pH/Glucose Dual Responsive Metformin Release Hydro Self-Healing via Dual-Dynamic Bonding for Athletic Dia

ACS Nano 16, 3194-3207

DOI: 10.1021/acsnano.1c11040

Citation Report

#	Article	IF	CITATIONS
1	Emerging treatment strategies in wound care. International Wound Journal, 2022, 19, 1934-1954.	1.3	61
2	Alginate-based aerogels as wound dressings for efficient bacterial capture and enhanced antibacterial photodynamic therapy. Drug Delivery, 2022, 29, 1086-1099.	2.5	18
3	Injectable Hydrogel Based on Defectâ€Rich Multiâ€Nanozymes for Diabetic Wound Healing via an Oxygen Selfâ€6upplying Cascade Reaction. Small, 2022, 18, e2200165.	5.2	64
4	Dual functional electrospun nanofiber membrane with ROS scavenging and revascularization ability for diabetic wound healing. Colloids and Interface Science Communications, 2022, 48, 100620.	2.0	17
5	Supramolecular Thermoâ€Contracting Adhesive Hydrogel with Selfâ€Removability Simultaneously Enhancing Noninvasive Wound Closure and MRSAâ€Infected Wound Healing. Advanced Healthcare Materials, 2022, 11, e2102749.	3.9	120
6	Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications. , 2022, 136, 212799.		17
7	Preparation of Photocatalytic and Antibacterial MOF Nanozyme Used for Infected Diabetic Wound Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18194-18208.	4.0	61
8	Development of a Microenvironment-Responsive Hydrogel Promoting Chronically Infected Diabetic Wound Healing through Sequential Hemostatic, Antibacterial, and Angiogenic Activities. ACS Applied Materials & Interfaces, 2022, 14, 30480-30492.	4.0	42
9	Bioactive hydrogels based on polysaccharides and peptides for soft tissue wound management. Journal of Materials Chemistry B, 2022, 10, 7148-7160.	2.9	13
10	Bioactive and multifunctional keratin-pullulan based hydrogel membranes facilitate re-epithelization in diabetic model. International Journal of Biological Macromolecules, 2022, 209, 1826-1836.	3.6	13
11	Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomaterialia, 2022, 146, 119-130.	4.1	147
12	Green Polymer Nanocomposites for Skin Tissue Engineering. ACS Applied Bio Materials, 2022, 5, 2107-2121.	2.3	26
13	Bacterial responsive hydrogels based on quaternized chitosan and GQDs-ε-PL for chemo-photothermal synergistic anti-infection in diabetic wounds. International Journal of Biological Macromolecules, 2022, 210, 377-393.	3.6	17
14	An injectable and self-healing hydrogel with antibacterial and angiogenic properties for diabetic wound healing. Biomaterials Science, 2022, 10, 3480-3492.	2.6	22
15	Nanosized Fat Emulsion Injection Modulating Local Microenvironment Promotes Angiogenesis in Chronic Wound Healing. Advanced Functional Materials, 2022, 32, .	7.8	28
16	A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. European Polymer Journal, 2022, 173, 111293.	2.6	35
18	Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. Journal of Drug Delivery Science and Technology, 2022, 73, 103458.	1.4	23
19	Glucose/ROS cascade-responsive ceria nanozymes for diabetic wound healing. Materials Today Bio, 2022, 15, 100308.	2.6	25

#	Article	IF	Citations
20	Photoâ€Crosslinked Antimicrobial Hydrogel Exhibiting Wound Healing Ability and Curing Infections In Vivo. Advanced Healthcare Materials, 2022, 11, .	3.9	10
21	Interpenetrating Polymer Network Hydrogels Formed Using Antibiotics as a Dynamic Crosslinker for Treatment of Infected Wounds. Advanced Healthcare Materials, 2022, 11, .	3.9	17
22	Vascularization and neuralization of bioactive calcium magnesium phosphate/hydrogels for wound healing. Composites Part B: Engineering, 2022, 242, 110030.	5.9	17
23	<i>In situ</i> forming injectable \hat{i}^3 -poly(glutamic acid)/PEG adhesive hydrogels for hemorrhage control. Biomaterials Science, 2022, 10, 4218-4227.	2.6	18
24	<i>In situ</i> self-assembly of polydopamine inside injectable hydrogels: antibacterial activity and photothermal therapy for superbug-infected wound healing. Biomaterials Science, 2022, 10, 4126-4139.	2.6	7
25	Riclin-Capped Silver Nanoparticles as an Antibacterial and Anti-Inflammatory Wound Dressing. International Journal of Nanomedicine, 0, Volume 17, 2629-2641.	3.3	12
26	Application of nanotechnology in management and treatment of diabetic wounds. Journal of Drug Targeting, 0 , 0 , 1 - 21 .	2.1	8
27	Zn ²⁺ Cross-Linked Alginate Carrying Hollow Silica Nanoparticles Loaded with RL-QN15 Peptides Provides Promising Treatment for Chronic Skin Wounds. ACS Applied Materials & Description of the Interfaces, 2022, 14, 29491-29505.	4.0	23
28	Self-healing, antibacterial and anti-inflammatory chitosan-PEG hydrogels for ulcerated skin wound healing and drug delivery., 2022, 139, 212992.		15
29	A cell membrane repair protein-based nanoformulation with multiple actuators for scarless wound healing. Journal of Materials Chemistry B, 0, , .	2.9	1
30	Dual photothermal nanocomposites for drug-resistant infectious wound management. Nanoscale, 2022, 14, 11284-11297.	2.8	6
31	Construction of multifunctional wound dressings with their application in chronic wound treatment. Biomaterials Science, 2022, 10, 4058-4076.	2.6	49
32	Recent advances in various stimuli-responsive hydrogels: from synthetic designs to emerging healthcare applications. Materials Chemistry Frontiers, 2022, 6, 2338-2385.	3.2	36
33	A smart hydrogel patch with high transparency, adhesiveness and hemostasis for all-round treatment and glucose monitoring of diabetic foot ulcers. Journal of Materials Chemistry B, 2022, 10, 5804-5817.	2.9	16
34	Structural and Functional Design of Electrospun Nanofibers for Hemostasis and Wound Healing. Advanced Fiber Materials, 2022, 4, 1027-1057.	7.9	72
35	Heparinized Collagen Scaffolds Based on Schiff Base Bonds for Wound Dressings Accelerate Wound Healing without Scar. ACS Biomaterials Science and Engineering, 2022, 8, 3411-3423.	2.6	11
36	MiR-21 regulating PVT1/PTEN/IL-17 axis towards the treatment of infectious diabetic wound healing by modified GO-derived biomaterial in mouse models. Journal of Nanobiotechnology, 2022, 20, .	4.2	11
37	Tetrahedral framework nucleic <scp>acidsâ€based</scp> delivery promotes intracellular transfer of healing peptides and accelerates diabetic would healing. Cell Proliferation, 2022, 55, .	2.4	13

3

#	ARTICLE	IF	CITATIONS
38	Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment. Polymers, 2022, 14, 2764.	2.0	24
39	Conductive hydrogel dressings based on cascade reactions with photothermal effect for monitoring and treatment of diabetic wounds. Composites Part B: Engineering, 2022, 242, 110098.	5. 9	28
40	Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing. International Journal of Biological Macromolecules, 2022, 217, 77-87.	3.6	41
41	Together is better: poly(tannic acid) nanorods functionalized polysaccharide hydrogels for diabetic wound healing. Industrial Crops and Products, 2022, 186, 115273.	2.5	41
42	A pressure-resistant zwitterionic skin sensor for domestic real-time monitoring and pro-healing of pressure injury. Biosensors and Bioelectronics, 2022, 214, 114528.	5. 3	14
43	A pain reflex-inspired hydrogel for refractory wound healing. Materials and Design, 2022, , 110986.	3.3	5
44	Modified gelatin/iron- based metal-organic framework nanocomposite hydrogel as wound dressing: Synthesis, antibacterial activity, and Camellia sinensis release. International Journal of Biological Macromolecules, 2022, 218, 488-505.	3 . 6	21
45	Subchondral bone-inspired hydrogel scaffold for cartilage regeneration. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112721.	2.5	5
46	Mussel-inspired multifunctional hydrogel dressing with hemostasis, hypoglycemic, photothermal antibacterial properties on diabetic wounds. Biomaterials Science, 2022, 10, 4796-4814.	2.6	14
47	Evaluation of wound-healing efficiency of a functional Chitosan/Aloe vera hydrogel on the improvement of re-epithelialization in full thickness wound model of rat. Journal of Tissue Viability, 2022, , .	0.9	10
48	Tough Wet Adhesion of Hydrogen-Bond-Based Hydrogel with On-Demand Debonding and Efficient Hemostasis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 36166-36177.	4.0	32
49	pHâ€Universal Catecholâ€Amine Chemistry for Versatile Hyaluronic Acid Bioadhesives. Small, 2022, 18, .	5. 2	20
50	Combination of chemically modified <scp>SDF</scp> â€lα <scp>mRNA</scp> and small skin improves wound healing in diabetic rats with fullâ€thickness skin defects. Cell Proliferation, 2022, 55, .	2.4	2
51	Injectable conductive micro-cryogel as a muscle stem cell carrier improves myogenic proliferation, differentiation and in situ skeletal muscle regeneration. Acta Biomaterialia, 2022, 151, 197-209.	4.1	10
52	Self-healing, injectable hydrogel based on dual dynamic covalent cross-linking against postoperative abdominal cavity adhesion. Acta Biomaterialia, 2022, 151, 210-222.	4.1	24
53	Degradable and Non-Degradable Chondroitin Sulfate Particles with the Controlled Antibiotic Release for Bacterial Infections. Pharmaceutics, 2022, 14, 1739.	2.0	6
54	Spongeâ€Like Macroporous Hydrogel with Antibacterial and ROS Scavenging Capabilities for Diabetic Wound Regeneration. Advanced Healthcare Materials, 2022, 11, .	3.9	26
55	Synergistic effect of multiple hydrogen bond and disulfide bond on healing waterborne conductive polyurethane composite. Polymer, 2022, 258, 125240.	1.8	11

#	ARTICLE	IF	Citations
56	High-Efficiency Near-Infrared Light Responsive Antibacterial System for Synergistic Ablation of Bacteria and Biofilm. ACS Applied Materials & Samp; Interfaces, 2022, 14, 36947-36956.	4.0	14
57	Bacterial Growth-Induced Tobramycin Smart Release Self-Healing Hydrogel for <i>Pseudomonas aeruginosa</i> Infected Burn Wound Healing. ACS Nano, 2022, 16, 13022-13036.	7.3	198
58	Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability. Materials and Design, 2022, 222, 111041.	3.3	9
59	In situ hydrogel capturing nitric oxide microbubbles accelerates the healing of diabetic foot. Journal of Controlled Release, 2022, 350, 93-106.	4.8	15
60	Injectable reactive oxygen and nitrogen species-controlling hydrogels for tissue regeneration: current status and future perspectives. International Journal of Energy Production and Management, 2022, 9, .	1.9	15
61	Development of chitosan towards the self-healing and mechanically stronger biocompatible hydrogel. Journal of the Indian Chemical Society, 2022, 99, 100704.	1.3	2
62	Mussel-inspired nanocomposite hydrogel based on alginate and antimicrobial peptide for infected wound repair. International Journal of Biological Macromolecules, 2022, 219, 1087-1099.	3.6	16
63	Starch and chitosan-based antibacterial dressing for infected wound treatment via self-activated NO release strategy. International Journal of Biological Macromolecules, 2022, 220, 1177-1187.	3.6	4
64	Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Materials Today Bio, 2022, 16, 100429.	2.6	30
65	Stimuli-responsive therapeutic systems for the treatment of diabetic infected wounds. Nanoscale, 2022, 14, 12967-12983.	2.8	31
66	A hybrid hydrogel composed of chitin and \hat{l}^2 -glucan for the effective management of wound healing and scarring. Biomaterials Science, 2022, 10, 6024-6036.	2.6	9
67	Facile preparation of PVA hydrogels with adhesive, self-healing, antimicrobial, and on-demand removable capabilities for rapid hemostasis. Biomaterials Science, 2022, 10, 5620-5633.	2.6	14
68	Advanced bioactive hydrogels for the treatment of myocardial infarction. Journal of Materials Chemistry B, 2022, 10, 8375-8385.	2.9	5
69	Mechanically active small intestinal submucosa hydrogel for accelerating chronic wound healing. Journal of Materials Chemistry B, 2022, 10, 6279-6286.	2.9	11
70	Antibacterial conductive self-healable supramolecular hydrogel dressing for infected motional wound healing. Science China Chemistry, 2022, 65, 2238-2251.	4.2	26
71	Injectable adhesive self-healing biocompatible hydrogel for haemostasis, wound healing, and postoperative tissue adhesion prevention in nephron-sparing surgery. Acta Biomaterialia, 2022, 152, 157-170.	4.1	18
72	The effect of Klotho protein complexed with nanomaterials on bone mesenchymal stem cell performance in the treatment of diabetic ischaemic ulcer. IET Nanobiotechnology, 2022, 16, 316-324.	1.9	2
73	Antibacterial Conductive UV-Blocking Adhesion Hydrogel Dressing with Mild On-Demand Removability Accelerated Drug-Resistant Bacteria-Infected Wound Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 41726-41741.	4.0	29

#	ARTICLE	IF	CITATIONS
74	Transient Polymer Hydrogels Based on Dynamic Covalent Borate Ester Bonds. Chinese Journal of Chemistry, 2022, 40, 2794-2800.	2.6	13
7 5	Application of Metal–Organic Framework in Diagnosis and Treatment of Diabetes. Biomolecules, 2022, 12, 1240.	1.8	9
76	Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing. Nano-Micro Letters, 2022, 14, .	14.4	101
77	Biomineralization-Inspired Intermediate Precursor for the Controllable Gelation of Polyphenol–Macromolecule Hydrogels. ACS Applied Materials & Samp; Interfaces, 2022, 14, 44890-44901.	4.0	6
78	Design the molecule structures to achieve functional advantages of hydrogel wound dressings: Advances and strategies. Composites Part B: Engineering, 2022, 247, 110313.	5.9	54
79	Metabolic Labeling Strategy Boosted Antibacterial Efficiency for Photothermal and Photodynamic Synergistic Bacteria-Infected Wound Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 46362-46373.	4.0	15
80	AIE-active Ir(<scp>iii</scp>) complexes functionalised with a cationic Schiff base ligand: synthesis, photophysical properties and applications in photodynamic therapy. Dalton Transactions, 2022, 51, 16119-16125.	1.6	9
81	Bio-macromolecular design roadmap towards tough bioadhesives. Chemical Society Reviews, 2022, 51, 9127-9173.	18.7	31
82	A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomaterials Science, 2022, 10, 6911-6938.	2.6	30
83	Wound healing efficacy of rhamnolipidâ€coated zinc oxide nanoparticle along with its in vivo antibacterial efficacy against <i>Staphylococcus aureus</i> . Experimental Dermatology, 2023, 32, 154-164.	1.4	2
84	Biodegradable Sodium Alginate/Carrageenan/Cellulose Composite Hydrogel Wound Dressings Containing Herbal Extracts for Promoting Blood Coagulation and Wound Healing. Macromolecular Bioscience, 2023, 23, .	2.1	4
85	A PEG-CMC-THB-PRTM hydrogel with antibacterial and hemostatic properties for promoting wound healing. International Journal of Biological Macromolecules, 2023, 224, 370-379.	3.6	12
86	Preparation of carboxymethyl cellulose/polyvinyl alcohol wound dressing composite immobilized with anthocyanin extract for colorimetric monitoring of wound healing and prevention of wound infection. International Journal of Biological Macromolecules, 2023, 224, 233-242.	3.6	17
87	Medical Devices Based on Nanozymes. ACS Symposium Series, 0, , 211-229.	0.5	0
88	Skin-adaptive film dressing with smart-release of growth factors accelerated diabetic wound healing. International Journal of Biological Macromolecules, 2022, 222, 2729-2743.	3.6	10
89	Management of the Diabetic Foot in People with Diabetes Mellitus Older than 65 Years. Applied Sciences (Switzerland), 2022, 12, 10279.	1.3	1
90	Antibacterial Electrospun Nanofibrous Materials for Wound Healing. Advanced Fiber Materials, 2023, 5, 107-129.	7.9	30
91	Onâ€Demand Removable Selfâ€Healing and pHâ€Responsive Europiumâ€Releasing Adhesive Dressing Enables Inflammatory Microenvironment Modulation and Angiogenesis for Diabetic Wound Healing. Small, 2023, 19, .	5.2	28

#	Article	IF	Citations
92	Natural cocktail of bioactive factors conjugated on nanofibrous dressing for improved wound healing., 2022, 143, 213163.		4
93	Functionalized hydrogels in ophthalmic applications: Ocular inflammation, corneal injuries, vitreous substitutes and intravitreal injection. Materials and Design, 2022, 224, 111277.	3.3	9
94	Injectable self-healing chitosan-based POSS-PEG hybrid hydrogel as wound dressing to promote diabetic wound healing. Carbohydrate Polymers, 2023, 299, 120198.	5.1	37
95	Biodegradable hydrogels with photodynamic antibacterial activity promote wound healing and mitigate scar formation. Biomaterials Science, 2022, 11, 288-297.	2.6	9
96	A nanofiber hydrogel derived entirely from ocean biomass for wound healing. Nanoscale Advances, 2022, 5, 160-170.	2.2	2
97	Renewable marine polysaccharides for microenvironment-responsive wound healing. International Journal of Biological Macromolecules, 2023, 225, 526-543.	3.6	9
98	Antiâ€inflammatory hydrogel dressings and skin wound healing. Clinical and Translational Medicine, 2022, 12, .	1.7	74
99	Controlled release of protein from gelatin/chitosan hydrogel containing platelet-rich fibrin encapsulated in chitosan nanoparticles for accelerated wound healing in an animal model. International Journal of Biological Macromolecules, 2023, 225, 588-604.	3.6	11
100	Polydopamine/tannic acid/chitosan/poloxamer 407/188 thermosensitive hydrogel for antibacterial and wound healing. Carbohydrate Polymers, 2023, 302, 120349.	5.1	23
101	Antibacterial Host–Guest Intercalated LDH-Adorned Polyurethane for Accelerated Dermal Wound Healing. ACS Applied Bio Materials, 2022, 5, 5800-5815.	2.3	4
102	Analyzing and mapping the research status, hotspots, and frontiers of biological wound dressings: An in-depth data-driven assessment. International Journal of Pharmaceutics, 2022, 629, 122385.	2.6	3
103	Engineering functional natural polymer-based nanocomposite hydrogels for wound healing. Nanoscale Advances, 2022, 5, 27-45.	2.2	20
104	Antibacterial smart hydrogels: New hope for infectious wound management. Materials Today Bio, 2022, 17, 100499.	2.6	18
105	A biotin-stabilized HKUST-1/ADM scaffold for facilitating MSC endothelial differentiation and vascularization in diabetic wound healing. Biomaterials Science, 2023, 11, 854-872.	2.6	4
106	Recent advances in conductive hydrogels: classifications, properties, and applications. Chemical Society Reviews, 2023, 52, 473-509.	18.7	125
107	A novel pectic polysaccharide-based hydrogel derived from okra (Abelmoschus esculentusL. Moench) for chronic diabetic wound healing. European Polymer Journal, 2023, 183, 111763.	2.6	4
108	Recent advances in responsive hydrogels for diabetic wound healing. Materials Today Bio, 2023, 18, 100508.	2.6	37
109	Dual Photo/Thermo-Responsive Polypeptoids. Chinese Journal of Polymer Science (English Edition), 2023, 41, 24-31.	2.0	1

#	Article	IF	CITATIONS
110	Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Frontiers in Bioengineering and Biotechnology, 0 , 10 , .	2.0	1
111	Electrical stimulation-based conductive hydrogel for immunoregulation, neuroregeneration and rapid angiogenesis in diabetic wound repair. Science China Materials, 2023, 66, 1237-1248.	3.5	6
112	Multifunctional 3D platforms for rapid hemostasis and wound healing: Structural and functional prospects at biointerfaces. International Journal of Bioprinting, 2022, 9, 648.	1.7	1
113	Mannosylated Gold Nanoclusters Incorporated with a Repurposed Antihistamine Drug Promethazine for Antibacterial and Antibiofilm Applications. ACS Applied Bio Materials, 2022, 5, 5911-5923.	2.3	3
114	Carboxymethyl Chitosan/Tannic Acid Hydrogel with Antibacterial, Hemostasis, and Antioxidant Properties Promoting Skin Wound Repair. ACS Biomaterials Science and Engineering, 2023, 9, 437-448.	2.6	22
115	Fabrication of Multifunctional Drug Loaded Magnetic Phase Supported Calcium Phosphate Nanoparticle for Local Hyperthermia Combined Drug Delivery and Antibacterial Activity. ACS Applied Bio Materials, 2023, 6, 104-116.	2.3	5
116	Recent Advances in Enzymeâ€Based Biomaterials Toward Diabetic Wound Healing. Advanced NanoBiomed Research, 2023, 3, .	1.7	11
117	Thermoresponsive Self-Healing Zwitterionic Hydrogel as an In Situ Gelling Wound Dressing for Rapid Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 55342-55353.	4.0	19
118	Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opinion on Drug Delivery, 2022, 19, 1664-1695.	2.4	16
119	A cyclic heptapeptide-based hydrogel boosts the healing of chronic skin wounds in diabetic mice and patients. NPG Asia Materials, 2022, 14 , .	3.8	11
120	Research progress of stimulus-responsive antibacterial materials for bone infection. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	2
121	An injectable and pH-responsive hyaluronic acid hydrogel as metformin carrier for prevention of breast cancer recurrence. Carbohydrate Polymers, 2023, 304, 120493.	5.1	12
122	Silk Fibroin-Based Tough Hydrogels with Strong Underwater Adhesion for Fast Hemostasis and Wound Sealing. Biomacromolecules, 2023, 24, 319-331.	2.6	8
123	Design of Adhesive Hemostatic Hydrogels Guided by the Interfacial Interactions with Tissue Surface. Advanced NanoBiomed Research, 2023, 3, .	1.7	2
124	Spatiotemporal On–Off Immunomodulatory Hydrogel Targeting NLRP3 Inflammasome for the Treatment of Biofilmâ€Infected Diabetic Wounds. Advanced Functional Materials, 2023, 33, .	7.8	14
125	Diverse nanocomposites as a potential dressing for diabetic wound healing. Frontiers in Endocrinology, $0,13,.$	1.5	5
126	Preparation and characterization of Panax notoginseng saponins loaded hyaluronic acid/carboxymethyl chitosan hydrogel for type o diabetic wound healing. Materials Today Communications, 2023, 34, 105284.	0.9	2
127	In situ fabrication of co-coordinated TCPP-Cur donor-acceptor-type covalent organic framework-like photocatalytic hydrogel for rapid therapy of bacteria-infected wounds. Composites Part B: Engineering, 2023, 252, 110506.	5.9	8

#	ARTICLE	IF	CITATIONS
128	Supramolecular Gel, Its classification, preparation, properties, and applications: A review. Polymer-Plastics Technology and Materials, 2023, 62, 306-326.	0.6	0
129	Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Industrial & Lamp; Engineering Chemistry Research, 2023, 62, 841-866.	1.8	7
130	Structure-property-function relationships of sustainable hydrogels., 2023,, 79-111.		0
131	Chargeâ€Transfer Polymeric Hydrogels with Selfâ€Healing, Injectable, Thermosensitive, Adhesive, and Antibacterial Properties for Diabetic Wound Healing. Advanced Materials Technologies, 2023, 8, .	3.0	5
132	Natural Compounds and Biopolymers-Based Hydrogels Join Forces to Promote Wound Healing. Pharmaceutics, 2023, 15, 271.	2.0	7
133	A highly stretchable, adhesive and absorbent hybrid hydrogel dressing for photothermal/chemodynamic antibacterial therapy. New Journal of Chemistry, 2023, 47, 5011-5020.	1.4	1
134	High-Release, Residue-Free Polysaccharide Hydrogel for Refrigerated Food Preservation. ACS Applied Materials & Samp; Interfaces, 2023, 15, 6035-6046.	4.0	13
135	Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu. Bioactive Materials, 2023, 25, 239-255.	8.6	9
136	Gellan gum spongyâ€like hydrogelâ€based dual antibiotic therapy for infected diabetic wounds. Bioengineering and Translational Medicine, 2023, 8, .	3.9	3
137	Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Materials and Design, 2023, 229, 111917.	3.3	20
138	Biopolymers in diabetic wound care management: A potential substitute to traditional dressings. European Polymer Journal, 2023, 189, 111979.	2.6	12
139	3D-bioprinted double-crosslinked angiogenic alginate/chondroitin sulfate patch for diabetic wound healing. International Journal of Biological Macromolecules, 2023, 236, 123952.	3.6	9
140	Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment. Advanced Drug Delivery Reviews, 2023, 196, 114778.	6.6	22
141	Injectable, ROS-scavenging, drug-loaded hydrogel dressings of natural origin for oral postoperative care. Materials Today Communications, 2023, 35, 105634.	0.9	1
142	Photocatalytic oxygen evolution and antibacterial biomimetic repair membrane for diabetes wound repair via HIF1-α pathway. Materials Today Bio, 2023, 20, 100616.	2.6	0
143	Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing. Carbohydrate Polymers, 2023, 312, 120824.	5.1	26
144	Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioactive Materials, 2023, 26, 323-336.	8.6	26
145	Double Crossâ€Linked Biomimetic Hyaluronic Acidâ€Based Hydrogels with Thermoâ€Stimulated Selfâ€Contraction and Tissue Adhesiveness for Accelerating Postâ€Wound Closure and Wound Healing. Advanced Functional Materials, 2023, 33, .	7.8	25

#	ARTICLE	IF	CITATIONS
146	Review: Application of chitosan and its derivatives in medical materials. International Journal of Biological Macromolecules, 2023, 240, 124398.	3.6	28
147	Functional carbohydrate-based hydrogels for diabetic wound therapy. Carbohydrate Polymers, 2023, 312, 120823.	5.1	10
148	A self-gelling powder based on polyacrylic acid/polyacrylamide/quaternate chitosan for rapid hemostasis. International Journal of Biological Macromolecules, 2023, 232, 123449.	3.6	19
149	Injectable Intrinsic Photothermal Hydrogel Bioadhesive with Onâ€Demand Removability for Wound Closure and MRSAâ€Infected Wound Healing. Advanced Healthcare Materials, 2023, 12, .	3.9	26
150	Nanogel-Reinforced Polyacrylamide Hydrogel for Potential Vascular Adhesion. ACS Applied Polymer Materials, 2023, 5, 1169-1179.	2.0	2
151	Antiâ€Dehydration and Rapid Triggerâ€Detachable Multifunctional Hydrogels Promote Scarless Therapeutics of Deep Burn. Advanced Functional Materials, 2023, 33, .	7.8	20
152	The pHâ€Sensitive Optical Fiber Integrated CMCSâ€PA@Fe Hydrogels for Photothermal Therapy and Realâ€Time Monitoring of Infected Wounds. Advanced Functional Materials, 2023, 33, .	7.8	22
153	Polysucrose hydrogel loaded with natural molecules/extracts for multiphase-directed sustainable wound healing. RSC Medicinal Chemistry, 2023, 14, 534-548.	1.7	2
154	Multibiofunctional TFEB-engineered endothelial progenitor cell-derived extracellular vesicles/hydrogel system for rescuing critical limb ischemia. Chemical Engineering Journal, 2023, 460, 141730.	6.6	1
155	Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications. Nanomaterials, 2023, 13, 640.	1.9	4
156	Nanocellulose composite wound dressings for real-time pH wound monitoring. Materials Today Bio, 2023, 19, 100574.	2.6	13
157	Polysaccharide-Based Multifunctional Hydrogel Bio-Adhesives for Wound Healing: A Review. Gels, 2023, 9, 138.	2.1	32
158	Cross-linked chitosan/lysozyme hydrogels with inherent antibacterial activity and tuneable drug release properties for cutaneous drug administration. Science and Technology of Advanced Materials, 2023, 24, .	2.8	3
159	Instigating the in vitro antidiabetic activity of new tridentate Schiff base ligand appended M(II) complexes: From synthesis, structural characterization, quantum computational calculations to molecular docking, and molecular dynamics simulation studies. Applied Organometallic Chemistry, 2023, 37, .	1.7	23
160	Trifunctional Microgel-Mediated Preparation and Toughening of Printable High-Performance Chitosan Hydrogels for Underwater Communications. ACS Applied Materials & Samp; Interfaces, 2023, 15, 10075-10083.	4.0	3
161	Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113201.	2.5	14
162	Recent progress of antibacterial hydrogels in wound dressings. Materials Today Bio, 2023, 19, 100582.	2.6	52
163	Conductive hydrogels for tissue repair. Chemical Science, 2023, 14, 3091-3116.	3.7	27

#	Article	IF	Citations
164	Mucoadhesive Hydrogel with Anti-gastric Acid and Sustained-Release Functions for Amelioration of DSS-Induced Ulcerative Colitis. Journal of Agricultural and Food Chemistry, 2023, 71, 4016-4028.	2.4	4
165	Photoâ€Responsive Hydrogel for Contactless Dressing Change to Attenuate Secondary Damage and Promote Diabetic Wound Healing. Advanced Healthcare Materials, 2023, 12, .	3.9	9
166	pH-Responsive wound dressings: advances and prospects. Nanoscale Horizons, 2023, 8, 422-440.	4.1	21
167	Architecting Lignin/Poly(vinyl alcohol) Hydrogel with Carbon Nanotubes for Photothermal Antibacterial Therapy. ACS Applied Bio Materials, 2023, 6, 1525-1535.	2.3	8
168	Designing biomimetic scaffolds for skin tissue engineering. Biomaterials Science, 2023, 11, 3051-3076.	2.6	14
169	Bioâ€Inspired Antioxidant Heparinâ€Mimetic Peptide Hydrogel for Radiationâ€Induced Skin Injury Repair. Advanced Healthcare Materials, 2023, 12, .	3.9	5
170	Exosomes derived from Nr-CWS pretreated MSCs facilitate diabetic wound healing by promoting angiogenesis via the circlARS1/miR-4782-5p/VEGFA axis. Chinese Journal of Natural Medicines, 2023, 21, 172-184.	0.7	1
171	Janus Intelligent Antibacterial Hydrogel Dressings for Chronic Wound Healing in Diabetes. ACS Applied Polymer Materials, 2023, 5, 2596-2606.	2.0	4
172	Hybrid Hydrogel Loaded with ChlorhexidineâŠ,β-CD-MSN Composites as Wound Dressing. International Journal of Nanomedicine, 0, Volume 18, 1725-1740.	3.3	1
173	Nanohybrid Double Network Hydrogels Based on a Platinum Nanozyme Composite for Antimicrobial and Diabetic Wound Healing. ACS Applied Materials & Samp; Interfaces, 2023, 15, 17612-17626.	4.0	12
174	Preparation of polyaspartamide-based adhesive hydrogels <i>via</i> Schiff base reaction with aldehyde-functionalized dextran. Materials Advances, 2023, 4, 1989-1997.	2.6	3
175	A Self-Healing Multifunctional Hydrogel System Accelerates Diabetic Wound Healing through Orchestrating Immunoinflammatory Microenvironment. ACS Applied Materials & Interfaces, 2023, 15, 19847-19862.	4.0	4
176	Chitosan-Based Hybrid Dressing Materials for Treatment of Diabetic Wounds. Biological and Medical Physics Series, 2023, , 201-219.	0.3	1
177	Responsive hydrogel dressings for intelligent wound management. , 2023, 1, .		28
178	Engineered Injectable Cell-Laden Chitin/Chitosan Hydrogel with Adhesion and Biodegradability for Calvarial Defect Regeneration. ACS Applied Materials & Samp; Interfaces, 2023, 15, 20761-20773.	4.0	2
179	Highâ€Performance Multiâ€Dynamic Bond Crossâ€Linked Hydrogel with Spatiotemporal siRNA Delivery for Gene–Cell Combination Therapy of Intervertebral Disc Degeneration. Advanced Science, 2023, 10, .	5 . 6	10
180	Nano-crosslinked dynamic hydrogels for biomedical applications. Materials Today Bio, 2023, 20, 100640.	2.6	9
181	Boronate ester-based pH stimulated bactericide armoring for efficient fouling control of LNF membranes. Journal of Membrane Science, 2023, 678, 121662.	4.1	1

#	Article	IF	CITATIONS
228	Glucose Oxidase Driven Hydrogen Sulfide-Releasing Nanocascade for Diabetic Infection Treatment. Nano Letters, 2023, 23, 6610-6618.	4.5	7
244	Designing self-healing hydrogels for biomedical applications. Materials Horizons, 2023, 10, 3929-3947.	6.4	15
264	Research progress related to thermosensitive hydrogel dressings in wound healing: a review. Nanoscale Advances, 2023, 5, 6017-6037.	2.2	1
291	Smart stimuli-responsive polysaccharide nanohydrogels for drug delivery: a review. Journal of Materials Chemistry B, 2023, 11, 10538-10565.	2.9	4
296	Supramolecular hydrogels for wound repair and hemostasis. Materials Horizons, 2024, 11, 37-101.	6.4	3
320	Versatile Hydrogels in Regenerative Medicine. , 2023, , 61-166.		0
321	Therapeutic synthetic and natural materials for immunoengineering. Chemical Society Reviews, 2024, 53, 1789-1822.	18.7	0
323	Recent advances of hydrogels as smart dressings for diabetic wounds. Journal of Materials Chemistry B, 2024, 12, 1126-1148.	2.9	0