Neural-Network-State-Observation-Based Adaptive Inv Train

IEEE Transactions on Vehicular Technology 71, 3660-3669

DOI: 10.1109/tvt.2022.3142144

Citation Report

#	Article	IF	CITATIONS
1	A Fuzzy-Logic-System-Based Cooperative Control for the Multielectromagnets Suspension System of Maglev Trains With Experimental Verification. IEEE Transactions on Fuzzy Systems, 2023, 31, 3411-3422.	9.8	11
2	Adaptive fault-tolerant control of high-speed maglev train suspension system with partial actuator failure: design and experiments. Journal of Zhejiang University: Science A, 2023, 24, 272-283.	2.4	2
3	é«~速é"è-¬ä¹⁄4劔技本. Journal of Zhejiang University: Science A, 2023, 24, 173-176.	2.4	0
4	Neural Network Trajectory Tracking Control on Electromagnetic Suspension Systems. Mathematics, 2023, 11, 2272.	2.2	2
5	An Adaptive Inverse Model Control Method of Vehicle Yaw Stability with Active Front Steering Based on Adaptive RBF Neural Networks. IEEE Transactions on Vehicular Technology, 2023, , 1-15.	6.3	0
6	Operation Control Method for High-Speed Maglev Based on Fractional-Order Sliding Mode Adaptive and Diagonal Recurrent Neural Network. Energies, 2023, 16, 4566.	3.1	1
7	Research on Decoupling Control for Module Suspension System Based on Linear Active Disturbance Rejection Control., 2023,,.		0
8	Decentralized control design and implementation for magnetic levitation systems with extended state observer. Control Theory and Technology, 2023, 21, 397-413.	1.6	0
9	Traction power systems for electrified railways: evolution, state of the art, and future trends. Railway Engineering Science, 2024, 32, 1-19.	4.4	2
10	Optimization Method for Magnetic-Head Positioning Control System in HDD Against Unexpected Plant Perturbations by Using Data Mining Techniques. IEEE Transactions on Magnetics, 2023, , 1-1.	2.1	0
11	Design and Applications of Q-Learning Adaptive PID Algorithm for Maglev Train Levitation Control System., 2023,,.		0
12	Disturbance rejection tube model predictive levitation control of maglev trains., 2024, 2, 57-63.		0
13	A Review of Levitation Control Methods for Low- and Medium-Speed Maglev Systems. Buildings, 2024, 14, 837.	3.1	0