A fast accurate fine-grain object detection model based

Neural Computing and Applications 34, 3895-3921 DOI: 10.1007/s00521-021-06651-x

Citation Report

#	Article	IF	CITATIONS
2	Dist-YOLO: Fast Object Detection with Distance Estimation. Applied Sciences (Switzerland), 2022, 12, 1354.	1.3	34
3	Detection of Transmission Line Insulator Defects Based on an Improved Lightweight YOLOv4 Model. Applied Sciences (Switzerland), 2022, 12, 1207.	1.3	38
4	Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4. Computers and Electronics in Agriculture, 2022, 193, 106694.	3.7	94
5	Distinguishing Malicious Drones Using Vision Transformer. Al, 2022, 3, 260-273.	2.1	20
6	Analysis of Statistical and Artificial Intelligence Algorithms for Real-Time Speed Estimation Based on Vehicle Detection with YOLO. Applied Sciences (Switzerland), 2022, 12, 2907.	1.3	13
7	Unsupervised Driving Situation Detection in Latent Space for Autonomous Cars. Applied Sciences (Switzerland), 2022, 12, 3635.	1.3	0
8	An Object Detection Model for Paint Surface Detection Based on Improved YOLOv3. Machines, 2022, 10, 261.	1.2	6
9	Plant Leaf Diseases Fine-Grained Categorization Using Convolutional Neural Networks. IEEE Access, 2022, 10, 41087-41096.	2.6	17
10	Investigating Transfer Learning in Graph Neural Networks. Electronics (Switzerland), 2022, 11, 1202.	1.8	2
11	A Novel Image Recognition Method Based on DenseNet and DPRN. Applied Sciences (Switzerland), 2022, 12, 4232.	1.3	6
12	SMD-YOLO: An efficient and lightweight detection method for mask wearing status during the COVID-19 pandemic. Computer Methods and Programs in Biomedicine, 2022, 221, 106888.	2.6	13
13	Magnus-Forces Analysis of Pitched-Baseball Trajectories Using YOLOv3-Tiny Deep Learning Algorithm. Applied Sciences (Switzerland), 2022, 12, 5540.	1.3	5
14	A real time prediction methodology for hurricane evolution using LSTM recurrent neural networks. Neural Computing and Applications, 2022, 34, 17491-17505.	3.2	4
15	Swin-Transformer-Enabled YOLOv5 with Attention Mechanism for Small Object Detection on Satellite Images. Remote Sensing, 2022, 14, 2861.	1.8	73
16	mmWave Radar Sensors Fusion for Indoor Object Detection and Tracking. Electronics (Switzerland), 2022, 11, 2209.	1.8	10
17	YOLO-DSD: A YOLO-Based Detector Optimized for Better Balance between Accuracy, Deployability and Inference Time in Optical Remote Sensing Object Detection. Applied Sciences (Switzerland), 2022, 12, 7622.	1.3	2
18	Deep Learning Applied to Defect Detection in Powder Spreading Process of Magnetic Material Additive Manufacturing. Materials, 2022, 15, 5662.	1.3	7
19	Automatic recognition of parasitic products in stool examination using object detection approach. PeerJ Computer Science, 0, 8, e1065.	2.7	7

#	Article	IF	CITATIONS
20	Computer vision for package tracking on omnidirectional wheeled conveyor: Case study. Engineering Applications of Artificial Intelligence, 2022, 116, 105438.	4.3	4
21	GCS-YOLOV4-Tiny: A lightweight group convolution network for multi-stage fruit detection. Mathematical Biosciences and Engineering, 2022, 20, 241-268.	1.0	13
22	Combination of UAV and Raspberry Pi 4B: Airspace detection of red imported fire ant nests using an improved YOLOv4 model. Mathematical Biosciences and Engineering, 2022, 19, 13582-13606.	1.0	0
23	Lightweight tea bud recognition network integrating GhostNet and YOLOv5. Mathematical Biosciences and Engineering, 2022, 19, 12897-12914.	1.0	27
24	Recurrent self-optimizing proposals for weakly supervised object detection. Neural Computing and Applications, 0, , .	3.2	0
25	A coarse-fine reading recognition method for pointer meters based on CNN and computer vision. Engineering Research Express, 2022, 4, 035046.	0.8	2
26	Deep Learning-Based PC Member Crack Detection and Quality Inspection Support Technology for the Precise Construction of OSC Projects. Applied Sciences (Switzerland), 2022, 12, 9810.	1.3	6
27	Deep Learning Based Detector YOLOv5 for Identifying Insect Pests. Applied Sciences (Switzerland), 2022, 12, 10167.	1.3	49
28	HM-YOLOv5: A fast and accurate network for defect detection of hot-pressed light guide plates. Engineering Applications of Artificial Intelligence, 2023, 117, 105529.	4.3	8
29	Using deep learning for selenium web UI functional tests: A case-study with e-commerce applications. Engineering Applications of Artificial Intelligence, 2023, 117, 105446.	4.3	3
30	Swin transformer based vehicle detection in undisciplined traffic environment. Expert Systems With Applications, 2023, 213, 118992.	4.4	11
31	Effective Sea Clutter Region Extraction Based on Improved YOLOv4 Algorithm for Shore-Based UHF-Band Radar. , 2022, , .		1
32	Facial Limb Detection for the Protection of Face in Occupational Safety. Academic Perspective Procedia, 2022, 5, 154-160.	0.0	0
33	Universal detection of curved rice panicles in complex environments using aerial images and improved YOLOv4 model. Frontiers in Plant Science, 0, 13, .	1.7	3
34	Accurate cotton diseases and pests detection in complex background based on an improved YOLOX model. Computers and Electronics in Agriculture, 2022, 203, 107484.	3.7	14
35	Hyper-sausage coverage function neuron model and learning algorithm for image classification. Pattern Recognition, 2023, 136, 109216.	5.1	74
36	An adaptive offloading framework for license plate detection in collaborative edge and cloud computing. Mathematical Biosciences and Engineering, 2022, 20, 2793-2814.	1.0	0
37	Small Object Detection Methods in Complex Background: An Overview. International Journal of Pattern Recognition and Artificial Intelligence, 2023, 37, .	0.7	3

#	Article	IF	CITATIONS
38	An automatic identification system for citrus greening disease (Huanglongbing) using a YOLO convolutional neural network. Frontiers in Plant Science, 0, 13, .	1.7	5
39	A novel strategy for pest disease detection of <i>Brassica chinensis</i> based on UAV imagery and deep learning. International Journal of Remote Sensing, 2022, 43, 7083-7103.	1.3	7
40	A multitask cascading convolutional neural network for high-accuracy pointer meter automatic recognition in outdoor environments. Measurement Science and Technology, 2023, 34, 055011.	1.4	4
41	Comparison of Different Methods of Animal Detection and Recognition on Thermal Camera Images. Electronics (Switzerland), 2023, 12, 270.	1.8	2
42	Underwater Object Classification in SAS Images Based on a Deformable Residual Network and Transfer Learning. Applied Sciences (Switzerland), 2023, 13, 899.	1.3	0
43	Detection of cigarette appearance defects based on improved YOLOv4. Electronic Research Archive, 2023, 31, 1344-1364.	0.4	4
44	High-Performance Plant Pest and Disease Detection Based on Model Ensemble with Inception Module and Cluster Algorithm. Plants, 2023, 12, 200.	1.6	11
45	Deep Learning-Based Cost-Effective and Responsive Robot for Autism Treatment. Drones, 2023, 7, 81.	2.7	45
46	Integrating artificial intelligence in cyber security for cyber-physical systems. Electronic Research Archive, 2023, 31, 1876-1896.	0.4	6
47	Recognition of Unsafe Onboard Mooring and Unmooring Operation Behavior Based on Improved YOLO-v4 Algorithm. Journal of Marine Science and Engineering, 2023, 11, 291.	1.2	2
48	Detection of Multiclass Objects in Satellite Images Using an Improved Algorithmic Approach. , 2022, , .		1
49	Cataract disease classification from fundus images with transfer learning based deep learning model on two ocular disease datasets. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.0	4
50	Possibilistic simulation based interactive fuzzy MAGDM under discrimination q-rung picture linguistic information. Application in educational programs efficiency evaluation. Engineering Applications of Artificial Intelligence, 2023, 123, 106278.	4.3	1
51	A Lightweight Network for Small Object in UAV Images. , 2022, , .		0
52	Visual Object Tracking Based on Modified LeNet-5 and RCCF. Computer Systems Science and Engineering, 2023, 46, 1127-1139.	1.9	0
53	Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops. Agronomy, 2023, 13, 463.	1.3	7
54	Detection of Soybean Insect Pest and a Forecasting Platform Using Deep Learning with Unmanned Ground Vehicles. Agronomy, 2023, 13, 477.	1.3	9
55	A Study of an Online Tracking System for Spark Images of Abrasive Belt-Polishing Workpieces. Sensors, 2023, 23, 2025.	2.1	1

#	Article	IF	CITATIONS
56	Performance Comparison of YOLOv4 and YOLOv4-Tiny Algorithm for Object Detection on Wheeled Soccer Robot. , 2022, , .		3
57	YOLO-Tea: A Tea Disease Detection Model Improved by YOLOv5. Forests, 2023, 14, 415.	0.9	33
58	Improved YOLOv5s model for key components detection of power transmission lines. Mathematical Biosciences and Engineering, 2023, 20, 7738-7760.	1.0	5
59	Comparison of Various CNN Models for Image Classification. Lecture Notes in Networks and Systems, 2023, , 31-43.	0.5	О
60	Self-progress aggregate learning for weakly supervised salient object detection. Measurement Science and Technology, 2023, 34, 065405.	1.4	2
61	RE-RCNN: A Novel Representation-Enhanced RCNN Model for Early Apple Leaf Disease Detection. ACM Transactions on Sensor Networks, 0, , .	2.3	О
62	A Novel Small Target Detection Strategy: Location Feature Extraction in the Case of Self-Knowledge Distillation. Applied Sciences (Switzerland), 2023, 13, 3683.	1.3	0
63	Influence of Training Parameters on Real-Time Similar Object Detection Using YOLOv5s. Applied Sciences (Switzerland), 2023, 13, 3761.	1.3	1
64	An Offline EP Test Tube Positioning Tilt Correction Algorithm Based on Lightweight YOLOv4. International Journal of Pattern Recognition and Artificial Intelligence, 0, , .	0.7	0
65	A novel algorithm for small object detection based on YOLOv4. PeerJ Computer Science, 0, 9, e1314.	2.7	2
66	A novel architecture design for artificial intelligence-assisted culture conservation management system. Mathematical Biosciences and Engineering, 2023, 20, 9693-9711.	1.0	0
67	Pedestrian Detection and Tracking System Based on Deep-SORT, YOLOv5, and New Data Association Metrics. Information (Switzerland), 2023, 14, 218.	1.7	8
68	Target Detection for Construction Machinery Based on Deep Learning and Multi-source Data Fusion. IEEE Sensors Journal, 2023, , 1-1.	2.4	1
69	Leguminous seeds detection based on convolutional neural networks: Comparison of Faster R-CNN and YOLOv4 on a small custom dataset. Artificial Intelligence in Agriculture, 2023, 8, 30-45.	4.4	2
70	An improved UAV target detection algorithm based on ASFF-YOLOv5s. Mathematical Biosciences and Engineering, 2023, 20, 10773-10789.	1.0	4
80	A Review on Deep Learning on UAV Monitoring Systems for Agricultural Applications. Studies in Computational Intelligence, 2023, , 335-368.	0.7	1
81	A Qualitative Study on Image Quality Enhancement, Object Detection Methods to Assist Visually Impaired Users. , 2023, , .		0
84	Defect Detection Method Based on Improved YOLOv5s Model. , 2023, , .		О

#	Article	IF	CITATIONS
88	An Classification Model of Helicoverpa assulta and Helicoverpa armigera Combining Spatial Transformation Network and Deep Convolutional Neural Network. , 2023, , .		0
89	Adapting Swarm Intelligence to a Fixed Wing Unmanned Combat Aerial Vehicle Platform. Studies in Big Data, 2023, , 433-479.	0.8	0
106	Multi-Sensor Object Detection System for Real-Time Inferencing in ADAS. , 2023, , .		0
109	Deep Learning-Based Classification andÂQuantification ofÂEmulsion Droplets: A YOLOv7 Approach. Communications in Computer and Information Science, 2024, , 148-163.	0.4	0
111	Development of Intelligent Agricultural Automation Based on Computer Vision. , 2023, , .		0
113	Innovative Object Detection Utilizing an Improved Version of the YOLO5 Algorithm. , 2023, , .		0