PROTAC targeted protein degraders: the past is prologu

Nature Reviews Drug Discovery 21, 181-200 DOI: 10.1038/s41573-021-00371-6

Citation Report

#	Article	IF	CITATIONS
3	Discovery of Thieno[2,3- <i>e</i>]indazole Derivatives as Novel Oral Selective Estrogen Receptor Degraders with Highly Improved Antitumor Effect and Favorable Druggability. Journal of Medicinal Chemistry, 2022, 65, 5724-5750.	2.9	8
4	Targeted protein degraders: a call for collective action to advance safety assessment. Nature Reviews Drug Discovery, 2022, , .	21.5	9
5	Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias. Journal of Hematology and Oncology, 2022, 15, 35.	6.9	18
6	Clinical considerations for the design of PROTACs in cancer. Molecular Cancer, 2022, 21, 67.	7.9	37
7	Development of an LC-MS/MS Method for ARV-110, a PROTAC Molecule, and Applications to Pharmacokinetic Studies. Molecules, 2022, 27, 1977.	1.7	26
10	FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021. Molecules, 2022, 27, 2259.	1.7	14
11	Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. ELife, 2022, 11, .	2.8	9
12	Anti-Androgen Receptor Therapies in Prostate Cancer: A Brief Update and Perspective. Frontiers in Oncology, 2022, 12, 865350.	1.3	12
13	Targeted protein degradation: mechanisms, strategies and application. Signal Transduction and Targeted Therapy, 2022, 7, 113.	7.1	162
14	Targeting epigenetic modulators using PROTAC degraders: Current status and future perspective. Bioorganic and Medicinal Chemistry Letters, 2022, 63, 128653.	1.0	18
15	The state of the art of PROTAC technologies for drug discovery. European Journal of Medicinal Chemistry, 2022, 235, 114290.	2.6	45
16	Translational PK–PD for targeted protein degradation. Chemical Society Reviews, 2022, 51, 3477-3486.	18.7	17
18	Smart PROTACs Enable Controllable Protein Degradation for Precision Cancer Therapy. Molecular Diagnosis and Therapy, 2022, 26, 283-291.	1.6	3
19	DUB to the rescue. Molecular Cell, 2022, 82, 1411-1413.	4.5	1
20	Designing Soluble PROTACs: Strategies and Preliminary Guidelines. Journal of Medicinal Chemistry, 2022, 65, 12639-12649.	2.9	33
21	Evolution of 3-(4-hydroxyphenyl)indoline-2-one as a scaffold for potent and selective anticancer activity. RSC Medicinal Chemistry, 2022, 13, 711-725.	1.7	1
22	Degrader-antibody conjugates. Chemical Society Reviews, 2022, 51, 3886-3897.	18.7	41
23	Overcoming Cancer Drug Resistance Utilizing PROTAC Technology. Frontiers in Cell and Developmental Biology, 2022, 10, 872729.	1.8	32

#	Article	IF	CITATIONS
24	Roadmap for Optimizing and Broadening Antibody-Based PROTACs for Degradation of Cell Surface Proteins. ACS Chemical Biology, 2022, 17, 1259-1268.	1.6	32
25	Application of Rapidly Accelerating Fibrosarcoma Protein Degraders in Drug Discovery. ACS Medicinal Chemistry Letters, 0, , .	1.3	Ο
26	Ubiquitin and Ubiquitin-like Proteins in Cancer, Neurodegenerative Disorders, and Heart Diseases. International Journal of Molecular Sciences, 2022, 23, 5053.	1.8	22
27	Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes, 2022, 10, 924.	1.3	8
28	Identification of novel and potent PROTACs targeting FAK for non-small cell lung cancer: Design, synthesis, and biological study. European Journal of Medicinal Chemistry, 2022, 237, 114373.	2.6	10
29	More to the RAS Story: KRAS ^{G12C} Inhibition, Resistance Mechanisms, and Moving Beyond KRAS ^{G12C} . American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 205-217.	1.8	13
30	E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188736.	3.3	36
32	Novel, highly potent PROTACs targeting AURORA-A kinase. Current Research in Chemical Biology, 2022, 2, 100032.	1.4	9
34	PROTAC mediated FKBP12 degradation enhances Hepcidin expression via BMP signaling without immunosuppression activity. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	4
35	PROTAC degraders with ligands recruiting MDM2 E3 ubiquitin ligase: an updated perspective. , 2022, 1, .		13
36	HDAC Inhibitors for the Therapy of Triple Negative Breast Cancer. Pharmaceuticals, 2022, 15, 667.	1.7	15
38	Molecular Glues: Capable Protein-Binding Small Molecules That Can Change Protein–Protein Interactions and Interactomes for the Potential Treatment of Human Cancer and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2022, 23, 6206.	1.8	9
39	Selectivity through Targeted Protein Degradation (TPD). Journal of Medicinal Chemistry, 2022, 65, 8113-8126.	2.9	15
40	Degrading boundaries to break new ground in chemical biology. Current Research in Chemical Biology, 2022, 2, 100033.	1.4	1
41	PROTACs: past, present and future. Chemical Society Reviews, 2022, 51, 5214-5236.	18.7	180
42	Chasing molecular glue degraders: screening approaches. Chemical Society Reviews, 2022, 51, 5498-5517.	18.7	55
43	Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chemical Society Reviews, 2022, 51, 5330-5350.	18.7	50
45	PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	77

#	Article	IF	CITATIONS
46	On-Chip Preconcentration Microchip Capillary Electrophoresis Based CE-PRM-LIVE for High-Throughput Selectivity Profiling of Deubiquitinase Inhibitors. Analytical Chemistry, 2022, 94, 9508-9513.	3.2	2
47	SARS-CoV-2: Novel Therapeutic Approaches for Diagnosis and Treatment. ACS Medicinal Chemistry Letters, 2022, 13, 999-1001.	1.3	0
48	Beyond Proteolysis-Targeting Chimeric Molecules: Designing Heterobifunctional Molecules Based on Functional Effectors. Journal of Medicinal Chemistry, 2022, 65, 8091-8112.	2.9	25
49	Proteolysis Targeting Chimeric Molecules: Tuning Molecular Strategies for a Clinically Sound Listening. International Journal of Molecular Sciences, 2022, 23, 6630.	1.8	8
50	Recent advances in the development of EGFR degraders: PROTACs and LYTACs. European Journal of Medicinal Chemistry, 2022, 239, 114533.	2.6	16
51	The importance of cellular degradation kinetics for understanding mechanisms in targeted protein degradation. Chemical Society Reviews, 2022, 51, 6210-6221.	18.7	12
52	Targeted Degradation of STAT3 via Chaperone-Mediated Autophagy by nanoCMATAC Platform. SSRN Electronic Journal, 0, , .	0.4	0
53	Targeting the deubiquitinase USP7 for degradation with PROTACs. Chemical Communications, 2022, 58, 8858-8861.	2.2	13
54	Protein–Protein Interaction Prediction for Targeted Protein Degradation. International Journal of Molecular Sciences, 2022, 23, 7033.	1.8	4
55	Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers. Frontiers in Immunology, 0, 13, .	2.2	10
57	Homobivalent, Trivalent, and Covalent PROTACs: Emerging Strategies for Protein Degradation. Journal of Medicinal Chemistry, 2022, 65, 8798-8827.	2.9	15
58	Current progress and novel strategies that target CDK12 for drug discovery. European Journal of Medicinal Chemistry, 2022, 240, 114603.	2.6	8
59	Enriching Proteolysis Targeting Chimeras with a Second Modality: When Two Are Better Than One. Journal of Medicinal Chemistry, 2022, 65, 9507-9530.	2.9	14
60	Applications and Limitations of Oxime‣inked "Split PROTACs― ChemBioChem, 2022, 23, .	1.3	6
61	ERK5 Signalling and Resistance to ERK1/2 Pathway Therapeutics: The Path Less Travelled?. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	9
62	Functional roles of E3 ubiquitin ligases in prostate cancer. Journal of Molecular Medicine, 2022, 100, 1125-1144.	1.7	6
63	Targeting the interaction of Î ² -catenin and TCF/LEF transcription factors to inhibit oncogenic Wnt signaling. Bioorganic and Medicinal Chemistry, 2022, 70, 116920.	1.4	11
64	Therapeutic and Effective CURE-PRO Molecules for E3 Ligase-Mediated Targeted Protein Degradation. ACS Medicinal Chemistry Letters, 2022, 13, 1206-1208.	1.3	3

#	Article	IF	CITATIONS
65	Application of Selective SMARCA2/4 PROTAC for Mutant Cancer Therapy. ACS Medicinal Chemistry Letters, 2022, 13, 1209-1210.	1.3	0
66	Application of Degradation of Cyclic-AMP Response Element Binding Protein for the Potential Treatment of Cancer. ACS Medicinal Chemistry Letters, 2022, 13, 1211-1212.	1.3	0
67	Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry, 2023, 62, 601-623.	1.2	43
68	Synthetic approaches to constructing proteolysis targeting chimeras (PROTACs). Mendeleev Communications, 2022, 32, 419-432.	0.6	0
69	Targeting cereblon in hematologic malignancies. Blood Reviews, 2023, 57, 100994.	2.8	8
70	Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade. Genes, 2022, 13, 1426.	1.0	4
71	Intracellular Delivery of Glutathione Peroxidase Degrader Induces Ferroptosis In Vivo. Angewandte Chemie, 0, , .	1.6	2
72	Key Considerations in Targeted Protein Degradation Drug Discovery and Development. Frontiers in Chemistry, 0, 10, .	1.8	7
73	Discovery of a Highly Potent and Selective Dual PROTAC Degrader of CDK12 and CDK13. Journal of Medicinal Chemistry, 2022, 65, 11066-11083.	2.9	18
74	Novel Design Strategies to Enhance the Efficiency of Proteolysis Targeting Chimeras. ACS Pharmacology and Translational Science, 2022, 5, 710-723.	2.5	11
76	Small-Molecule PROTACs for Cancer Immunotherapy. Molecules, 2022, 27, 5439.	1.7	8
77	Targeting UBE2C for degradation by bioPROTACs based on bacterial E3 ligase. Chinese Chemical Letters, 2023, 34, 107732.	4.8	4
78	Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood–Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2. Journal of the American Chemical Society, 2022, 144, 16930-16952.	6.6	52
80	Intracellular Delivery of Glutathione Peroxidase Degrader Induces Ferroptosis In Vivo. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
82	Chemical and Enzymatic Methods for Post-Translational Protein–Protein Conjugation. Journal of the American Chemical Society, 2022, 144, 14404-14419.	6.6	30
83	BET inhibitors: an updated patent review (2018–2021). Expert Opinion on Therapeutic Patents, 2022, 32, 953-968.	2.4	7
84	UDP-Clucose: A Cereblon-Dependent Clucokinase Protein Degrader. International Journal of Molecular Sciences, 2022, 23, 9094.	1.8	4
85	Improving treatment for acute ischemic stroke—Clot busting innovation in the pipeline. Frontiers in Medical Technology, 0, 4, .	1.3	2

#	Article	IF	CITATIONS
86	Patent landscape of inhibitors and PROTACs of the anti-apoptotic BCL-2 family proteins. Expert Opinion on Therapeutic Patents, 2022, 32, 1003-1026.	2.4	6
87	De Novo Design of an Androgen Receptor DNA Binding Domainâ€Targeted peptide PROTAC for Prostate Cancer Therapy. Advanced Science, 2022, 9, .	5.6	14
88	Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacological Research, 2022, 183, 106403.	3.1	10
89	Chemistries of bifunctional PROTAC degraders. Chemical Society Reviews, 2022, 51, 7066-7114.	18.7	73
90	Biologics-based degraders — an expanding toolkit for targeted-protein degradation. Current Opinion in Biotechnology, 2022, 78, 102807.	3.3	8
91	Design and optimization of oestrogen receptor PROTACs based on 4-hydroxytamoxifen. European Journal of Medicinal Chemistry, 2022, 243, 114770.	2.6	11
92	Methods to characterize and discover molecular degraders in cells. Chemical Society Reviews, 2022, 51, 7115-7137.	18.7	3
93	Discovery of Novel VEGFR-2-PROTAC Degraders Based on the Localization of Lysine Residues via Recruiting VHL for the Treatment of Gastric Cancer. SSRN Electronic Journal, 0, , .	0.4	Ο
94	A systematic analysis of biotech startups that went public in the first half of 2021. Current Research in Biotechnology, 2022, 4, 392-401.	1.9	5
95	SERDs: a case study in targeted protein degradation. Chemical Society Reviews, 2022, 51, 8149-8159.	18.7	4
96	The In-Cell Western immunofluorescence assay to monitor PROTAC mediated protein degradation. Methods in Enzymology, 2023, , 115-153.	0.4	1
97	Reactive oxygen species-responsive Pre-PROTAC for tumor-specific protein degradation. Chemical Communications, 2022, 58, 10072-10075.	2.2	15
98	High throughput E3 ligase degron binding assays for novel PROTAC ligand discovery. Methods in Enzymology, 2023, , 23-39.	0.4	3
99	A heterobifunctional molecule system for targeted protein acetylation in cells. Methods in Enzymology, 2022, , .	0.4	0
100	Targeted Protein Degradation to Overcome Resistance in Cancer Therapies: PROTAC and N-Degron Pathway. Biomedicines, 2022, 10, 2100.	1.4	5
101	Targeting tumor-associated MUC1 overcomes anoikis-resistance in pancreatic cancer. Translational Research, 2023, 253, 41-56.	2.2	23
102	MDM2-BCL-XL PROTACs enable degradation of BCL-XL and stabilization of p53. , 2022, 1, .		4
103	Discovery and Structural Characterization of Small Molecule Binders of the Human CTLH E3 Ligase Subunit GID4. Journal of Medicinal Chemistry, 2022, 65, 12725-12746.	2.9	20

#	Article	IF	CITATIONS
104	Linker-Dependent Folding Rationalizes PROTAC Cell Permeability. Journal of Medicinal Chemistry, 2022, 65, 13029-13040.	2.9	30
105	A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors. International Journal of Molecular Sciences, 2022, 23, 10014.	1.8	12
106	Small-molecule Modulators Targeting SHP2 for Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 498-504.	0.9	3
108	Recent Advances in Strategies for Imaging Detection and Intervention of Cellular Senescence. ChemBioChem, 2023, 24, .	1.3	8
109	Strategies for the discovery of oral PROTAC degraders aimed at cancer therapy. Cell Reports Physical Science, 2022, 3, 101062.	2.8	12
110	Small Molecules for Enhancing the Precision and Safety of Genome Editing. Molecules, 2022, 27, 6266.	1.7	6
111	MDM2-Based Proteolysis-Targeting Chimeras (PROTACs): An Innovative Drug Strategy for Cancer Treatment. International Journal of Molecular Sciences, 2022, 23, 11068.	1.8	8
112	PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras. BioDrugs, 2022, 36, 609-623.	2.2	9
113	Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs). Drug Discovery Today, 2023, 28, 103387.	3.2	13
114	Development of Targeted EGFR Degradation for Cancer Treatment. , 2022, 122, 218-227.		0
115	Targeted Protein Degradation by Electrophilic PROTACs that Stereoselectively and Site-Specifically Engage DCAF1. Journal of the American Chemical Society, 2022, 144, 18688-18699.	6.6	44
116	New insights into genome folding by loop extrusion from inducible degron technologies. Nature Reviews Genetics, 2023, 24, 73-85.	7.7	29
117	Recent Advances of Degradation Technologies Based on PROTAC Mechanism. Biomolecules, 2022, 12, 1257.	1.8	15
118	Proteolysis Targeting Chimeras (PROTACs): A Perspective on Integral Membrane Protein Degradation. ACS Pharmacology and Translational Science, 2022, 5, 849-858.	2.5	18
119	Targeted Protein Degradation via Lysosomes. Biochemistry, 2023, 62, 564-579.	1.2	12
120	Hydrophobic Tag Tethering Degradation, The Emerging Targeted Protein Degradation Strategy. Current Medicinal Chemistry, 2023, 30, 3137-3155.	1.2	2
121	Fluorinated Cycloalkyl Building Blocks for Drug Discovery. ChemMedChem, 2022, 17, .	1.6	26
122	Small Molecule Tools to Study Cellular Target Engagement for the Intracellular Allosteric Binding Site of GPCRs. Chemistry - A European Journal, 2023, 29, .	1.7	4

#	Article	IF	CITATIONS
123	A "Cell Space Station―for Spatiotemporal Molecular Manipulation of Immune Checkpoint. ACS Nano, 2022, 16, 16332-16342.	7.3	1
124	Discovery of novel VEGFR-2-PROTAC degraders based on the localization of lysine residues via recruiting VHL for the treatment of gastric cancer. European Journal of Medicinal Chemistry, 2022, 244, 114821.	2.6	5
125	Novel Allosteric Inhibitor-Derived AKT Proteolysis Targeting Chimeras (PROTACs) Enable Potent and Selective AKT Degradation in KRAS/BRAF Mutant Cells. Journal of Medicinal Chemistry, 2022, 65, 14237-14260.	2.9	7
126	Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives. Journal of Medicinal Chemistry, 2022, 65, 13533-13560.	2.9	12
127	Recent Advances in PROTAC Technology Toward New Therapeutic Modalities. Chemistry and Biodiversity, 2022, 19, .	1.0	2
128	Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Frontiers in Pharmacology, 0, 13, .	1.6	0
129	Drug Hunting at the Nexus of Medicinal Chemistry and Chemical Biology and the Discovery of Novel Therapeutic Modalities. Journal of Medicinal Chemistry, 2022, 65, 13594-13613.	2.9	3
130	A comprehensive review of BET-targeting PROTACs for cancer therapy. Bioorganic and Medicinal Chemistry, 2022, 73, 117033.	1.4	9
131	The current status and future prospects for therapeutic targeting of KEAP1-NRF2 and β-TrCP-NRF2 interactions in cancer chemoresistance. Free Radical Biology and Medicine, 2022, 192, 246-260.	1.3	13
132	Discovery of potent and selective HER2 PROTAC degrader based Tucatinib with improved efficacy against HER2 positive cancers. European Journal of Medicinal Chemistry, 2022, 244, 114775.	2.6	7
133	Emerging degrader technologies engaging lysosomal pathways. Chemical Society Reviews, 2022, 51, 8832-8876.	18.7	35
134	The PROTAC selectively degrading Bcl-x _L represents a novel Hedgehog pathway inhibitor with capacity of combating resistance to Smoothened inhibitors while sparing bone growth. Theranostics, 2022, 12, 7476-7490.	4.6	5
135	It's ok to be outnumbered – sub-stoichiometric modulation of homomeric protein complexes. RSC Medicinal Chemistry, 2023, 14, 22-46.	1.7	2
136	Towards design of drugs and delivery systems with the Martini coarse-grained model. QRB Discovery, 2022, 3, .	0.6	8
137	Localization matters in targeted protein degradation. Cell Chemical Biology, 2022, 29, 1465-1466.	2.5	3
138	Advancing New Chemical Modalities into Clinical Studies. ACS Medicinal Chemistry Letters, 2022, 13, 1691-1698.	1.3	13
139	cIAP1-based degraders induce degradation via branched ubiquitin architectures. Nature Chemical Biology, 2023, 19, 311-322.	3.9	10
140	Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 12815.	1.8	4

#	Article	IF	CITATIONS
141	The evolution and polymorphism of mono-amino acid repeats in androgen receptor and their regulatory role in health and disease. Frontiers in Medicine, 0, 9, .	1.2	2
142	PROTAC-DB 2.0: an updated database of PROTACs. Nucleic Acids Research, 2023, 51, D1367-D1372.	6.5	46
143	Current strategies for improving limitations of proteolysis targeting chimeras. Chinese Chemical Letters, 2023, 34, 107927.	4.8	2
145	Selective PARP1 inhibitors, PARP1-based dual-target inhibitors, PROTAC PARP1 degraders, and prodrugs of PARP1 inhibitors for cancer therapy. Pharmacological Research, 2022, 186, 106529.	3.1	13
147	SETD6 Regulates E2-Dependent Human Papillomavirus Transcription. Journal of Virology, 2022, 96, .	1.5	3
148	Manipulating autophagic degradation in human diseases: from mechanisms to interventions. , 2022, 1, 120-148.		4
149	SMAD4 Loss Induces c-MYC–Mediated NLE1 Upregulation to Support Protein Biosynthesis, Colorectal Cancer Growth, and Metastasis. Cancer Research, 2022, 82, 4604-4623.	0.4	5
150	Molecular targeted therapy for anticancer treatment. Experimental and Molecular Medicine, 2022, 54, 1670-1694.	3.2	57
151	Small molecule inhibitors targeting the cancers. MedComm, 2022, 3, .	3.1	25
152	The Emerging Roles of E3 Ligases and DUBs in Neurodegenerative Diseases. Molecular Neurobiology, 2023, 60, 247-263.	1.9	4
153	The race to develop oral SERDs and other novel estrogen receptor inhibitors: recent clinical trial results and impact on treatment options. Cancer and Metastasis Reviews, 2022, 41, 975-990.	2.7	23
154	Progression of Antiviral Agents Targeting Viral Polymerases. Molecules, 2022, 27, 7370.	1.7	6
155	PROTACting the kinome with covalent warheads. Drug Discovery Today, 2023, 28, 103417.	3.2	3
156	Structural optimization of novel Ras modulator for treatment of Colorectal cancer by promoting β-catenin and Ras degradation. Bioorganic Chemistry, 2023, 130, 106234.	2.0	0
158	Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. Nature Chemical Biology, 2023, 19, 323-333.	3.9	36
159	A synthetic KLHL20 ligand to validate CUL3 ^{KLHL20} as a potent E3 ligase for targeted protein degradation. Genes and Development, 0, , .	2.7	0
160	PROTACs in gastrointestinal cancers. Molecular Therapy - Oncolytics, 2022, 27, 204-223.	2.0	10
161	A Versatile and Sustainable Multicomponent Platform for the Synthesis of Protein Degraders: Proof-of-Concept Application to BRD4-Degrading PROTACs. Journal of Medicinal Chemistry, 2022, 65, 15282-15299.	2.9	16

#	Article	IF	CITATIONS
162	Ubiquitin proteasome system in immune regulation and therapeutics. Current Opinion in Pharmacology, 2022, 67, 102310.	1.7	9
163	Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Research Reviews, 2022, 82, 101769.	5.0	1
164	PROTAC technology: A new drug design for chemical biology with many challenges in drug discovery. Drug Discovery Today, 2023, 28, 103395.	3.2	18
165	Nitriles: an attractive approach to the development of covalent inhibitors. RSC Medicinal Chemistry, 2023, 14, 201-217.	1.7	11
171	Resistance to the BCL-XL degrader DT2216 in T-cell acute lymphoblastic leukemia is rare and correlates with decreased BCL-XL proteolysis. Cancer Chemotherapy and Pharmacology, 2023, 91, 89-95.	1.1	5
172	Targeting a transcriptional scler-axis to treat cardiac fibrosis. European Heart Journal, 0, , .	1.0	2
173	Chemical degradation of BTK/TEC as a novel approach to inhibit platelet function. Blood Advances, 0, ,	2.5	1
174	The role of E3 ubiquitin ligase in multiple myeloma: potential for cereblon E3 ligase modulators in the treatment of relapsed/refractory disease. Expert Review of Proteomics, 2022, 19, 235-246.	1.3	3
175	OncoLoop: A Network-Based Precision Cancer Medicine Framework. Cancer Discovery, 2023, 13, 386-409.	7.7	10
177	Modeling the Effect of Cooperativity in Ternary Complex Formation and Targeted Protein Degradation Mediated by Heterobifunctional Degraders. ACS Bio & Med Chem Au, 2023, 3, 74-86.	1.7	10
178	Targeting HER2-positive breast cancer: advances and future directions. Nature Reviews Drug Discovery, 2023, 22, 101-126.	21.5	140
179	Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Seminars in Cancer Biology, 2022, 87, 84-97.	4.3	13
181	Discovery of a potent and subtype-selective TYK2 degrader based on an allosteric TYK2 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2023, 79, 129083.	1.0	3
182	PCNA degradation exhibits superior pharmacological effects over stoichiometric inhibition. Cell Chemical Biology, 2022, 29, 1571-1573.	2.5	1
184	Quantitative measurement of PROTAC intracellular accumulation. Methods in Enzymology, 2023, , 189-214.	0.4	0
185	The importance of controls in targeted protein degradation: Determining mechanism. Methods in Enzymology, 2022, , .	0.4	0
186	Apt-clean: Aptamer-mediated cleavage of extracellular antigen for the inhibition of membrane protein functions. Biomaterials Science, 0, , .	2.6	1
187	Design, synthesis, and biological evaluation of BRD4 degraders. Bioorganic and Medicinal Chemistry, 2023, 78, 117134.	1.4	6

#	Article	IF	CITATIONS
188	Targeted AURKA degradation: Towards new therapeutic agents for neuroblastoma. European Journal of Medicinal Chemistry, 2023, 247, 115033.	2.6	3
189	Substrate-selective small-molecule modulators of enzymes: Mechanisms and opportunities. Current Opinion in Chemical Biology, 2023, 72, 102231.	2.8	1
190	Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochemical Pharmacology, 2023, 208, 115371.	2.0	24
191	PROTACS: A technology with a gold rush-like atmosphere. European Journal of Medicinal Chemistry, 2023, 247, 115037.	2.6	9
192	Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2023, 1866, 194902.	0.9	4
193	PROTAC: targeted drug strategy. Principles and limitations. Russian Chemical Bulletin, 2022, 71, 2310-2334.	0.4	8
194	A Perspective on Newly Emerging Proteolysis-Targeting Strategies in Antimicrobial Drug Discovery. Antibiotics, 2022, 11, 1717.	1.5	6
195	Identification and Characterization of a Novel Indoleamine 2,3-Dioxygenase 1 Protein Degrader for Glioblastoma. Journal of Medicinal Chemistry, 2022, 65, 15642-15662.	2.9	10
196	Synthesis of novel glutarimide derivatives via the Ugi multicomponent reaction: affinity towards the E3 ubiquitin ligase substrate receptor Cereblon. Mendeleev Communications, 2022, 32, 747-749.	0.6	0
197	Current Challenges in Small Molecule Proximity-Inducing Compound Development for Targeted Protein Degradation Using the Ubiquitin Proteasomal System. Molecules, 2022, 27, 8119.	1.7	3
198	Development of therapeutic antibodies for the treatment of diseases. Molecular Biomedicine, 2022, 3, .	1.7	19
199	IL-6/STAT3 signaling in tumor cells restricts the expression of frameshift-derived neoantigens by SMG1 induction. Molecular Cancer, 2022, 21, .	7.9	9
200	Bridged Proteolysis Targeting Chimera (PROTAC) Enables Degradation of Undruggable Targets. Journal of the American Chemical Society, 2022, 144, 22622-22632.	6.6	28
201	PROTAC therapy as a new targeted therapy for lung cancer. Molecular Therapy, 2023, 31, 647-656.	3.7	13
203	Targeted Protein Degradation for Infectious Diseases: from Basic Biology to Drug Discovery. ACS Bio & Med Chem Au, 2023, 3, 32-45.	1.7	6
204	Discovery of Coumarin-Based MEK1/2 PROTAC Effective in Human Cancer Cells. ACS Medicinal Chemistry Letters, 2023, 14, 92-102.	1.3	6
205	Proteostasis in aging-associated ocular disease. Molecular Aspects of Medicine, 2022, 88, 101157.	2.7	10
206	Discovery of the First Lactate Dehydrogenase Proteolysis Targeting Chimera Degrader for the Treatment of Pancreatic Cancer. Journal of Medicinal Chemistry, 2023, 66, 596-610.	2.9	3

#	Article	IF	CITATIONS
207	A Cell-Permeant Nanobody-Based Degrader That Induces Fetal Hemoglobin. ACS Central Science, 2022, 8, 1695-1703.	5.3	12
208	Hypoxia deactivates epigenetic feedbacks via enzyme-derived clicking proteolysis-targeting chimeras. Science Advances, 2022, 8, .	4.7	14
210	dSTORMâ€based singleâ€cell proteinÂquantitative analysis can effectively evaluate the degradation ability of PROTACs. ChemBioChem, 0, , .	1.3	1
211	Proteolysis-Targeting Chimeras (PROTACs) in Cancer Therapy: Present and Future. Molecules, 2022, 27, 8828.	1.7	7
213	Design, Synthesis and In Vitro Investigation of Cabozantinib-Based PROTACs to Target c-Met Kinase. Pharmaceutics, 2022, 14, 2829.	2.0	6
214	IFITM proteins assist cellular uptake of diverse linked chemotypes. Science, 2022, 378, 1097-1104.	6.0	12
215	Health horizons: Future trends and technologies from the European Medicines Agency's horizon scanning collaborations. Frontiers in Medicine, 0, 9, .	1.2	7
216	Targeted Protein Degradation: Clinical Advances in the Field of Oncology. International Journal of Molecular Sciences, 2022, 23, 15440.	1.8	8
217	Targeted protein degradation by Trim-Away using cell resealing coupled with microscopic image-based quantitative analysis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
218	10q26 – The enigma in age-related macular degeneration. Progress in Retinal and Eye Research, 2023, 96, 101154.	7.3	1
219	Radiotherapy-Triggered Proteolysis Targeting Chimera Prodrug Activation in Tumors. Journal of the American Chemical Society, 2023, 145, 385-391.	6.6	33
220	PIP kinases: A versatile family that demands further therapeutic attention. Advances in Biological Regulation, 2022, , 100939.	1.4	1
222	Checkpoint Nanoâ€₽ROTACs for Activatable Cancer Photoâ€Immunotherapy. Advanced Materials, 2023, 35, .	11.1	24
223	Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma. Frontiers in Oncology, 0, 12, .	1.3	1
224	Designing Selective Drug-like Molecular Glues for the Glucocorticoid Receptor/14-3-3 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2022, 65, 16818-16828.	2.9	4
225	PROTAC Degraders of Androgen Receptorâ€Integrated Dissolving Microneedles for Androgenetic Alopecia and Recrudescence Treatment via Single Topical Administration. Small Methods, 2023, 7, .	4.6	9
226	Advancing targeted protein degradation for metabolic diseases therapy. Pharmacological Research, 2023, 188, 106627.	3.1	13
227	Structure-based design of selective, orally available salt-inducible kinase inhibitors that stimulate bone formation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16

#	Article	IF	CITATIONS
228	Targeted protein degradation as an antiviral approach. Antiviral Research, 2023, 210, 105480.	1.9	4
229	Industry update for May 2022. Therapeutic Delivery, 0, , .	1.2	0
230	Battles against aberrant KEAP1-NRF2 signaling in lung cancer: intertwined metabolic and immune networks. Theranostics, 2023, 13, 704-723.	4.6	12
231	The roles of proteases in prostate cancer. IUBMB Life, 2023, 75, 493-513.	1.5	8
232	Basal cell adhesion molecule promotes metastasisâ€associated processes in ovarian cancer. Clinical and Translational Medicine, 2023, 13, .	1.7	1
233	Lethal activity of BRD4 PROTAC degrader QCA570 against bladder cancer cells. Frontiers in Chemistry, 0, 11, .	1.8	1
234	Evolution of nanobodies specific for BCL11A. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
235	Emerging TACnology: Heterobifunctional Small Molecule Inducers of Targeted Posttranslational Protein Modifications. Molecules, 2023, 28, 690.	1.7	5
236	E3 ligase ligand optimization of Clinical PROTACs. Frontiers in Chemistry, 0, 11, .	1.8	8
237	Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Frontiers in Pharmacology, 0, 13, .	1.6	7
238	PROTACs: Promising approach for anticancer therapy. Cancer Letters, 2023, 556, 216065.	3.2	5
239	Chemically engineering cells for precision medicine. Chemical Society Reviews, 2023, 52, 1068-1102.	18.7	22
240	Targeting protein clearance pathways in <i>GBA1</i> -associated Parkinson disease. Expert Opinion on Therapeutic Targets, 2022, 26, 1031-1035.	1.5	1
241	A Mechanistic Pharmacodynamic Modeling Framework for the Assessment and Optimization of Proteolysis Targeting Chimeras (PROTACs). Pharmaceutics, 2023, 15, 195.	2.0	6
242	Involvement of heterologous ubiquitination including linear ubiquitination in Alzheimer's disease and amyotrophic lateral sclerosis. Frontiers in Molecular Biosciences, 0, 10, .	1.6	2
243	E3-Specific Degrader Discovery by Dynamic Tracing of Substrate Receptor Abundance. Journal of the American Chemical Society, 2023, 145, 1176-1184.	6.6	11
244	DNA-modularized construction of bivalent ligands precisely regulates receptor binding and activation. CheM, 2023, 9, 901-923.	5.8	4
246	Life mimics art. Cell Research, O, , .	5.7	0

CITATION REPORT

#	Article	IF	CITATIONS
247	Conformational Sampling Deciphers the Chameleonic Properties of a VHL-Based Degrader. Pharmaceutics, 2023, 15, 272.	2.0	5
248	The E3 ubiquitin ligases regulate PD-1/PD-L1 protein levels in tumor microenvironment to improve immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	14
249	Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins. Molecules, 2023, 28, 917.	1.7	12
250	SLiM-binding pockets: an attractive target for broad-spectrum antivirals. Trends in Biochemical Sciences, 2023, 48, 420-427.	3.7	9
251	Payload diversification: a key step in the development of antibody–drug conjugates. Journal of Hematology and Oncology, 2023, 16, .	6.9	42
252	Solubility Enhanced Formulation Approaches to Overcome Oral Delivery Obstacles of PROTACs. Pharmaceutics, 2023, 15, 156.	2.0	7
253	Discovery of the GSH responsive "Y-PROTACs―targeting ALK and CDK4/6 as a potential treatment for cancer. European Journal of Medicinal Chemistry, 2023, 248, 115082.	2.6	4
254	Degrader–Antibody Conjugates: Emerging New Modality. Journal of Medicinal Chemistry, 2023, 66, 140-148.	2.9	11
255	MS/MS-Based Molecular Networking: An Efficient Approach for Natural Products Dereplication. Molecules, 2023, 28, 157.	1.7	11
256	Therapeutic Strategies to Activate p53. Pharmaceuticals, 2023, 16, 24.	1.7	10
256 257	Therapeutic Strategies to Activate p53. Pharmaceuticals, 2023, 16, 24. CIDE-stepping E3s. Nature Chemical Biology, 2023, 19, 3-4.	1.7 3.9	10 0
256 257 258	Therapeutic Strategies to Activate p53. Pharmaceuticals, 2023, 16, 24. CIDE-stepping E3s. Nature Chemical Biology, 2023, 19, 3-4. Targeted Protein Degradation Induced by HEMTACs Based on HSP90. Journal of Medicinal Chemistry, 2023, 66, 733-751.	1.7 3.9 2.9	10 0 7
256 257 258 259	Therapeutic Strategies to Activate p53. Pharmaceuticals, 2023, 16, 24. CIDE-stepping E3s. Nature Chemical Biology, 2023, 19, 3-4. Targeted Protein Degradation Induced by HEMTACs Based on HSP90. Journal of Medicinal Chemistry, 2023, 66, 733-751. Eliminating oncogenic RAS: back to the future at the drawing board. Biochemical Society Transactions, 2023, 51, 447-456.	1.7 3.9 2.9 1.6	10 0 7 9
256 257 258 259 260	Therapeutic Strategies to Activate p53. Pharmaceuticals, 2023, 16, 24. CIDE-stepping E3s. Nature Chemical Biology, 2023, 19, 3-4. Targeted Protein Degradation Induced by HEMTACs Based on HSP90. Journal of Medicinal Chemistry, 2023, 66, 733-751. Eliminating oncogenic RAS: back to the future at the drawing board. Biochemical Society Transactions, 2023, 51, 447-456. Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics, 2023, 15, 411.	1.7 3.9 2.9 1.6 2.0	10 0 7 9 7
256 257 258 259 260 261	Therapeutic Strategies to Activate p53. Pharmaceuticals, 2023, 16, 24.CIDE-stepping E3s. Nature Chemical Biology, 2023, 19, 3-4.Targeted Protein Degradation Induced by HEMTACs Based on HSP90. Journal of Medicinal Chemistry, 2023, 66, 733-751.Eliminating oncogenic RAS: back to the future at the drawing board. Biochemical Society Transactions, 2023, 51, 447-456.Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics, 2023, 15, 411.Development of Nitroso-Based Probes for Labeling and Regulation of RAS Proteins in Cancer Cells via Sequential Ene-Ligation and Oxime Condensation. Journal of Organic Chemistry, 2023, 88, 1762-1771.	1.7 3.9 2.9 1.6 2.0 1.7	10 0 7 9 7 4
256 257 258 259 260 261 262	Therapeutic Strategies to Activate p53. Pharmaceuticals, 2023, 16, 24. CIDE-stepping E3s. Nature Chemical Biology, 2023, 19, 3-4. Targeted Protein Degradation Induced by HEMTACs Based on HSP90. Journal of Medicinal Chemistry, 2023, 66, 733-751. Eliminating oncogenic RAS: back to the future at the drawing board. Biochemical Society Transactions, 2023, 51, 447-456. Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics, 2023, 15, 411. Development of Nitroso-Based Probes for Labeling and Regulation of RAS Proteins in Cancer Cells via Sequential Ene-Ligation and Oxime Condensation. Journal of Organic Chemistry, 2023, 88, 1762-1771. Recent Advances in the Applications of Small Molecules in the Treatment of Multiple Myeloma. International Journal of Molecular Sciences, 2023, 24, 2645.	1.7 3.9 2.9 1.6 2.0 1.7 1.8	10 0 7 9 7 4 4
256 257 258 259 260 261 262 263	Therapeutic Strategies to Activate p53. Pharmaceuticals, 2023, 16, 24. CIDE-stepping E3s. Nature Chemical Biology, 2023, 19, 3-4. Targeted Protein Degradation Induced by HEMTACs Based on HSP90. Journal of Medicinal Chemistry, 2023, 66, 733-751. Eliminating oncogenic RAS: back to the future at the drawing board. Biochemical Society Transactions, 2023, 51, 447-456. Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics, 2023, 15, 411. Development of Nitroso-Based Probes for Labeling and Regulation of RAS Proteins in Cancer Cells via Sequential Ene-Ligation and Oxime Condensation. Journal of Organic Chemistry, 2023, 88, 1762-1771. Recent Advances in the Applications of Small Molecules in the Treatment of Multiple Myeloma. International Journal of Molecular Sciences, 2023, 24, 2645. The TFIIS N-terminal domain (TND): a transcription assembly module at the interface of order and disorder. Biochemical Society Transactions, 2023, 51, 125-135.	1.7 3.9 2.9 1.6 2.0 1.7 1.8 1.8	10 0 7 9 7 4 4 7

#	Article	IF	CITATIONS
265	Optimization of PROTAC Ternary Complex Using DNA Encoded Library Approach. ACS Chemical Biology, 2023, 18, 25-33.	1.6	9
266	Proteolytic regulation of CD73 by TRIM21 orchestrates tumor immunogenicity. Science Advances, 2023, 9, .	4.7	6
267	Peptide-based PROTACs: Current Challenges and Future Perspectives. Current Medicinal Chemistry, 2024, 31, 208-222.	1.2	2
268	Discovery of novel exceptionally potent and orally active c-MET PROTACs for the treatment of tumors with MET alterations. Acta Pharmaceutica Sinica B, 2023, 13, 2715-2735.	5.7	4
269	Taming diamines and acyl chlorides by carbon dioxide in selective mono-acylation reactions. Green Chemistry, 2023, 25, 1332-1338.	4.6	2
270	EFMC: Trends in Medicinal Chemistry and Chemical Biology. ChemBioChem, 2023, 24, .	1.3	2
271	A two-faced selectivity solution to target SMARCA2 for cancer therapy. Nature Communications, 2023, 14, .	5.8	1
272	Synthesis and Biological Activity of a VHL-Based PROTAC Specific for p381±. Cancers, 2023, 15, 611.	1.7	4
273	The evolving role of investigative toxicology in the pharmaceutical industry. Nature Reviews Drug Discovery, 2023, 22, 317-335.	21.5	29
274	The emerging role of proteolysis targeting chimeras (PROTACs) in the treatment of Alzheimer's disease. Medicinal Chemistry Research, 0, , .	1.1	0
275	Targeted Biomolecule Regulation Platform: A Split-and-Mix PROTAC Approach. Journal of the American Chemical Society, 2023, 145, 7879-7887.	6.6	11
276	Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Frontiers in Oncology, 0, 13, .	1.3	1
277	HiBiT-SpyTag: A Minimal Tag for Covalent Protein Capture and Degrader Development. ACS Chemical Biology, 2023, 18, 933-941.	1.6	5
278	Targeted protein degradation bypassing Cereblon and Von Hippel–Lindau. Innovation(China), 2023, , 100422.	5.2	0
280	On Ternary Complex Stability in Protein Degradation: In Silico Molecular Glue Binding Affinity Calculations. Journal of Chemical Information and Modeling, 2023, 63, 2382-2392.	2.5	4
281	PROTACs: Novel tools for improving immunotherapy in cancer. Cancer Letters, 2023, 560, 216128.	3.2	6
282	Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Molecular Cancer Research, 2023, 21, 497-510.	1.5	4
283	Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance. , 2023, 244, 108371.		5

#	ARTICLE	IF	CITATIONS
284	Targeted protein degradation in cancers: Orthodox PROTACs and beyond. Innovation(China), 2023, 4, 100413.	5.2	4
285	Targeted protein posttranslational modifications by chemically induced proximity for cancer therapy. Journal of Biological Chemistry, 2023, 299, 104572.	1.6	9
286	A practical "preTACs-cytoblot―platform accelerates the streamlined development of PROTAC-based protein degraders. European Journal of Medicinal Chemistry, 2023, 251, 115248.	2.6	2
287	Interaction modules that impart specificity to disordered protein. Trends in Biochemical Sciences, 2023, 48, 477-490.	3.7	22
288	Antiviral PROTACs: Opportunity borne with challenge. , 2023, 2, 100092.		12
289	From PROTAC to inhibitor: Structure-guided discovery of potent and orally bioavailable BET inhibitors. European Journal of Medicinal Chemistry, 2023, 251, 115246.	2.6	1
290	Discovery of novel protein degraders based on bioorthogonal reaction-driven intracellular self-assembly strategy. Bioorganic Chemistry, 2023, 135, 106497.	2.0	3
291	The N-degron pathway: From basic science to therapeutic applications. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2023, 1866, 194934.	0.9	4
292	c-Myc-Targeting PROTAC Based on a TNA-DNA Bivalent Binder for Combination Therapy of Triple-Negative Breast Cancer. Journal of the American Chemical Society, 2023, 145, 9334-9342.	6.6	22
293	2-Aminobenzothiazoles in anticancer drug design and discovery. Bioorganic Chemistry, 2023, 135, 106477.	2.0	9
294	Ugi reaction-assisted assembly of covalent PROTACs against glutathione peroxidase 4. Bioorganic Chemistry, 2023, 134, 106461.	2.0	3
295	CRISPR Screen Reveals BRD2/4 Molecular Glue-like Degrader via Recruitment of DCAF16. ACS Chemical Biology, 2023, 18, 331-339.	1.6	19
296	A Physiologically Responsive Nanocomposite Hydrogel for Treatment of Head and Neck Squamous Cell Carcinoma via Proteolysisâ€Targeting Chimeras Enhanced Immunotherapy. Advanced Materials, 2023, 35, .	11.1	11
297	Crizotinibâ€based proteolysis targeting chimera suppresses gastric cancer by promoting <scp>MET</scp> degradation. Cancer Science, 2023, 114, 1958-1971.	1.7	4
298	Characterizing the binding of glycoprotein VI with nanobody 35 reveals a novel monomeric structure of glycoprotein VI where the conformation of D1+D2 is independent of dimerization. Journal of Thrombosis and Haemostasis, 2023, 21, 317-328.	1.9	2
299	PROTACs in Epigenetic Cancer Therapy: Current Status and Future Opportunities. Molecules, 2023, 28, 1217.	1.7	5
300	Aptamer‣YTACs for Targeted Degradation of Extracellular and Membrane Proteins. Angewandte Chemie, 2023, 135, .	1.6	1
301	Predictive Modeling of PROTAC Cell Permeability with Machine Learning. ACS Omega, 2023, 8, 5901-5916.	1.6	8

#	Article	IF	CITATIONS
302	Aptamerâ€LYTACs for Targeted Degradation of Extracellular and Membrane Proteins. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
303	Development of Human Carbonic Anhydrase II Heterobifunctional Degraders. Journal of Medicinal Chemistry, 2023, 66, 2789-2803.	2.9	7
304	Targeted MDM2 Degradation Reveals a New Vulnerability for p53-Inactivated Triple-Negative Breast Cancer. Cancer Discovery, 2023, 13, 1210-1229.	7.7	18
305	Sequence and structure alignments in post-AlphaFold era. Current Opinion in Structural Biology, 2023, 79, 102539.	2.6	2
306	Synthesis of novel glutarimide derivatives via the Michael addition of (hetero)aromatic thiols: pronounced effect of sulfur oxidation on cytotoxicity towards multiple myeloma cell lines. Mendeleev Communications, 2023, 33, 67-69.	0.6	0
307	The role and regulation of Maf proteins in cancer. Biomarker Research, 2023, 11, .	2.8	5
308	Development of Substituted Phenyl Dihydrouracil as the Novel Achiral Cereblon Ligands for Targeted Protein Degradation. Journal of Medicinal Chemistry, 2023, 66, 2904-2917.	2.9	13
309	Dissecting and targeting noncanonical functions of EZH2 in multiple myeloma via an EZH2 degrader. Oncogene, 2023, 42, 994-1009.	2.6	6
310	Ubiquitin-modifying enzymes in Huntington's disease. Frontiers in Molecular Biosciences, 0, 10, .	1.6	5
311	Proteomeâ€Wide Fragmentâ€Based Ligand and Target Discovery. Israel Journal of Chemistry, 2023, 63, .	1.0	1
312	Trends in Molecular Properties, Bioavailability, and Permeability across the Bayer Compound Collection. Journal of Medicinal Chemistry, 2023, 66, 2347-2360.	2.9	22
314	BRD9 Degradation Disrupts Ribosome Biogenesis in Multiple Myeloma. Clinical Cancer Research, 2023, 29, 1807-1821.	3.2	6
315	Protein degraders enter the clinic — a new approach to cancer therapy. Nature Reviews Clinical Oncology, 2023, 20, 265-278.	12.5	100
316	Synthetic E2-Ub-nucleosome conjugates for studying nucleosome ubiquitination. CheM, 2023, 9, 1221-1240.	5.8	17
317	The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. Cancers, 2023, 15, 1219.	1.7	11
318	Development of a bispecific DNA-aptamer-based lysosome-targeting chimera for HER2 protein degradation. Cell Reports Physical Science, 2023, 4, 101296.	2.8	5
321	Recent advances in targeted protein degraders as potential therapeutic agents. Molecular Diversity, 2024, 28, 309-333.	2.1	4

#	ARTICLE	IF	CITATIONS
324	Metastasiertes nichtkleinzelliges Lungenkarzinom: Zielgerichtete Therapie – was uns in der Zukunft erwartet. , 0, , .		0
325	Delivering on the promise of protein degraders. Nature Reviews Drug Discovery, 2023, 22, 410-427.	21.5	16
326	PROTAC antibiotics: the time is now. Expert Opinion on Drug Discovery, 2023, 18, 363-370.	2.5	2
327	E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. Journal of Medicinal Chemistry, 2023, 66, 3173-3194.	2.9	13
329	Computer aided drug design in the development of proteolysis targeting chimeras. Computational and Structural Biotechnology Journal, 2023, 21, 2058-2067.	1.9	3
330	Current Status of Oligonucleotide-Based Protein Degraders. Pharmaceutics, 2023, 15, 765.	2.0	2
331	Role of bromodomain and extraterminal (BET) proteins in prostate cancer. Expert Opinion on Investigational Drugs, 2023, 32, 213-228.	1.9	3
332	Addressing Transcriptional Dysregulation in Cancer through CDK9 Inhibition. Biochemistry, 2023, 62, 1114-1123.	1.2	6
333	Cereblon-Recruiting PROTACs: Will New Drugs Have to Face Old Challenges?. Pharmaceutics, 2023, 15, 812.	2.0	7
334	A covalent BTK ternary complex compatible with targeted protein degradation. Nature Communications, 2023, 14, .	5.8	4
335	Regulation of MAPK Signaling Pathways by the Large HERC Ubiquitin Ligases. International Journal of Molecular Sciences, 2023, 24, 4906.	1.8	2
336	Up-regulated Circular RNAs in Colorectal Cancer: New Entities for Therapy and Tools for Identification of Therapeutic Targets. Cancer Genomics and Proteomics, 2023, 20, 132-153.	1.0	0
337	Recent advances in the development of RIPK2 modulators for the treatment of inflammatory diseases. Frontiers in Pharmacology, 0, 14, .	1.6	7
338	Treatment Strategies for KRAS-Mutated Non-Small-Cell Lung Cancer. Cancers, 2023, 15, 1635.	1.7	10
339	Advantages of X-ray Crystallography in Drug Discovery Research. Nihon Kessho Gakkaishi, 2023, 65, 51-54.	0.0	0
340	A novel selective estrogen receptor degrader induces cell cycle arrest in breast cancer via ERα degradation and the autophagy-lysosome pathway. Bioorganic and Medicinal Chemistry, 2023, 82, 117235.	1.4	1
341	Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. International Journal of Molecular Sciences, 2023, 24, 5184.	1.8	4
342	Emerging Strategies in Proteolysis-Targeting Chimeras (PROTACs): Highlights from 2022. International Journal of Molecular Sciences, 2023, 24, 5190.	1.8	2

#	Article	IF	CITATIONS
343	ARE-PROTACs Enable Co-degradation of an Nrf2–MafG Heterodimer. Journal of Medicinal Chemistry, 2023, 66, 6070-6081.	2.9	5
344	Discovery of a Potent, Cooperative, and Selective SOS1 PROTAC ZZ151 with In Vivo Antitumor Efficacy in KRAS-Mutant Cancers. Journal of Medicinal Chemistry, 2023, 66, 4197-4214.	2.9	9
345	TIP60 is required for tumorigenesis in nonâ€small cell lung cancer. Cancer Science, 2023, 114, 2400-2413.	1.7	3
346	Use of FCCS in drug discovery and development and presentation of a novel dedicated instrument for industrial FCCS applications. , 2023, , .		0
347	A massive machine regulates cell death. Science, 2023, 379, 1093-1094.	6.0	2
348	Intracellular Antibodies for Drug Discovery and as Drugs of the Future. Antibodies, 2023, 12, 24.	1.2	2
349	Drug discovery processes: When and where the rubber meets the road. , 2023, , 339-415.		1
350	Deep Annotation of Donated Chemical Probes (DCP) in Organotypic Human Liver Cultures and Patient-Derived Organoids from Tumor and Normal Colorectum. ACS Chemical Biology, 2023, 18, 822-836.	1.6	0
351	Strategies to overcome resistance to ALK inhibitors in non-small cell lung cancer: a narrative review. Translational Lung Cancer Research, 2023, 12, 615-628.	1.3	6
352	PROTAC-Mediated Selective Degradation of Cytosolic Soluble Epoxide Hydrolase Enhances ER Stress Reduction. ACS Chemical Biology, 2023, 18, 884-896.	1.6	1
353	Intracellular antibodies and biodegraders: Beyond small molecules and back again. Current Opinion in Biomedical Engineering, 2023, 27, 100455.	1.8	0
354	Discovery of Potent and Highly Selective Interleukin-2-Inducible T-Cell Kinase Degraders with <i>In Vivo</i> Activity. Journal of Medicinal Chemistry, 2023, 66, 4979-4998.	2.9	0
355	Receptor-interacting protein kinase 1 (RIPK1) inhibitor: a review of the patent literature (2018-present). Expert Opinion on Therapeutic Patents, 2023, 33, 101-124.	2.4	3
356	The application of targeted protein degradation technologies to G proteinâ€coupled receptors. British Journal of Pharmacology, 0, , .	2.7	2
357	Ligation to Scavenging Strategy Enables On-Demand Termination of Targeted Protein Degradation. Journal of the American Chemical Society, 2023, 145, 7218-7229.	6.6	8
358	Discovery of a Potent and Selective Targeted NSD2 Degrader for the Reduction of H3K36me2. Journal of the American Chemical Society, 2023, 145, 8176-8188.	6.6	9
359	Development of Son of Sevenless Homologue 1 (SOS1) Modulators To Treat Cancers by Regulating RAS Signaling. Journal of Medicinal Chemistry, 2023, 66, 4324-4341.	2.9	9
360	PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy. Molecular Cancer, 2023, 22, .	7.9	18

#	Article	IF	CITATIONS
361	Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins. Journal of Medicinal Chemistry, 2023, 66, 4703-4733.	2.9	2
362	Cu-catalysed three-component C–H trifluoroalkylation of glycine derivatives: access to diverse CF ₃ -containing amino acids. Organic Chemistry Frontiers, 2023, 10, 2301-2309.	2.3	4
363	Receptor Elimination by E3 Ubiquitin Ligase Recruitment (REULR): A Targeted Protein Degradation Toolbox. ACS Synthetic Biology, 2023, 12, 1081-1093.	1.9	9
364	Developing an Affinity-Based Chemical Proteomics Method to <i>In Situ</i> Capture Amorphous Aggregated Proteome and Profile Its Heterogeneity in Stressed Cells. Analytical Chemistry, 2023, 95, 6358-6366.	3.2	6
365	Biophysical and Computational Approaches to Study Ternary Complexes: A â€~Cooperative Relationship' to Rationalize Targeted Protein Degradation. ChemBioChem, 2023, 24, .	1.3	8
366	ERK1/2 inhibitors act as monovalent degraders inducing ubiquitylation and proteasome-dependent turnover of ERK2, but not ERK1. Biochemical Journal, 0, , .	1.7	2
367	Rational Design in Photopharmacology with Molecular Photoswitches. Angewandte Chemie, 2023, 135,	1.6	3
368	Discovery of ML210-Based glutathione peroxidase 4 (GPX4) degrader inducing ferroptosis of human cancer cells. European Journal of Medicinal Chemistry, 2023, 254, 115343.	2.6	5
369	Rational Design in Photopharmacology with Molecular Photoswitches. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
370	Deciphering the Clinical Significance and Kinase Functions of GSK3α in Colon Cancer by Proteomics and Phosphoproteomics. Molecular and Cellular Proteomics, 2023, 22, 100545.	2.5	4
372	Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Molecular Cancer, 2023, 22, .	7.9	3
373	A New Wave of Targeting â€~Undruggable' Wnt Signaling for Cancer Therapy: Challenges and Opportunities. Cells, 2023, 12, 1110.	1.8	8
374	A small-molecule degrader of TET3 as treatment for anorexia nervosa in an animal model. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
375	Industry Perspective on the Pharmacokinetic and Absorption, Distribution, Metabolism, and Excretion Characterization of Heterobifunctional Protein Degraders. Drug Metabolism and Disposition, 2023, 51, 792-803.	1.7	8
376	Driving the degradation of oncofusion proteins for targeted cancer therapy. Drug Discovery Today, 2023, 28, 103584.	3.2	1
377	Targeted protein degrader development for cancer: advances, challenges, and opportunities. Trends in Pharmacological Sciences, 2023, 44, 303-317.	4.0	9
378	Bifunctional robots inducing targeted protein degradation. European Journal of Medicinal Chemistry, 2023, 255, 115384.	2.6	2
379	Open resources for chemical probes and their implications for future drug discovery. Expert Opinion on Drug Discovery, 2023, 18, 505-513.	2.5	0

#	Article	IF	CITATIONS
380	Glutathioneâ€Scavenging Nanoparticleâ€Mediated PROTACs Delivery for Targeted Protein Degradation and Amplified Antitumor Effects. Advanced Science, 2023, 10, .	5.6	10
381	Selected Approaches to Disrupting Protein–Protein Interactions within the MAPK/RAS Pathway. International Journal of Molecular Sciences, 2023, 24, 7373.	1.8	2
382	The Tale of DJ-1 (PARK7): A Swiss Army Knife in Biomedical and Psychological Research. International Journal of Molecular Sciences, 2023, 24, 7409.	1.8	2
383	Discovery of highly potent HDAC8 PROTACs with anti-tumor activity. Bioorganic Chemistry, 2023, 136, 106546.	2.0	5
384	Targeting of SOS1: from SOS1 Activators to Proteolysis Targeting Chimeras. Current Pharmaceutical Design, 2023, 29, 1741-1746.	0.9	4
385	SAA1 Has Potential as a Prognostic Biomarker Correlated with Cell Proliferation, Migration, and an Indicator for Immune Infiltration of Tumor Microenvironment in Clear Cell Renal Cell Carcinoma. International Journal of Molecular Sciences, 2023, 24, 7505.	1.8	0
386	Discovery of a miniaturized PROTAC with potent activity and high selectivity. Bioorganic Chemistry, 2023, 136, 106556.	2.0	3
387	Structure-activity relationship study of RSL3-based GPX4 degraders and its potential noncovalent optimization. European Journal of Medicinal Chemistry, 2023, 255, 115393.	2.6	6
388	TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins. Cell Death and Disease, 2023, 14, .	2.7	1
389	Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis. European Journal of Pharmaceutical Sciences, 2023, 186, 106451.	1.9	3
406	Protein degradation-based cancer therapy. , 2023, , 637-679.		0
441	Chemically induced degradation of epigenetic targets. Chemical Society Reviews, 2023, 52, 4313-4342.	18.7	2
455	Rethinking our approach to cancer metabolism to deliver patient benefit. British Journal of Cancer, 0,	2.9	0
458	Editorial: Brain metabolic imaging by magnetic resonance imaging and spectroscopy: methods and clinical applications. Frontiers in Neuroscience, 0, 17, .	1.4	0
461	Targeting Ribonucleases with Small Molecules and Bifunctional Molecules. ACS Chemical Biology, 0, ,	1.6	0
468	Formation of C(sp ²)–C(sp ³) Bonds Instead of Amide C–N Bonds from Carboxylic Acid and Amine Substrate Pools by Decarbonylative Cross-Electrophile Coupling. Journal of the American Chemical Society, 2023, 145, 9951-9958.	6.6	12
475	PROTAC-Induced Glycogen Synthase Kinase 3β Degradation as a Potential Therapeutic Strategy for Alzheimer's Disease. ACS Chemical Neuroscience, 2023, 14, 1963-1970.	1.7	4
482	Targeting MDM2 for the development of a new cancer therapy: progress and challenges. Medicinal Chemistry Research, 2023, 32, 1334-1344.	1.1	1

#	Article	IF	CITATIONS
488	Targeting the Estrogen Receptor for the Treatment of Breast Cancer: Recent Advances and Challenges. Journal of Medicinal Chemistry, 2023, 66, 8339-8381.	2.9	13
489	Carrier-Free Nano-PROTACs to Amplify Photodynamic Therapy Induced DNA Damage through BRD4 Degradation. Nano Letters, 2023, 23, 6193-6201.	4.5	3
493	Opportunities and challenges of protein-based targeted protein degradation. Chemical Science, 2023, 14, 8433-8447.	3.7	3
523	Methods for computer-assisted PROTAC design. Methods in Enzymology, 2023, , 311-340.	0.4	1
530	PROTAC chemical probes for histone deacetylase enzymes. RSC Chemical Biology, 2023, 4, 623-634.	2.0	1
534	Therapeutic resistance to anti-oestrogen therapy in breast cancer. Nature Reviews Cancer, 2023, 23, 673-685.	12.8	10
536	HYDROGEN/DEUTERIUM EXCHANGE-MASS SPECTROMETRY IN MEDICINAL CHEMISTRY. Medicinal Chemistry Reviews, 0, , 465-487.	0.1	0
566	Hunting down the shapeshifters. Nature Chemical Biology, 0, , .	3.9	Ο
574	Proximity-inducing modalities: the past, present, and future. Chemical Society Reviews, 2023, 52, 5485-5515.	18.7	5
579	Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Current Medical Science, 2023, 43, 855-868.	0.7	0
581	First-in-class metallo-PROTAC as an effective degrader of select Pt-binding proteins. Chemical Communications, 2023, 59, 12641-12644.	2.2	1
598	The roles of ubiquitination in AML. Annals of Hematology, 0, , .	0.8	0
609	Ubiquitination Process Mediates Prostate Cancer Development and Metastasis through Multiple Mechanisms. Cell Biochemistry and Biophysics, 2024, 82, 77-90.	0.9	0
613	MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene, 2023, 42, 3303-3318.	2.6	1
644	A mucin degrader for cancer therapy. Nature Biotechnology, 0, , .	9.4	0
673	Discovery of small molecule degraders for modulating cell cycle. Frontiers of Medicine, 2023, 17, 823-854.	1.5	0
686	Biophysical screening and characterisation in medicinal chemistry. Progress in Medicinal Chemistry, 2023, , 61-104.	4.1	1
691	SMALL-MOLECULE RNA-SPLICING MODULATORS. Medicinal Chemistry Reviews, 0, , 399-417.	0.1	0

#	Article	IF	CITATIONS
703	Unconventional roles of chromatin remodelers and long non-coding RNAs in cell division. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	0
707	New Therapeutic Modalities: Transforming Drug Discovery and Development. , 2023, , 1-21.		1
733	Utilising the intrinsic fluorescence of pomalidomide for imaging applications. Chemical Communications, 2023, 59, 14532-14535.	2.2	1
742	FBDD & De Novo Drug Design. , 2023, , 159-201.		0
760	Recent Advances of RNA m6A Modifications in Cancer Immunoediting and Immunotherapy. Cancer Treatment and Research, 2023, , 49-94.	0.2	0
782	Exploring the next generation of antibody–drug conjugates. Nature Reviews Clinical Oncology, 2024, 21, 203-223.	12.5	5
814	Nano-PROTACs: state of the art and perspectives. Nanoscale, 2024, 16, 4378-4391.	2.8	1
860	Chemical rewiring of ubiquitination by degraders and their selectivity routes. Nature Structural and Molecular Biology, 2024, 31, 205-207.	3.6	0