Partitioning of noble gases (He, Ne, Ar, Kr, Xe) during Ea core reservoir for primordial noble gases

Geochimica Et Cosmochimica Acta 321, 329-342 DOI: 10.1016/j.gca.2022.01.009

Citation Report

#	Article	IF	CITATIONS
1	Primordial Heliumâ€3 Exchange Between Earth's Core and Mantle. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	11
2	Primitive noble gases sampled from ocean island basalts cannot be from the Earth's core. Nature Communications, 2022, 13, .	12.8	6
3	Geochemical models of coreâ \in "mantle differentiation. Acta Geochimica, 0, , .	1.7	0
4	Chemical Geodynamics Insights From a Machine Learning Approach. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	7
5	Noble gas (He, Ne, and Ar) solubilities in high-pressure silicate melts calculated based on deep-potential modeling. Geochimica Et Cosmochimica Acta, 2023, 350, 57-68.	3.9	0
6	Primordial helium extracted from the Earth's core through magnesium oxide exsolution. Nature Geoscience, 2023, 16, 541-545.	12.9	1
7	Highest terrestrial 3He/4He credibly from the core. Nature, 2023, 623, 90-94.	27.8	1
8	Primordial and recycled noble gases in the Cook-Austral HIMU mantle: Insights into the onset of volatile subduction. Earth and Planetary Science Letters, 2024, 629, 118591.	4.4	0
9	Noble gas migration in silica polymorphs at Earth's mantle conditions. Earth and Planetary Science Letters, 2024, 633, 118637.	4.4	0