molecular Sciences, 2022, 23, 12142.	1.8	2
300	The validity of animal models to explore the pathogenic role of the complement system in multiple sclerosis: A review. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	2
302	Autoimmune diseases: the immunological tightrope. The Prescriber, 2022, 33, 19-22.	0.1	1
304	Oncogenic viruses, cancer biology, and innate immunity. Current Opinion in Immunology, 2022, 78, 102253.	2.4	1
307	HERV-W ENV antigenemia and correlation of increased anti-SARS-CoV-2 immunoglobulin levels with post-COVID-19 symptoms. Frontiers in Immunology, 0, 13, .	2.2	6
308	Prior hospitalâ€based infection and risk of eosinophilic esophagitis in a Swedish nationwide caseâ€control study. United European Gastroenterology Journal, 2022, 10, 999-1007.	1.6	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
309	Microbial dysbiosis in the gut drives systemic autoimmune diseases. Frontiers in Immun	ology, 0, 13, .	2.2	30
310	The industrial genomic revolution: A new era in neuroimmunology. Neuron, 2022, 110,	3429-3443.	3.8	2
311	Siblings reduce multiple sclerosis risk by preventing delayed primary Epstein–Barr viru Brain, 2023, 146, 1993-2002.	is infection.	3.7	7
312	The biological rabbit hole: Only for the blind. Multiple Sclerosis and Related Disorders, 2 104256.	022, 67,	0.9	1
313	Interplay between activation of endogenous retroviruses and inflammation as common mechanism in neurological and psychiatric disorders. Brain, Behavior, and Immunity, 20		2.0	7
314	Ocrelizumab treatment in newly diagnosed multiple sclerosis patients with previous Ho lymphoma. Neuroimmunology Reports, 2022, 2, 100151.	dgkin's	0.2	0
315	Mapping the Literature on Diet and Multiple Sclerosis: A Data-Driven Approach. Nutrien 4820.	ts, 2022, 14,	1.7	3
317	Increased cytomegalovirus immune responses at disease onset are protective in the lon prognosis of patients with multiple sclerosis. Journal of Neurology, Neurosurgery and Ps jnnp-2022-330205.	g-term sychiatry, 0, ,	0.9	4
318	Antigenic mimicry – The key to autoimmunity in immune privileged organs. Journal of 2023, 137, 102942.	Autoimmunity,	3.0	6
319	A journey with no roadmap—The need for validated criteria of the MS prodrome. Mult Journal, 2023, 29, 502-504.	iple Sclerosis	1.4	0
321	What do animal models tell us about the role of EBV in the pathogenesis of multiple scl Frontiers in Immunology, 0, 13, .	erosis?.	2.2	2
322	COVID-19 and Clinically Isolated Syndrome: Coincidence or Causative Link? A 12-Month Report. Applied Sciences (Switzerland), 2022, 12, 11531.	Follow-Up Case	1.3	1
323	In silico clinical trials for relapsing-remitting multiple sclerosis with MS TreatSim. BMC M Informatics and Decision Making, 2023, 22, .	1edical	1.5	7
324	Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therape Biomedicines, 2022, 10, 2820.	utic Targeting.	1.4	3
325	Keeping T cell memories in mind. Trends in Immunology, 2022, 43, 1018-1031.		2.9	3
326	MicroRNAs as a possible biomarker in the treatment of multiple sclerosis. IBRO Neurosc 2022, 13, 492-499.	ience Reports,	0.7	3
327	Peripheral T-Cells, B-Cells, and Monocytes from Multiple Sclerosis Patients Supplemente High-Dose Vitamin D Show Distinct Changes in Gene Expression Profiles. Nutrients, 202	rd with 22, 14, 4737.	1.7	6
328	Impact of Siponimod on Enteric and Central Nervous System Pathology in Late-Stage Ex Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2022, 23,		1.8	0

#	Article	IF	CITATIONS
329	Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Frontiers in Immunology, 0, 13, .	2.2	3
330	Chickenpox and multiple sclerosis: A Mendelian randomization study. Journal of Medical Virology, 2023, 95, .	2.5	7
331	Diroximel Fumarate as a Novel Oral Immunomodulating Therapy for Relapsing Forms of Multiple Sclerosis: A Review on the Emerging Data. Drug Design, Development and Therapy, 0, Volume 16, 3915-3927.	2.0	5
332	Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis. Cells, 2022, 11, 3619.	1.8	5
333	Dynamics of Viral and Host 3D Genome Structure upon Infection. Journal of Microbiology and Biotechnology, 2022, 32, 1515-1526.	0.9	3
335	Socioeconomic and race/ethnic differences in immunosenescence: Evidence from the Health and Retirement Study. Brain, Behavior, and Immunity, 2023, 107, 361-368.	2.0	9
336	The role of bacteria and viruses in Behçet syndrome: Should we move towards new paradigms?. Autoimmunity Reviews, 2022, , 103237.	2.5	2
338	The Need/Failure to React, Adequately Prioritise and Persevere. , 2022, , 155-191.		0
339	T cells in the brain inflammation. Advances in Immunology, 2023, , 29-58.	1.1	3
340	Comment on "The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging― Revista Da Associação Médica Brasileira, 2022, 68, 1624-1625.	0.3	0
341	Multiple sclerosis in 2022: old players, new insights. Lancet Neurology, The, 2023, 22, 19-21.	4.9	0
342	Unaltered T cell responses to common antigens in individuals with Parkinson's disease. Journal of the Neurological Sciences, 2023, 444, 120510.	0.3	8
343	Arzneimittelversorgung bei Multipler Sklerose. , 2022, , 139-159.		0
344	Family Herpesviridae and neuroinfections: current status and research in progress. Memorias Do Instituto Oswaldo Cruz, 0, 117, .	0.8	9
345	High prevalence of low-allele-fraction somatic mutations in STAT3 in peripheral blood CD8+ cells in multiple sclerosis patients and controls. PLoS ONE, 2022, 17, e0278245.	1.1	2
346	Autoimmune pre-disease. Autoimmunity Reviews, 2023, 22, 103236.	2.5	25
347	Cell-free DNA-based liquid biopsies in neurology. Brain, 2023, 146, 1758-1774.	3.7	19
348	A high-throughput neutralizing assay for antibodies and sera evaluation against Epstein-Barr virus. Virology Journal, 2022, 19, .	1.4	1

#	Article	IF	CITATIONS
349	Gammaherpesvirus infection drives age-associated B cells toward pathogenicity in EAE and MS. Science Advances, 2022, 8, .	4.7	7
350	Infectious mononucleosis is associated with an increased incidence of <scp>NAFLD</scp> . European Journal of Clinical Investigation, 0, , .	1.7	0
351	The Association between Infectious Mononucleosis and Cancer: A Cohort Study of 24,190 Outpatients in Germany. Cancers, 2022, 14, 5837.	1.7	4
352	The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. Journal of Autoimmunity, 2023, 137, 102957.	3.0	4
353	Comparative Animal Models of Human Viral Infections. Pathogens, 2022, 11, 1395.	1.2	0
354	Epstein–Barr Virus (EBV) Epithelial Associated Malignancies: Exploring Pathologies and Current Treatments. International Journal of Molecular Sciences, 2022, 23, 14389.	1.8	11
355	A common mechanism links Epsteinâ€Barr virus infections and autoimmune diseases. Journal of Medical Virology, 2023, 95, .	2.5	11
356	Increased risk for acute periapical abscesses in multiple sclerosis patients and the possible association with Epstein Barr virus Journal of Endodontics, 2022, , .	1.4	1
357	Supplementation with Crocus sativus L. (Saffron) against Placebo in Multiple Sclerosis: A Systematic Review and Synthesis without Meta-Analysis of Randomized Controlled Trials. Dietetics, 2022, 1, 227-241.	0.4	1
358	Better late than never: A unique strategy for late gene transcription in the beta- and gammaherpesviruses. Seminars in Cell and Developmental Biology, 2023, 146, 57-69.	2.3	5
359	Occurrence of multiple respiratory viruses in wastewater in Queensland, Australia: Potential for community disease surveillance. Science of the Total Environment, 2023, 864, 161023.	3.9	35
360	Urgency and necessity of Epstein-Barr virus prophylactic vaccines. Npj Vaccines, 2022, 7, .	2.9	20
362	Hypothesis of a potential BrainBiota and its relation to CNS autoimmune inflammation. Frontiers in Immunology, 0, 13, .	2.2	2
363	Implications of Post-Translational Modifications in Autoimmunity with Emphasis on Citrullination, Homocitrullination and Acetylation for the Pathogenesis, Diagnosis and Prognosis of Rheumatoid Arthritis. International Journal of Molecular Sciences, 2022, 23, 15803.	1.8	7
365	Clinical Neuroimaging in Pediatric Dysimmune Disorders of the Central Nervous System. Seminars in Roentgenology, 2022, , .	0.2	0
366	Tissue specific signature of HHV-6 infection in ME/CFS. Frontiers in Molecular Biosciences, 0, 9, .	1.6	11
367	MS associated with a broader Epstein-Barr virus specific T-cell receptor repertoire. , 0, , .		0
368	Tissueâ€Targeted Drug Delivery Strategies to Promote Antigenâ€Specific Immune Tolerance. Advanced Healthcare Materials, 2023, 12, .	3.9	4

#	Article	IF	CITATIONS
369	Comprehensively identifying Long Covid articles with human-in-the-loop machine learning. Patterns, 2023, 4, 100659.	3.1	4
370	Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. Journal of Neurology, 2023, 270, 1908-1930.	1.8	6
371	Co-Infection of the Epstein–Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses, 2022, 14, 2709.	1.5	7
372	Genetic risk factors for ME/CFS identified using combinatorial analysis. Journal of Translational Medicine, 2022, 20, .	1.8	9
373	Ces virus qui nous habitent et qui nous visitent : le virome humain. Medecine/Sciences, 2022, 38, 1028-1038.	0.0	0
374	Chronic viral coinfections differentially affect the likelihood of developing long COVID. Journal of Clinical Investigation, 2023, 133, .	3.9	73
375	Chimeric antigen receptor–based therapies beyond cancer. European Journal of Immunology, 2023, 53, .	1.6	2
376	Synapse Dysfunctions in Multiple Sclerosis. International Journal of Molecular Sciences, 2023, 24, 1639.	1.8	5
377	Potentially toxic elements in the brains of people with multiple sclerosis. Scientific Reports, 2023, 13, .	1.6	6
378	Differential DNA methylation associated with multiple sclerosis and disease modifying treatments in an underrepresented minority population. Frontiers in Genetics, 0, 13, .	1.1	1
380	The repertoire of CSF antiviral antibodies in patients with neuroinflammatory diseases. Science Advances, 2023, 9, .	4.7	1
381	Sequence similarity between SARS-CoV-2 nucleocapsid and multiple sclerosis-associated proteins provides insight into viral neuropathogenesis following infection. Scientific Reports, 2023, 13, .	1.6	5
382	New insight into Epstein-Barr virus infection using models of stratified epithelium. PLoS Pathogens, 2023, 19, e1011040.	2.1	4
383	Epstein-Barr virus infection mimicking acute appendicitis: a case report. World Journal of Emergency Medicine, 2023, 14, .	0.5	1
384	Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. Journal of Experimental Medicine, 2023, 220, .	4.2	11
385	Dimethyl Fumarate Treatment Reduces the Amount but Not the Avidity of the Epstein–Barr Virus Capsid-Antigen-Specific Antibody Response in Multiple Sclerosis: A Pilot Study. International Journal of Molecular Sciences, 2023, 24, 1500.	1.8	2
386	Biomaterial Strategies for Selective Immune Tolerance: Advances and Gaps. Advanced Science, 2023, 10, .	5.6	8
387	Antigen clearance at the peak of the primary immune response induces experimental autoimmune encephalomyelitis. European Journal of Immunology, 2023, 53, .	1.6	0

#	Article	IF	CITATIONS
388	Immune dysregulation. Journal of Allergy and Clinical Immunology, 2023, 151, 70-80.	1.5	11
389	How viral infections cause neuronal dysfunction: a focus on the role of microglia and astrocytes. Biochemical Society Transactions, 2023, 51, 259-274.	1.6	3
390	Pre-existing conditions associated with post-acute sequelae of COVID-19. Journal of Autoimmunity, 2023, 135, 102991.	3.0	8
391	B Cells Drive MHC Class l–Restricted CD4 T Cells to Induce Spontaneous Central Nervous System Autoimmunity. Journal of Immunology, 2022, 209, 1880-1891.	0.4	2
392	Is there a role for herpes simplex virus type 1 in multiple sclerosis?. Microbes and Infection, 2023, 25, 105084.	1.0	3
393	Gene–environment interactions and their impact on human health. Genes and Immunity, 2023, 24, 1-11.	2.2	28
394	Shaping the host cell environment with viral noncoding RNAs. Seminars in Cell and Developmental Biology, 2022, , .	2.3	0
395	Drug Repurposing at the Interface of Melanoma Immunotherapy and Autoimmune Disease. Pharmaceutics, 2023, 15, 83.	2.0	6
396	Endogenous Retroviruses as Modulators of Innate Immunity. Pathogens, 2023, 12, 162.	1.2	15
397	Massive health-record review links viral illnesses to brain disease. Nature, 2023, 614, 18-19.	13.7	5
398	Retinoblastoma Protein Is Required for Epstein-Barr Virus Replication in Differentiated Epithelia. Journal of Virology, 2023, 97, .	1.5	2
399	People with Primary Progressive Multiple Sclerosis Have a Lower Number of Central Memory T Cells and HLA-DR+ Tregs. Cells, 2023, 12, 439.	1.8	6
400	Infectious mononucleosis is associated with an increased incidence of Crohn's disease: results from a cohort study of 31 862 outpatients in Germany. European Journal of Gastroenterology and Hepatology, 2023, 35, 255-260.	0.8	2
401	Protein Kinase CK2 and Epstein–Barr Virus. Biomedicines, 2023, 11, 358.	1.4	2
402	Virus exposure and neurodegenerative disease risk across national biobanks. Neuron, 2023, 111, 1086-1093.e2.	3.8	87
403	Differences in IgG autoantibody Fab glycosylation across autoimmune diseases. Journal of Allergy and Clinical Immunology, 2023, 151, 1646-1654.	1.5	11
404	Persistent virus-specific and clonally expanded antibody-secreting cells respond to induced self-antigen in the CNS. Acta Neuropathologica, 2023, 145, 335-355.	3.9	3
405	Cigarette smoking is associated with Herpesviruses in persons with and without serious mental illness. PLoS ONE, 2023, 18, e0280443.	1.1	1

#	Article	IF	CITATIONS
406	Myelin Basic Protein Fragmentation by Engineered Human Proteasomes with Different Catalytic Phenotypes Revealed Direct Peptide Ligands of MS-Associated and Protective HLA Class I Molecules. International Journal of Molecular Sciences, 2023, 24, 2091.	1.8	0
407	Dual Role of B Cells in Multiple Sclerosis. International Journal of Molecular Sciences, 2023, 24, 2336.	1.8	7
408	Multiple Sclerosis Is Associated with Immunoglobulin Germline Gene Variation of Transitional B Cells. , 2022, 14, 84-93.		1
409	EBV dUTPase: A Novel Modulator of Inflammation and the Tumor Microenvironment in EBV-Associated Malignancies. Cancers, 2023, 15, 855.	1.7	0
410	Immunoglobulin <scp>GM</scp> (γ marker) genes as effect modifiers of <scp>Epsteinâ€Barr</scp> virusâ€multiple sclerosis association. Immunology, 0, , .	2.0	0
411	COVID-19, SARS-CoV-2 Vaccination, and Human Herpesviruses Infections. Vaccines, 2023, 11, 232.	2.1	4
412	Pathogen-specific T Cells: Targeting Old Enemies and New Invaders in Transplantation and Beyond. HemaSphere, 2023, 7, e809.	1.2	5
413	Delivery Route Considerations for Designing Antigenâ€5pecific Biomaterial Strategies to Combat Autoimmunity. Advanced NanoBiomed Research, 2023, 3, .	1.7	5
414	<scp>RNA</scp> â€binding proteins in autoimmunity: From genetics to molecular biology. Wiley Interdisciplinary Reviews RNA, 2023, 14, .	3.2	5
416	The adaptation model of immunity: A new insight into aetiology and treatment of multiple sclerosis. Scandinavian Journal of Immunology, 2023, 97, .	1.3	1
417	Contribution of Intravital Neuroimaging to Study Animal Models of Multiple Sclerosis. Neurotherapeutics, 2023, 20, 22-38.	2.1	2
418	Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sciences, 2023, 13, 246.	1.1	3
419	Editorial: Environmental factors influencing the immune functions during multiple sclerosis. Frontiers in Immunology, 0, 14, .	2.2	0
420	Roadmap for understanding mechanisms on how Epstein–Barr virus triggers multiple sclerosis and for translating these discoveries in clinical trials. Clinical and Translational Immunology, 2023, 12, .	1.7	4
421	Adoptive Tâ€cell therapy targeting Epstein–Barr virus as a treatment for multiple sclerosis. Clinical and Translational Immunology, 2023, 12, .	1.7	9
422	Therapeutic trials for long COVID-19: A call to action from the interventions taskforce of the RECOVER initiative. Frontiers in Immunology, 0, 14, .	2.2	20
423	Preserving the brain: forum on neurodegenerative diseases. Neurological Sciences, 0, , .	0.9	0
424	Potential biological contributers to the sex difference in multiple sclerosis progression. Frontiers in Immunology, 0, 14, .	2.2	3

#	Article	IF	Citations
425	Neuroimmunological Disorders. Neurologic Clinics, 2023, 41, 315-330.	0.8	2
426	Chronic effects of inflammation on tauopathies. Lancet Neurology, The, 2023, 22, 430-442.	4.9	12
427	Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PharmaNutrition, 2023, 24, 100335.	0.8	2
428	UV radiation and air pollution as drivers of major autoimmune conditions. Environmental Research, 2023, 224, 115449.	3.7	2
431	Design principles of microparticle size and immunomodulatory factor formulation dictate antigen-specific amelioration of multiple sclerosis in a mouse model. Biomaterials, 2023, 294, 122001.	5.7	1
432	Interferon \hat{I}^21 a treatment does not influence serum Epstein-Barr virus antibodies in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2023, 70, 104530.	0.9	1
433	Observed associations between indicators of socioeconomic status and risk of multiple sclerosis in Sweden are explained by a few lifestyleâ€related factors. European Journal of Neurology, 2023, 30, 1001-1013.	1.7	2
434	Tissue-resident memory T cells in the multiple sclerosis brain and their relationship to Epstein-Barr virus infected B cells. Journal of Neuroimmunology, 2023, 376, 578036.	1.1	4
435	The role of platelets in immune-mediated inflammatory diseases. Nature Reviews Immunology, 2023, 23, 495-510.	10.6	23
436	Clinically Manifest Infections Do Not Increase the Relapse Risk in People with Multiple Sclerosis Treated with Disease-Modifying Therapies: A Prospective Study. Journal of Clinical Medicine, 2023, 12, 1023.	1.0	2
437	Immunologic prediction of long COVID. Nature Immunology, 2023, 24, 207-208.	7.0	3
438	Impact of Misdiagnosis in Case-Control Studies of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics, 2023, 13, 531.	1.3	2
440	How does neurovascular unit dysfunction contribute to multiple sclerosis?. Neurobiology of Disease, 2023, 178, 106028.	2.1	15
441	Decreased frequency of regulatory T cells and level of helios gene expression in secondary progressive multiple sclerosis patients: Evidence about the development of multiple sclerosis. International Immunopharmacology, 2023, 116, 109797.	1.7	0
442	Mendelian randomisation identifies priority groups for prophylactic EBV vaccination. BMC Infectious Diseases, 2023, 23, .	1.3	0
443	Women in the field of multiple sclerosis: How they contributed to paradigm shifts. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	1
444	A unified classification approach rating clinical utility of protein biomarkers across neurologic diseases. EBioMedicine, 2023, 89, 104456.	2.7	6
445	Association of Cytomegalovirus Serostatus With Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Responsiveness in Nursing Home Residents and Healthcare Workers. Open Forum Infectious Diseases, 2023, 10, .	0.4	6

#	Article	IF	CITATIONS
446	Barrier-to-autointegration factor 1 promotes gammaherpesvirus reactivation from latency. Nature Communications, 2023, 14, .	5.8	2
447	Role of DAMPs and cell death in autoimmune diseases: the example of multiple sclerosis. Genes and Immunity, 2023, 24, 57-70.	2.2	3
448	Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy. Lancet Neurology, The, 2023, 22, 338-349.	4.9	31
449	Can we predict T cell specificity with digital biology and machine learning?. Nature Reviews Immunology, 2023, 23, 511-521.	10.6	44
450	Epstein–Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nature Reviews Neurology, 2023, 19, 160-171.	4.9	48
451	mRNA vaccines: The future of prevention of viral infections?. Journal of Medical Virology, 2023, 95, .	2.5	24
452	Infection induces tissue-resident memory NK cells that safeguard tissue health. Immunity, 2023, 56, 531-546.e6.	6.6	12
453	Different risk factors distinguish myalgic encephalomyelitis/chronic fatigue syndrome from severe fatigue. Scientific Reports, 2023, 13, .	1.6	0
454	RNA polymerase II-associated proteins reveal pathways affected in VCP-related amyotrophic lateral sclerosis. Brain, 2023, 146, 2547-2556.	3.7	4
455	Gut virome-colonising <i>Orthohepadnavirus</i> genus is associated with ulcerative colitis pathogenesis and induces intestinal inflammation <i>in vivo</i> . Gut, 2023, 72, 1838-1847.	6.1	9
456	Early-life peripheral infections reprogram retinal microglia and aggravate neovascular age-related macular degeneration in later life. Journal of Clinical Investigation, 2023, 133, .	3.9	2
457	Learning from the nexus of autoimmunity and cancer. Immunity, 2023, 56, 256-271.	6.6	4
458	Myopia in late adolescence and subsequent multiple sclerosis among men. Multiple Sclerosis and Related Disorders, 2023, 71, 104577.	0.9	0
459	Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. , 2023, 243, 108358.		2
460	Human brain organoids to explore SARSâ€CoVâ€2â€induced effects on the central nervous system. Reviews in Medical Virology, 2023, 33, .	3.9	7
461	Risk HLA Variants Affect the T-Cell Repertoire in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2023, 10, e200093.	3.1	1
463	Lessons from immunotherapies in multiple sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 293-311.	1.0	0
464	Editorial: Current research on serological analyses of infectious diseases. Frontiers in Medicine, 0, 10, .	1.2	2

#	Article	IF	CITATIONS
465	Origins and immunopathogenesis of autoimmune central nervous system disorders. Nature Reviews Neurology, 2023, 19, 172-190.	4.9	9
466	Advances in Neurodegenerative Diseases. Journal of Clinical Medicine, 2023, 12, 1709.	1.0	22
467	Recent Progress in Multiple Sclerosis Treatment Using Immune Cells as Targets. Pharmaceutics, 2023, 15, 728.	2.0	3
468	COVID-19 and Multiple Sclerosis: A Complex Relationship Possibly Aggravated by Low Vitamin D Levels. Cells, 2023, 12, 684.	1.8	3
469	From bedside to bench: how existing therapies inform the relationship between Epstein–Barr virus and multipleÂsclerosis. Clinical and Translational Immunology, 2023, 12, .	1.7	4
470	Using The Virtual Brain to study the relationship between structural and functional connectivity in patients with multiple sclerosis: a multicenter study. Cerebral Cortex, 2023, 33, 7322-7334.	1.6	1
472	Citrullinated human and murine MOG35–55 display distinct biophysical and biochemical behavior. Journal of Biological Chemistry, 2023, 299, 103065.	1.6	0
473	Assessing the Efficacy of VLP-Based Vaccine against Epstein-Barr Virus Using a Rabbit Model. Vaccines, 2023, 11, 540.	2.1	1
474	Des objets essentiels à la théorie du Soi étenduÂ: la coextension des champs par l'interdisciplinarité. Revue Francaise De Psychosomatique, 2023, nº 62, 133-150.	0.1	1
475	Epsilon toxin–producing Clostridium perfringens colonize the multiple sclerosis gut microbiome overcoming CNS immune privilege. Journal of Clinical Investigation, 2023, 133, .	3.9	9
476	How Does Vitamin D Affect Immune Cells Crosstalk in Autoimmune Diseases?. International Journal of Molecular Sciences, 2023, 24, 4689.	1.8	8
477	Virological Markers in Epstein–Barr Virus-Associated Diseases. Viruses, 2023, 15, 656.	1.5	7
478	Viral pathogens increase risk of neurodegenerative disease. Nature Reviews Neurology, 2023, 19, 259-260.	4.9	8
479	Dozens of Infections Linked to Dementia and Other Neurodegenerative Diseases. Neurology Today: an Official Publication of the American Academy of Neurology, 2023, 23, 12-13.	0.0	0
481	Coxsackievirus and Type 1 Diabetes: Diabetogenic Mechanisms and Implications for Prevention. Endocrine Reviews, 2023, 44, 737-751.	8.9	10
482	B cell targeted therapies in inflammatory autoimmune disease of the central nervous system. Frontiers in Immunology, 0, 14, .	2.2	7
483	DAMPs in Organ-Specific Autoimmune Diseases. , 2023, , 569-656.		0
484	Human genetic and immunological determinants of SARSâ€CoVâ€2 and Epstein–Barr virus diseases in childhood: Insightful contrasts. Journal of Internal Medicine, 2023, 294, 127-144.	2.7	0

~			_	
C1		ON	REPC	DT
	IAL		NEPU	ואו

#	Article	IF	CITATIONS
485	New insights into the treatment of meningoencephalomyelitis of unknown origin since 2009: A review of 671 cases. Frontiers in Veterinary Science, 0, 10, .	0.9	9
486	Repetitive elements in aging and neurodegeneration. Trends in Genetics, 2023, 39, 381-400.	2.9	9
487	The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses, 2023, 15, 782.	1.5	26
489	Beyond the amyloid hypothesis: how current research implicates autoimmunity in Alzheimer's disease pathogenesis. Critical Reviews in Clinical Laboratory Sciences, 2023, 60, 398-426.	2.7	3
490	Activated immune cells drive neurodegeneration in an Alzheimer's model. Nature, 2023, 615, 588-589.	13.7	2
491	Conference report: Advanced Therapies Week 2023. Regenerative Medicine, 2023, 18, 297-299.	0.8	0
492	Unmasking the tissue-resident eukaryotic DNA virome in humans. Nucleic Acids Research, 2023, 51, 3223-3239.	6.5	4
493	Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Frontiers in Immunology, 0, 14,	2.2	15
494	Targeting herpesvirus entry complex and fusogen glycoproteins with prophylactic and therapeutic agents. Trends in Microbiology, 2023, 31, 788-804.	3.5	7
495	Inducible nitric oxide synthase deficiency promotes murine-l ² -coronavirus induced demyelination. Virology Journal, 2023, 20, .	1.4	0
496	Autophagy pathways in autoimmune diseases. Journal of Autoimmunity, 2023, 136, 103030.	3.0	14
497	Health outcomes of sensory hypersensitivities in myalgic encephalomyelitis/chronic fatigue syndrome and multiple sclerosis. Psychology, Health and Medicine, 2023, 28, 3052-3063.	1.3	Ο
498	In silico prioritisation of microRNA-associated common variants in multiple sclerosis. Human Genomics, 2023, 17, .	1.4	0
499	Virome-wide detection of natural infection events and the associated antibody dynamics using longitudinal highly-multiplexed serology. Nature Communications, 2023, 14, .	5.8	5
500	Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell, 2023, 186, 1309-1327.	13.5	40
501	Integration of epigenetic and genetic profiles identifies multiple sclerosis disease-critical cell types and genes. Communications Biology, 2023, 6, .	2.0	4
502	The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	5
503	DNA Fragility and Repair, Some Personal Recollections. Annual Review of Biochemistry, 2023, 92, .	5.0	0

	C	CITATION REPORT		
#	ARTICLE Magnetic resonance imaging approaches for studying mouse models of multiple sclerosis: A mini		IF	Citations
504	review. Journal of Neuroscience Research, 2023, 101, 1259-1274.		1.3	1
505	The Heart–Brain Interplay in Multiple Sclerosis from Pathophysiology to Clinical Practice: A Narrati Review. Journal of Cardiovascular Development and Disease, 2023, 10, 153.	ve	0.8	0
506	EBV and Lymphomagenesis. Cancers, 2023, 15, 2133.		1.7	11
507	Antibodies against the flotillin-1/2 complex in patients with multiple sclerosis. Brain Communication 2023, 5, .	S,	1.5	0
508	Multiple Sclerosis: A Review with a Focus on the Middle East and North Africa Region. , 2023, , 1-22.			0
509	Rethinking human cytomegalovirus latency reservoir. Annals of the New York Academy of Sciences, 2023, 1524, 30-36.		1.8	3
510	Systemic immune derangements are shared across various CNS pathologies and reflect novel mechanisms of immune privilege. Neuro-Oncology Advances, 2023, 5, .		0.4	1
511	Inflammation and Epstein–Barr Virus at the Crossroads of Multiple Sclerosis and Post-Acute Seque of COVID-19 Infection. Viruses, 2023, 15, 949.	lae	1.5	6
512	Epstein-Barr Virus and Multiple Sclerosis: A Convoluted Interaction and the Opportunity to Unravel Predictive Biomarkers. International Journal of Molecular Sciences, 2023, 24, 7407.		1.8	1
513	Chronic and delayed neurological manifestations of persistent infections. Current Opinion in Neurology, 2023, 36, 198-206.		1.8	2
514	Perception of Quality of Life and Fatigue in Multiple Sclerosis Patients Treated with High-Dose Vitam D. Clinical and Translational Neuroscience, 2023, 7, 12.	in	0.4	1
515	Central Nervous System Neuroimmunologic Complications of COVID-19. Seminars in Neurology, 0, ,		0.5	0
516	Molecular and cellular biology of multiple sclerosis. Neurologie Pro Praxi, 2023, 24, 140-144.		0.0	0
517	A clinical case of multiple sclerosis with an episode of schizophrenia-like syndrome. Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova, 2023, 123, 120.		0.1	0
546	Roles and regulation of microglia activity in multiple sclerosis: insights from animal models. Nature Reviews Neuroscience, 2023, 24, 397-415.		4.9	10
559	T cells in health and disease. Signal Transduction and Targeted Therapy, 2023, 8, .		7.1	36
563	Associations and interactions with herpesviruses and parasites (helminths) in people with multiple sclerosis. , 2023, , 89-103.			0
564	Monoclonal antibodies in multiple sclerosis treatment. , 2023, , 191-207.			0

#	Article	IF	Citations
570	Applications of single-cell RNA sequencing in drug discovery and development. Nature Reviews Drug Discovery, 2023, 22, 496-520.	21.5	31
589	Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nature Reviews Neurology, 2023, 19, 461-476.	4.9	2
594	Gut Microbiota Links With Disease. , 2023, , 105-145.		0
601	Cladribine Tablets Mode of Action, Learning from the Pandemic: A Narrative Review. Neurology and Therapy, 0, , .	1.4	1
605	The immunology of long COVID. Nature Reviews Immunology, 2023, 23, 618-634.	10.6	70
607	Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson's disease. Npj Parkinson's Disease, 2023, 9, .	2.5	5
616	Multiple Sclerosis Diagnosis Pathways: An Intersectional Feminist Disability Life Course Perspective. Research in Social Science and Disability, 2023, , 29-47.	0.1	0
627	Biological and functional multimorbidity—from mechanisms to management. Nature Medicine, 2023, 29, 1649-1657.	15.2	9
628	Shared Pathogenicity Features and Sequences between EBV, SARS-CoV-2, and HLA Class I Molecule-binding Motifs with a Potential Role in Autoimmunity. Clinical Reviews in Allergy and Immunology, 0, , .	2.9	1
648	SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nature Immunology, 2023, 24, 1616-1627.	7.0	32
682	Multiple sclerosis: Motor dysfunction. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 119-147.	1.0	2
713	Ein perfekter Zufall. , 2023, , 109-124.		0
719	20.ÂNeurological Disorders. , 2023, , .		0
724	Vitamin D and the epidemiology of multiple sclerosis. , 2024, , 1167-1184.		0
741	The elusive nature of the oligoclonal bands in multiple sclerosis. Journal of Neurology, 2024, 271, 116-124.	1.8	0
765	Implication of Oxysterols and Phytosterols in Aging and Human Diseases. Advances in Experimental Medicine and Biology, 2024, , 231-260.	0.8	2
767	Peripheral immune function and Alzheimer's disease: a living systematic review and critical appraisal. Molecular Psychiatry, 0, , .	4.1	0
776	Immunological Aspects of Reactivation of Latent Infections in Space Flight and Antarctica. Human Physiology, 2023, 49, 682-698.	0.1	0

#	Article	IF	CITATIONS
777	Chance, ignorance, and the paradoxes of cancer: Richard Peto on developing preventative strategies under uncertainty. European Journal of Epidemiology, 0, , .	2.5	0
782	Secrets and lies of host–microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cellular and Molecular Life Sciences, 2024, 81, .	2.4	0
787	Ancient DNA reveals evolutionary origins of autoimmune diseases. Nature Reviews Immunology, 2024, 24, 85-86.	10.6	0
793	Epigenetics and multiple sclerosis. , 2024, , 183-223.		0
798	Editorial: Epstein-Barr Virus and multiple sclerosis. Frontiers in Immunology, 0, 14, .	2.2	0
818	Neuroprotection induced by coumarins in central nervous system disease models. , 2024, , 1411-1440.		0
819	Helicobacter pylori infection and risk of multiple sclerosis: an updated meta-analysis. Neurological Sciences, 0, , .	0.9	2
821	Multiple Sklerose. , 2024, , 69-84.		Ο
823	Mycobacterium avium ss. paratuberculosis and Human Disease: Bridging Infection and Autoimmunity. , 2024, , 559-581.		0
831	Introductory Chapter: State-of-the-Art Developments in Multiple Sclerosis. , 0, , .		0
832	Therapeutic Targeting of B Cells and Plasma Cells with a Focus on Multiple Sclerosis and Other Autoimmune Conditions. , 2024, , 425-435.		0
833	Epidemiology, epigenetics, and etiological factors in multiple sclerosis. , 2024, , 67-96.		Ο
834	Introduction to multiple sclerosis. , 2024, , 1-33.		0
853	Microbiota–brain interactions in aging and neurodegeneration. , 2024, , 175-193.		Ο
856	mRNA-based In Silico Vaccine Design using Epstein-Barr Virus'Envelope Glycoprotein GP350 and Glycoprotein BDLF3 through Immunoinformatics Approaches. , 2023, , .		0
865	Vitamin D and viral infections: Infectious diseases, autoimmune diseases, and cancers. Advances in Food and Nutrition Research, 2024, , .	1.5	0
869	Stem Cells from Dental Pulp of Deciduous Teeth: Twenty Years of Experience. , 0, , .		0