SARS-CoV-2 Omicron virus causes attenuated disease in

Nature

603, 687-692

DOI: 10.1038/s41586-022-04441-6

Citation Report

#	Article	IF	CITATIONS
4	Omicron severity: milder but not mild. Lancet, The, 2022, 399, 412-413.	13.7	124
9	The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. Antiviral Research, 2022, 198, 105253.	4.1	104
10	Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environmental Research, 2022, 209, 112816.	7.5	189
12	A Community Study of SARS-CoV-2 Detection by RT-PCR in Saliva: A Reliable and Effective Method. Viruses, 2022, 14, 313.	3.3	10
13	Infection and pathogenesis of the Delta variant of SARS-CoV-2 in Rhesus macaque. Virologica Sinica, 2022, , .	3.0	4
16	Signals of Significantly Increased Vaccine Breakthrough, Decreased Hospitalization Rates, and Less Severe Disease in Patients with Coronavirus Disease 2019 Caused by the Omicron Variant of Severe Acute Respiratory Syndrome Coronavirus 2 in Houston,ÂTexas. American Journal of Pathology, 2022, 192. 642-652.	3.8	161
19	Omicron Genetic and Clinical Peculiarities That May Overturn SARS-CoV-2 Pandemic: A Literature Review. International Journal of Molecular Sciences, 2022, 23, 1987.	4.1	48
20	Critical View on the Importance of Host Defense Strategies on Virus Distribution of Bee Viruses: What Can We Learn from SARS-CoV-2 Variants?. Viruses, 2022, 14, 503.	3.3	1
21	Successive Pandemic Waves with Different Virulent Strains and the Effects of Vaccination for SARS-CoV-2. Vaccines, 2022, 10, 343.	4.4	4
24	Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. International Journal of Molecular Sciences, 2022, 23, 2408.	4.1	13
26	Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression. Viruses, 2022, 14, 535.	3.3	47
27	COVID-19 Genetic Variants and Their Potential Impact in Vaccine Development. Microorganisms, 2022, 10, 598.	3.6	14
28	Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. Cell, 2022, 185, 1572-1587.e11.	28.9	71
30	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
31	Organoid Models of SARS-CoV-2 Infection: What Have We Learned about COVID-19?. Organoids, 2022, 1, 2-27.	3.1	12
32	Omicron: What Makes the Latest SARS-CoV-2 Variant of Concern So Concerning?. Journal of Virology, 2022, 96, jvi0207721.	3.4	143
33	Efficacy of vaccination and previous infection against the Omicron BA.1 variant in Syrian hamsters. Cell Reports, 2022, 39, 110688.	6.4	14
35	Challenges of the Omicron (B.1.1.529) Variant and Its Lineages: A Global Perspective. ChemBioChem, 2022, 23, e202200059.	2.6	35

#	Article	IF	Citations
36	A 1-year longitudinal study on COVID-19 convalescents reveals persistence of anti-SARS-CoV-2 humoral and cellular immunity. Emerging Microbes and Infections, 2022, 11, 902-913.	6.5	7
37	mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 2022, 185, 1556-1571.e18.	28.9	179
38	Global trends in COVID-19. , 2022, 1, 31-39.		8
39	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284.	28.6	404
41	Neutralizing immunity in vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta variants. Cell, 2022, 185, 1539-1548.e5.	28.9	126
43	Cross-species tropism and antigenic landscapes of circulating SARS-CoV-2 variants. Cell Reports, 2022, 38, 110558.	6.4	15
44	The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends in Neurosciences, 2022, 45, 358-368.	8.6	118
45	Clinical Significance of COVID-19 and Diabetes: In the Pandemic Situation of SARS-CoV-2 Variants including Omicron (B.1.1.529). Biology, 2022, 11, 400.	2.8	10
46	Animal models in SARS-CoV-2 research. Nature Methods, 2022, 19, 392-394.	19.0	51
48	Reduced pathogenicity of the SARS-CoV-2 omicron variant in hamsters. Med, 2022, 3, 262-268.e4.	4.4	117
49	Pathogenicity of SARS-CoV-2 Omicron (R346K) variant in Syrian hamsters and its cross-neutralization with different variants of concern. EBioMedicine, 2022, 79, 103997.	6.1	29
51	Croup Associated With SARS-CoV-2: Pediatric Laryngotracheitis During the Omicron Surge. Journal of the Pediatric Infectious Diseases Society, 2022, 11, 371-374.	1.3	16
52	Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Reports, 2022, 39, 110770.	6.4	47
55	Research progress on vaccine efficacy against SARS-CoV-2 variants of concern. Human Vaccines and Immunotherapeutics, 2022, 18, 1-12.	3.3	10
56	Nasally delivered interferon-l̂» protects mice against infection by SARS-CoV-2 variants including Omicron. Cell Reports, 2022, 39, 110799.	6.4	39
57	The Delta SARS-CoV-2 Variant of Concern Induces Distinct Pathogenic Patterns of Respiratory Disease in K18-hACE2 Transgenic Mice Compared to the Ancestral Strain from Wuhan. MBio, 2022, 13, e0068322.	4.1	17
58	Outcomes of laboratoryâ€confirmed <scp>SARSâ€CoV</scp> â€2 infection in the Omicronâ€driven fourth wave compared with previous waves in the Western Cape Province, South Africa. Tropical Medicine and International Health, 2022, 27, 564-573.	2.3	94
61	Comparison of Vaccine Effectiveness Against the Omicron (B.1.1.529) Variant in Hemodialysis Patients. Kidney International Reports, 2022, 7, 1406-1409.	0.8	26

#	ARTICLE	IF	Citations
62	COVID-19 and tuberculosis: the double whammy of respiratory pathogens. European Respiratory Review, 2022, 31, 210264.	7.1	40
63	Structural and functional impact by SARS-CoV-2 Omicron spike mutations. Cell Reports, 2022, 39, 110729.	6.4	102
64	COVIDâ€19: Omicron – the latest, the least virulent, but probably not the last variant of concern of SARSâ€CoVâ€2. Microbial Biotechnology, 2022, 15, 1927-1939.	4.2	41
65	SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation, 2022, 45, 1430-1449.	3.8	16
66	Risk of hospitalisation associated with infection with SARS-CoV-2 omicron variant versus delta variant in Denmark: an observational cohort study. Lancet Infectious Diseases, The, 2022, 22, 967-976.	9.1	140
67	Protection of Hamsters Challenged with SARS-CoV-2 Delta Variant after Two Doses of Adjuvanted SARS-CoV-2 Stabilized Prefusion Spike Protein (S-2P) and a Single Dose of Beta Variant S-2P. Journal of Infectious Diseases, 2022, , .	4.0	5
68	The immune response to <scp>COVID</scp> â€19: Does sex matter?. Immunology, 2022, 166, 429-443.	4.4	18
69	An engineered ACE2 decoy neutralizes the SARS-CoV-2 Omicron variant and confers protection against infection in vivo. Science Translational Medicine, 2022, 14, eabn7737.	12.4	34
70	Animal models for studying COVID-19, prevention, and therapy: Pathology and disease phenotypes. Veterinary Pathology, 2022, 59, 516-527.	1.7	5
71	Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 2022, 36, 231-323.	4.6	24
72	Broadly neutralizing antibodies against Omicron-included SARS-CoV-2 variants induced by vaccination. Signal Transduction and Targeted Therapy, 2022, 7, 139.	17.1	14
73	Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2. Cell Host and Microbe, 2022, 30, 1093-1102.e3.	11.0	114
75	SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduction and Targeted Therapy, 2022, 7, 141.	17.1	315
76	Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2. Biomolecules, 2022, 12, 631.	4.0	4
77	Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Reports, 2022, 39, 110829.	6.4	214
78	Application of animal models to compare and contrast the virulence of current and future potential SARS-CoV-2 variants. Biosafety and Health, 2022, 4, 154-160.	2.7	3
79	Making a Joint Decision Regarding The Timing of Surgery For Elective Arthroplasty Surgery After Being Infected With COVID-19: A Systematic Review. Journal of Arthroplasty, 2022, , .	3.1	5
81	Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell, 2022, 185, 2103-2115.e19.	28.9	273

#	ARTICLE	IF	CITATIONS
82	The Reassessed Potential of SARS-CoV-2 Attenuation for COVID-19 Vaccine Developmentâ€"A Systematic Review. Viruses, 2022, 14, 991.	3.3	10
83	Emerging SARS-CoV-2 variants: Why, how, and what's next?. , 2022, 1, 100029.		26
84	Advances in Modelling COVID-19 in Animals. Frontiers in Drug Discovery, 2022, 2, .	2.8	0
85	Pathogenicity of SARSâ€CoVâ€⊋ Omicron. Clinical and Translational Medicine, 2022, 12, e880.	4.0	12
86	Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses, 2022, 14, 1020.	3.3	58
87	Pathogenicity of SARS-CoV-2 Omicron BA.1.1 in hamsters. EBioMedicine, 2022, 80, 104035.	6.1	4
88	Many Keys Unlock the Doors for Virus Entry. MBio, 2022, , e0044522.	4.1	0
89	Integrin/TGF-Î ² 1 Inhibitor GLPG-0187 Blocks SARS-CoV-2 Delta and Omicron Pseudovirus Infection of Airway Epithelial Cells In Vitro, Which Could Attenuate Disease Severity. Pharmaceuticals, 2022, 15, 618.	3.8	12
90	Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature, 2022, 607, 119-127.	27.8	174
91	Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature, 2022, 607, 351-355.	27.8	143
94	A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2. Science Bulletin, 2022, 67, 1372-1387.	9.0	54
95	Experimental Infection of Mink with SARS-COV-2 Omicron Variant and Subsequent Clinical Disease. Emerging Infectious Diseases, 2022, 28, .	4.3	11
96	Severe hospital events following symptomatic infection with Sars-CoV-2 Omicron and Delta variants in France, December 2021–January 2022: A retrospective, population-based, matched cohort study. EClinicalMedicine, 2022, 48, 101455.	7.1	49
97	Clinical severity of COVID-19 in patients admitted to hospital during the omicron wave in South Africa: a retrospective observational study. The Lancet Global Health, 2022, 10, e961-e969.	6.3	120
99	An Insight Based on Computational Analysis of the Interaction between the Receptor-Binding Domain of the Omicron Variants and Human Angiotensin-Converting Enzyme 2. Biology, 2022, 11, 797.	2.8	10
100	Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterization of Omicron in Australia. Nature Microbiology, 2022, 7, 896-908.	13.3	32
101	Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of Omicron?. International Journal of Molecular Sciences, 2022, 23, 5966.	4.1	9
102	Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing Mice. Viruses, 2022, 14, 1139.	3.3	21

#	Article	IF	CITATIONS
103	Recent insights into SARS oVâ€2 omicron variant. Reviews in Medical Virology, 2023, 33, .	8.3	29
104	Estimating relative generation times and reproduction numbers of Omicron BA.1 and BA.2 with respect to Delta variant in Denmark. Mathematical Biosciences and Engineering, 2022, 19, 9005-9017.	1.9	32
105	Sensitivity to Vaccines, Therapeutic Antibodies, and Viral Entry Inhibitors and Advances To Counter the SARS-CoV-2 Omicron Variant. Clinical Microbiology Reviews, 2022, 35, .	13.6	35
106	Resistance of SARS-CoV-2 Omicron BA.1 and BA.2 Variants to Vaccine-Elicited Sera and Therapeutic Monoclonal Antibodies. Viruses, 2022, 14, 1334.	3.3	45
107	Boosting with variant-matched vaccines: an opportunity to win the race against Omicron. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	0
108	Nationwide Effectiveness of First and Second SARS-CoV2 Booster Vaccines During the Delta and Omicron Pandemic Waves in Hungary (HUN-VE 2 Study). Frontiers in Immunology, 0, 13 , .	4.8	26
109	SARS-CoV-2: A Master of Immune Evasion. Biomedicines, 2022, 10, 1339.	3.2	24
110	SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. Nature Communications, 2022, 13 , .	12.8	73
111	Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Science Immunology, 2022, 7 , .	11.9	89
113	Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters. Science, 2022, 377, 428-433.	12.6	113
114	The Ecology of Viral Emergence. Annual Review of Virology, 2022, 9, 173-192.	6.7	20
116	Therapeutic efficacy of monoclonal antibodies and antivirals against SARS-CoV-2 Omicron BA.1 in Syrian hamsters. Nature Microbiology, 2022, 7, 1252-1258.	13.3	20
117	Structural Plasticity and Immune Evasion of SARS-CoV-2 Spike Variants. Viruses, 2022, 14, 1255.	3.3	30
118	A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge. Nature Communications, 2022, 13, .	12.8	22
119	Trivalent NDV-HXP-S Vaccine Protects against Phylogenetically Distant SARS-CoV-2 Variants of Concern in Mice. Microbiology Spectrum, 2022, 10, .	3.0	14
120	SARS-CoV-2, platelets, and endothelium: coexistence in space and time, or a pernicious ménage à trois?. Vascular Biology (Bristol, England), 2022, 4, R35-R43.	3.2	5
121	SARS-CoV-2 Omicron BA.5: Evolving Tropism and Evasion of Potent Humoral Responses and Resistance to Clinical Immunotherapeutics Relative to Viral Variants of Concern. SSRN Electronic Journal, 0, , .	0.4	3
122	K18- and CAG-hACE2 Transgenic Mouse Models and SARS-CoV-2: Implications for Neurodegeneration Research. Molecules, 2022, 27, 4142.	3.8	7

#	Article	IF	CITATIONS
124	The nervous system during <scp>COVID</scp> â€19: Caught in the crossfire. Immunological Reviews, 2022, 311, 90-111.	6.0	9
125	Sequencing during Times of Change: Evaluating SARS-CoV-2 Clinical Samples during the Transition from the Delta to Omicron Wave. Viruses, 2022, 14, 1408.	3.3	3
126	Differences in New Variant of Concern Replication at Physiological Temperatures In Vitro. Journal of Infectious Diseases, 2023, 227, 202-205.	4.0	10
127	Considering innate immune responses in SARS-CoV-2 infection and COVID-19. Nature Reviews Immunology, 2022, 22, 465-470.	22.7	14
128	Viral Vector Vaccine Development and Application during the COVID-19 Pandemic. Microorganisms, 2022, 10, 1450.	3.6	28
131	Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5707-5727.	3.5	7
132	A booster dose of Delta × Omicron hybrid mRNA vaccine produced broadly neutralizing antibody against Omicron and other SARS-CoV-2 variants. Journal of Biomedical Science, 2022, 29, .	7.0	42
133	Animal models for COVID-19: advances, gaps and perspectives. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	40
134	Reduced Pathogenicity and Transmission Potential of Omicron BA.1 and BA.2 Sublineages Compared with the Early Severe Acute Respiratory Syndrome Coronavirus 2 D614G Variant in Syrian Hamsters. Journal of Infectious Diseases, 2023, 227, 1143-1152.	4.0	16
135	Protection of hamsters challenged with SARS-CoV-2 after two doses of MVC-COV1901 vaccine followed by a single intranasal booster with nanoemulsion adjuvanted S-2P vaccine. Scientific Reports, 2022, 12, .	3.3	4
136	Importance score of SARS-CoV-2 genome predicts the death risk of COVID-19. Cell Death Discovery, 2022, 8, .	4.7	2
138	Pulmonary lesions following inoculation with the SARS-CoV-2 Omicron BA.1 (B.1.1.529) variant in Syrian golden hamsters. Emerging Microbes and Infections, 2022, 11, 1778-1786.	6.5	7
139	Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nature Communications, 2022, 13, .	12.8	93
140	Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies. EBioMedicine, 2022, 82, 104158.	6.1	128
141	Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys. Nature Microbiology, 2022, 7, 1376-1389.	13.3	33
142	Alveolar macrophages: Achilles' heel of SARS-CoV-2 infection. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	15
144	Global, regional, and national incidence and mortality of COVID-19 in 237 countries and territories, January 2022: a systematic analysis for World Health Organization COVID-19 Dashboard., 0, 2, .		28
145	Hetero-bivalent nanobodies provide broad-spectrum protection against SARS-CoV-2 variants of concern including Omicron. Cell Research, 2022, 32, 831-842.	12.0	16

#	ARTICLE	IF	CITATIONS
146	SARS-CoV-2 S2–targeted vaccination elicits broadly neutralizing antibodies. Science Translational Medicine, 2022, 14, .	12.4	57
147	Evolution of ACE2-independent SARS-CoV-2 infection and mouse adaption after passage in cells expressing human and mouse ACE2. Virus Evolution, 2022, 8, .	4.9	14
149	Early Isolates of SARS-CoV-2 Result in Different Pathogenesis in the Transduced Mouse Model of COVID-19. Viruses, 2022, 14, 1769.	3.3	1
150	A Glycosylated RBD Protein Induces Enhanced Neutralizing Antibodies against Omicron and Other Variants with Improved Protection against SARS-CoV-2 Infection. Journal of Virology, 2022, 96, .	3.4	15
151	Impact of SARS-CoV-2 Spike Mutations on Its Activation by TMPRSS2 and the Alternative TMPRSS13 Protease. MBio, 0 , , .	4.1	3
152	COVID-19 Omicron variant-induced laryngitis. Auris Nasus Larynx, 2022, , .	1.2	7
153	Intranasal vaccination induced cross-protective secretory IgA antibodies against SARS-CoV-2 variants with reducing the potential risk of lung eosinophilic immunopathology. Vaccine, 2022, 40, 5892-5903.	3.8	6
154	Characterization of Entry Pathways, Species-Specific Angiotensin-Converting Enzyme 2 Residues Determining Entry, and Antibody Neutralization Evasion of Omicron BA.1, BA.1.1, BA.2, and BA.3 Variants. Journal of Virology, 2022, 96, .	3.4	12
155	Preclinical assessment and randomized Phase I study of CT-P63, a broadly neutralizing antibody targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging Microbes and Infections, 2022, 11, 2315-2325.	6.5	3
156	Assessing the suitability of long non-coding RNAs as therapeutic targets and biomarkers in SARS-CoV-2 infection. Frontiers in Molecular Biosciences, 0, 9, .	3.5	6
158	Omicron-associated changes in SARS-CoV-2 symptoms in the United Kingdom. Clinical Infectious Diseases, 0, , .	5.8	43
161	The Omicron Variant BA.1.1 Presents a Lower Pathogenicity than B.1 D614G and Delta Variants in a Feline Model of SARS-CoV-2 Infection. Journal of Virology, 2022, 96, .	3.4	35
162	The Omicron (B.1.1.529) SARS-CoV-2 variant of concern also affects companion animals. Frontiers in Veterinary Science, $0, 9, .$	2.2	20
163	The Omicron variant of concern: The genomics, diagnostics, and clinical characteristics in children. Frontiers in Pediatrics, $0,10,10$	1.9	19
164	Cross-neutralization and cross-protection among SARS-CoV-2 viruses bearing different variant spikes. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	6
165	Understanding COVID-19-associated coagulopathy. Nature Reviews Immunology, 2022, 22, 639-649.	22.7	137
166	Promotion of neutralizing antibody-independent immunity to wild-type and SARS-CoV-2 variants of concern using an RBD-Nucleocapsid fusion protein. Nature Communications, 2022, 13, .	12.8	12
167	ChAdOx1 nCoV-19 (AZD1222) or nCoV-19-Beta (AZD2816) protect Syrian hamsters against Beta Delta and Omicron variants. Nature Communications, 2022, 13, .	12.8	23

#	ARTICLE	IF	Citations
168	Targeted escape of SARS-CoV-2 in vitro from monoclonal antibody S309, the precursor of sotrovimab. Frontiers in Immunology, $0,13,1$	4.8	10
169	A SCID Mouse Model To Evaluate the Efficacy of Antivirals against SARS-CoV-2 Infection. Journal of Virology, 2022, 96, .	3.4	5
170	Passive immunization with equine RBD-specific Fab protects K18-hACE2-mice against Alpha or Beta variants of SARS-CoV-2. Frontiers in Immunology, 0, 13 , .	4.8	3
172	Replicating RNA platform enables rapid response to the SARS-CoV-2 Omicron variant and elicits enhanced protection in naÃ-ve hamsters compared to ancestral vaccine. EBioMedicine, 2022, 83, 104196.	6.1	26
173	Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2?. Biomedicine and Pharmacotherapy, 2022, 154, 113522.	5.6	56
174	CLN7/MFSD8 may be an important factor for SARS-CoV-2 cell entry. IScience, 2022, 25, 105082.	4.1	1
175	SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. EBioMedicine, 2022, 84, 104270.	6.1	86
176	Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities. Science of the Total Environment, 2022, 853, 158547.	8.0	19
177	Characterizing the third wave of COVID-19. Indian Journal of Medical Research, 2022, Publish Ahead of Print, .	1.0	1
178	Are atypical lymphocytes a new predictive factor in the development of COVID-19?. Revista Da Sociedade Brasileira De Medicina Tropical, 0, 55, .	0.9	0
179	SARS-CoV-2 Vaccine Against Virus: Mission Accomplished!?., 2022, , 561-574.		0
180	Covid-Associated Pernio is the Product of an Abortive Sars-Cov-2 Infection Resulting in the Deposition of Inflammatory Viral Rna and a Local Interferon Response. SSRN Electronic Journal, 0, , .	0.4	0
181	COVID-19 Infection: The Virus and Its Origin, the Variants, the Immune Defense, the Multiorgan Autoimmune Reactions, and the Targeted Treatments. Advances in Infectious Diseases, 2022, 12, 568-631.	0.2	1
182	The Fc-Effector Function of COVID-19 Convalescent Plasma Contributes to SARS-CoV-2 Treatment Efficacy in Mice. SSRN Electronic Journal, 0, , .	0.4	0
183	Experimental measurement of respiratory particles dispersed by wind instruments and analysis of the associated risk of infection transmission. Journal of Aerosol Science, 2023, 167, 106070.	3.8	2
184	A potent neutralizing antibody provides protection against SARS-CoV-2 Omicron and Delta variants via nasal delivery. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	10
185	Clinical Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Variant Relative to Delta in British Columbia, Canada: A Retrospective Analysis of Whole-Genome Sequenced Cases. Clinical Infectious Diseases, 2023, 76, e18-e25.	5.8	15
187	Rhabdomyolysis in Pediatric Patients with SARS-CoV-2 Infection. Children, 2022, 9, 1441.	1.5	4

#	Article	IF	CITATIONS
188	B.1.351 SARS-CoV-2 Variant Exhibits Higher Virulence but Less Viral Shedding than That of the Ancestral Strain in Young Nonhuman Primates. Microbiology Spectrum, 2022, 10, .	3.0	6
189	Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Frontiers in Immunology, 0, 13, .	4.8	4
191	Does diabetes risk after SARS-CoV-2 infection depend on the viral variant?. Diabetes Research and Clinical Practice, 2022, 191, 110054.	2.8	3
192	Virological features and pathogenicity of SARS-CoV-2 Omicron BA.2. Cell Reports Medicine, 2022, 3, 100743.	6.5	19
193	Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models. Science Translational Medicine, 2022, 14, .	12.4	55
194	Mucosal nanobody IgA as inhalable and affordable prophylactic and therapeutic treatment against SARS-CoV-2 and emerging variants. Frontiers in Immunology, 0, 13, .	4.8	5
195	COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. American Journal of Lifestyle Medicine, 0, , 155982762211230.	1.9	4
196	Characterization of <scp>SHARPIN</scp> knockout Syrian hamsters developed using <scp>CRISPR</scp> /Cas9 system. Animal Models and Experimental Medicine, 2023, 6, 489-498.	3.3	2
197	Spike mutations contributing to the altered entry preference of SARS-CoV-2 omicron BA.1 and BA.2. Emerging Microbes and Infections, 2022, 11, 2275-2287.	6.5	48
198	Spike protein-independent attenuation of SARS-CoV-2 Omicron variant in laboratory mice. Cell Reports, 2022, 40, 111359.	6.4	23
199	An <scp>ACE2</scp> decoy can be administered by inhalation and potently targets omicron variants of <scp>SARS oV</scp> â€2. EMBO Molecular Medicine, 2022, 14, .	6.9	28
200	Building a Resilient Scientific Network for COVID-19 and Beyond. MBio, 0, , .	4.1	1
201	In vitro and in vivo differences in neurovirulence between D614G, Delta And Omicron BA.1 SARS-CoV-2 variants. Acta Neuropathologica Communications, 2022, 10, .	5.2	24
202	Scaling Biosafety Up During and Down After the COVID-19 Pandemic. Applied Biosafety, 2022, 27, 247-254.	0.5	1
203	Global "flu-ization―of COVID-19: A perspective from Vietnam. Frontiers in Public Health, 0, 10, .	2.7	8
204	An international observational study to assess the impact of the Omicron variant emergence on the clinical epidemiology of COVID-19 in hospitalised patients. ELife, $0,11,.$	6.0	8
209	SARS-CoV-2 Omicron variant is attenuated for replication in a polarized human lung epithelial cell model. Communications Biology, 2022, 5, .	4.4	34
210	Infection, pathology and interferon treatment of the SARS-CoV-2 Omicron BA.1 variant in juvenile, adult and aged Syrian hamsters., 2022, 19, 1392-1399.		5

#	Article	IF	CITATIONS
212	Early pathogenesis profiles across SARS-CoV-2 variants in K18-hACE2 mice revealed differential triggers of lung damages. Frontiers in Immunology, $0,13,.$	4.8	1
213	Limited permissibility of ENL-R and Mv-1-Lu mink cell lines to SARS-CoV-2. Frontiers in Microbiology, 0, 13, .	3.5	0
214	The Burden of Omicron Variant in Pakistan: An Updated Review. Covid, 2022, 2, 1460-1476.	1.5	1
215	Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways. Nature Communications, 2022, 13,	12.8	46
216	Characteristics of animal models for COVIDâ€19. Animal Models and Experimental Medicine, 2022, 5, 401-409.	3.3	7
217	Choosing a cellular model to study SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	22
218	Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nature Medicine, 2023, 29, 247-257.	30.7	98
219	Characteristics and outcomes of COVID-19 patients during B.1.1.529 (Omicron) dominance compared to B.1.617.2 (Delta) in 89 German hospitals. BMC Infectious Diseases, 2022, 22, .	2.9	19
220	Comparison of SARS-CoV-2 Viral Loads in the Nasal Mucosa of Patients Infected With BA.1, BA.2, or BA.5 Omicron Lineages. Open Forum Infectious Diseases, 2022, 9, .	0.9	2
221	SARS-CoV-2 Omicron BA.1 Challenge after Ancestral or Delta Infection in Mice. Emerging Infectious Diseases, 2022, 28, 2352-2355.	4.3	0
222	Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents. Nature, 2022, 612, 540-545.	27.8	60
223	S-217622, a SARS-CoV-2 main protease inhibitor, decreases viral load and ameliorates COVID-19 severity in hamsters. Science Translational Medicine, 2023, 15, .	12.4	39
224	Extended SARS-CoV-2 RBD booster vaccination induces humoral and cellular immune tolerance in mice. IScience, 2022, 25, 105479.	4.1	24
225	Nasal irrigation efficiently attenuates SARS-CoV-2 Omicron infection, transmission and lung injury in the Syrian hamster model. IScience, 2022, 25, 105475.	4.1	8
226	Emergence of SARSâ€CoVâ€2 OmicronÂvariant and strategies for tackling the infection. Immunity, Inflammation and Disease, 2022, 10, .	2.7	9
227	Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters. Nature Communications, 2022, 13, .	12.8	11
228	SARS-CoV-2 variants: Impact on biological and clinical outcome. Frontiers in Medicine, 0, 9, .	2.6	7
229	A minimally-edited mouse model for infection with multiple SARS-CoV-2 strains. Frontiers in Immunology, 0, 13, .	4.8	3

#	Article	lF	CITATIONS
230	Enhanced virulence and waning vaccine-elicited antibodies account for breakthrough infections caused by SARS-CoV-2 delta and beyond. IScience, 2022, 25, 105507.	4.1	10
232	Assessment, diagnosis and treatment of children who present with stridor. Emergency Nurse, 2023, 31, 27-32.	0.2	0
233	Role of SARS-CoV-2-induced cytokine storm in multi-organ failure: Molecular pathways and potential therapeutic options. International Immunopharmacology, 2022, 113, 109428.	3.8	22
234	SARS-CoV-2 Omicron BA.1 and BA.2 are attenuated in rhesus macaques as compared to Delta. Science Advances, 2022, 8, .	10.3	28
235	Serological fingerprints link antiviral activity of the rapeutic antibodies to affinity and concentration. Scientific Reports, $2022,\ 12,\ .$	3.3	2
236	Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. Journal of Infection and Public Health, 2023, 16, 4-14.	4.1	105
237	Stimulation of interferon- \hat{l}^2 responses by aberrant SARS-CoV-2 small viral RNAs acting as retinoic acid-inducible gene-I agonists. IScience, 2023, 26, 105742.	4.1	4
241	Characterization of Three Variants of SARS-CoV-2 In Vivo Shows Host-Dependent Pathogenicity in Hamsters, While Not in K18-hACE2 Mice. Viruses, 2022, 14, 2584.	3.3	6
242	Identification of severe acute respiratory syndrome coronavirus 2 breakthrough infections by anti-nucleocapsid antibody among fully vaccinated non-healthcare workers during the transition from the delta to omicron wave. Frontiers in Medicine, 0, 9, .	2.6	2
243	Clinical characteristics of patients infected with novel coronavirus wild strain, Delta variant strain and Omicron variant strain in Quanzhou: A real†world study. Experimental and Therapeutic Medicine, 2022, 25, .	1.8	9
246	Omicronâ€specific mRNA vaccine induced crossâ€protective immunity against ancestral SARS oVâ€2 infection with low neutralizing antibodies. Journal of Medical Virology, 2023, 95, .	5.0	7
248	Trends in Cases, Hospitalizations, and Mortality Related to the Omicron BA.4/BA.5 Subvariants in South Africa. Clinical Infectious Diseases, 2023, 76, 1468-1475.	5.8	15
249	Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses. Nature Communications, 2022, 13, .	12.8	17
250	Reduced airborne transmission of SARS-CoV-2 BA.1 Omicron virus in Syrian hamsters. PLoS Pathogens, 2022, 18, e1010970.	4.7	13
251	Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Reports, 2022, 41, 111845.	6.4	46
252	Immune response and protective efficacy of the SARS-CoV-2 recombinant spike protein vaccine S-268019-b in mice. Scientific Reports, 2022, 12, .	3.3	2
254	The humoral and cellular immune evasion of SARS-CoV-2 Omicron and sub-lineages. Virologica Sinica, 2022, 37, 786-795.	3.0	12
255	Animal Models to Test SARS-CoV-2 Vaccines: Which Ones Are in Use and Future Expectations. Pathogens, 2023, 12, 20.	2.8	4

#	Article	IF	CITATIONS
257	A bispecific nanobody dimer broadly neutralizes SARS-CoV-1 & amp; 2 variants of concern and offers substantial protection against Omicron via low-dose intranasal administration. Cell Discovery, 2022, 8, .	6.7	12
258	Fatal cases after Omicron BA.1 and BA.2 infection: Results of an autopsy study. International Journal of Infectious Diseases, 2023, 128, 51-57.	3.3	2
259	Impact of Reinfection with SARS-CoV-2 Omicron Variants in Previously Infected Hamsters. Journal of Virology, 0, , .	3.4	4
260	Determinants and Mechanisms of the Low Fusogenicity and High Dependence on Endosomal Entry of Omicron Subvariants. MBio, 2023, 14, .	4.1	14
261	A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses, 2023, 15, 167.	3.3	87
263	Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation. Nature, 2023, 615, 143-150.	27.8	52
268	A Selective SARS-CoV-2 Host-Directed Antiviral Targeting Stress Response to Reactive Oxygen Species. ACS Central Science, 0, , .	11.3	1
270	Analysis of SARS-CoV-2 Cases, COVID-19 Outcomes and Vaccinations, during the Different SARS-CoV-2 Variants in Greece. Vaccines, 2023, 11, 126.	4.4	2
271	A Heterologous Challenge Rescues the Attenuated Immunogenicity of SARS-CoV-2 Omicron BA.1 Variant in Syrian Hamster Model. Journal of Virology, 0, , .	3.4	2
272	SARS-CoV-2 variants induce distinct disease and impact in the bone marrow and thymus of mice. IScience, 2023, 26, 105972.	4.1	3
273	SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nature Reviews Microbiology, 0, ,	28.6	160
274	Effect of nasal irrigation in adults infected with Omicron variant of COVID-19: A quasi-experimental study. Frontiers in Public Health, 0, 10 , .	2.7	3
275	Full protection from SARS-CoV-2 brain infection and damage in susceptible transgenic mice conferred by MVA-CoV2-S vaccine candidate. Nature Neuroscience, 2023, 26, 226-238.	14.8	14
276	The Fc-effector function of COVID-19 convalescent plasma contributes to SARS-CoV-2 treatment efficacy in mice. Cell Reports Medicine, 2023, 4, 100893.	6.5	16
277	Potential of green tea EGCG in neutralizing SARS-CoV-2 Omicron variant with greater tropism toward the upper respiratory tract. Trends in Food Science and Technology, 2023, 132, 40-53.	15.1	12
279	A C57BL/6 Mouse Model of SARS-CoV-2 Infection Recapitulates Age- and Sex-Based Differences in Human COVID-19 Disease and Recovery. Vaccines, 2023, 11, 47.	4.4	6
280	The Cold-Adapted, Temperature-Sensitive SARS-CoV-2 Strain TS11 Is Attenuated in Syrian Hamsters and a Candidate Attenuated Vaccine. Viruses, 2023, 15, 95.	3.3	8
281	Animal models and SARS-CoV-2-induced pulmonary and neurological injuries. Memorias Do Instituto Oswaldo Cruz, 0, 117, .	1.6	0

#	Article	IF	CITATIONS
282	Altered host protease determinants for SARS-CoV-2 Omicron. Science Advances, 2023, 9, .	10.3	12
283	Transcriptomic approaches in COVID-19: From infection to vaccines. , 2023, , 125-144.		0
284	SARS-CoV-2 and its impact on the cardiovascular and digestive systems – The interplay between new virus variants and human cells. Computational and Structural Biotechnology Journal, 2023, 21, 1022-1029.	4.1	2
286	SARS-CoV-2 Omicron (B.1.1.529) Variant: A Challenge with COVID-19. Diagnostics, 2023, 13, 559.	2.6	12
287	Comparative Binding Ability of Human Monoclonal Antibodies against Omicron Variants of SARS-CoV-2: An In Silico Investigation. Antibodies, 2023, 12, 17.	2.5	6
288	SARS-CoV-2 Exposure in Norway Rats (Rattus norvegicus) from New York City. MBio, 2023, 14, .	4.1	12
289	Syrian hamster convalescence from prototype SARS-CoV-2 confers measurable protection against the attenuated disease caused by the Omicron variant. PLoS Pathogens, 2023, 19, e1011293.	4.7	7
290	Longitudinal analyses using 18F-Fluorodeoxyglucose positron emission tomography with computed tomography as a measure of COVID-19 severity in the aged, young, and humanized ACE2 SARS-CoV-2 hamster models. Antiviral Research, 2023, , 105605.	4.1	0
291	In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. EBioMedicine, 2023, 91, 104561.	6.1	14
292	A new generation Mpro inhibitor with potent activity against SARS-CoV-2 Omicron variants. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	20
294	Prophylaxis and treatment of SARS-CoV-2 infection by an ACE2 receptor decoy in a preclinical animal model. IScience, 2023, 26, 106092.	4.1	5
295	Development of a novel mathematical model that explains SARS-CoV-2 infection dynamics in Caco-2 cells. PeerJ, 0, 11, e14828.	2.0	2
296	Chronological changes of viral shedding in adult inpatients with Omicron infection in Shanghai, China. Frontiers in Immunology, 0, 14, .	4.8	2
297	Angiotensin-converting enzyme 2—at the heart of the COVID-19 pandemic. Cell, 2023, 186, 906-922.	28.9	36
298	Cell-autonomous requirement for ACE2 across organs in lethal mouse SARS-CoV-2 infection. PLoS Biology, 2023, 21, e3001989.	5.6	6
299	Characterisation of SARS-CoV-2 variants in Beijing during 2022: an epidemiological and phylogenetic analysis. Lancet, The, 2023, 401, 664-672.	13.7	84
301	Animal Models, Zoonotic Reservoirs, and Cross-Species Transmission of Emerging Human-Infecting Coronaviruses. Annual Review of Animal Biosciences, 2023, 11, 1-31.	7.4	8
302	Origin and evolution of SARS-CoV-2. European Physical Journal Plus, 2023, 138, .	2.6	16

#	Article	IF	CITATIONS
303	Comparison of clinical characteristics and outcomes of critically ill adults with SARS-CoV-2 infection during Delta and Omicron variant predominance periods: a single-hospital retrospective cohort study. BMJ Open Respiratory Research, 2023, 10, e001274.	3.0	1
304	SARS-CoV-2 S Glycoprotein Stabilization Strategies. Viruses, 2023, 15, 558.	3.3	1
305	Sustained Low Incidence of Severe and Fatal COVID-19 Following Widespread Infection Induced Immunity after the Omicron (BA.1) Dominant in Gauteng, South Africa: An Observational Study. Viruses, 2023, 15, 597.	3.3	7
306	Human ACE2 expression, a major tropism determinant for SARS-CoV-2, is regulated by upstream and intragenic elements. PLoS Pathogens, 2023, 19, e1011168.	4.7	8
307	BA.1, BA.2 and BA.2.75 variants show comparable replication kinetics, reduced impact on epithelial barrier and elicit cross-neutralizing antibodies. PLoS Pathogens, 2023, 19, e1011196.	4.7	6
308	COVID-19 mRNA vaccine protects against SARS-CoV-2 Omicron BA.1 infection in diet-induced obese mice through boosting host innate antiviral responses. EBioMedicine, 2023, 89, 104485.	6.1	4
309	SARS-CoV-2 Spike-Mediated Entry and Its Regulation by Host Innate Immunity. Viruses, 2023, 15, 639.	3.3	1
310	SARSâ€CoVâ€2â€related bat virus behavior in humanâ€relevant models sheds light on the origin of COVIDâ€19. EMBO Reports, 2023, 24, .	4.5	4
311	Prophylactic intranasal administration of lipid nanoparticle formulated siRNAs reduce SARS-CoV-2 and RSV lung infection. Journal of Microbiology, Immunology and Infection, 2023, 56, 516-525.	3.1	3
312	In Silico Binding of 2-Aminocyclobutanones to SARS-CoV-2 Nsp13 Helicase and Demonstration of Antiviral Activity. International Journal of Molecular Sciences, 2023, 24, 5120.	4.1	2
313	A pan-variant mRNA-LNP T cell vaccine protects HLA transgenic mice from mortality after infection with SARS-CoV-2 Beta. Frontiers in Immunology, 0, 14, .	4.8	4
314	Clinical outcomes of the severe acute respiratory syndrome coronavirus 2 Omicron and Delta variant: systematic review and meta-analysis of 33 studies covering 6Â037Â144 coronavirus disease 2019–positive patients. Clinical Microbiology and Infection, 2023, 29, 835-844.	6.0	29
315	SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Research, 2023, 212, 105580.	4.1	2
316	Nirmatrelvir treatment of SARSâ€CoVâ€2â€infected mice blunts antiviral adaptive immune responses. EMBO Molecular Medicine, 2023, 15, .	6.9	8
317	Characterization of SARS-CoV-2 Omicron BA.2.75 clinical isolates. Nature Communications, 2023, 14, .	12.8	11
318	Booster vaccination with Ad26.COV2.S or an Omicron-adapted vaccine in pre-immune hamsters protects against Omicron BA.2. Npj Vaccines, 2023, 8, .	6.0	1
319	Vaccine effectiveness against severe COVID-19 during the Omicron wave in Germany: results from the COViK study. Infection, 2023, 51, 1093-1102.	4.7	3
320	Protection from SARS-CoV-2 Variants by MVAs expressing matched or mismatched S administered intranasally to mice. Npj Vaccines, 2023, 8, .	6.0	1

#	Article	IF	CITATIONS
321	Emergence and antibody evasion of BQ, BA.2.75 and SARS-CoV-2 recombinant sub-lineages in the face of maturing antibody breadth at the population level. EBioMedicine, 2023, 90, 104545.	6.1	17
322	SARS-CoV-2 Variants Show Different Host Cell Proteome Profiles With Delayed Immune Response Activation in Omicron-Infected Cells. Molecular and Cellular Proteomics, 2023, 22, 100537.	3.8	2
324	Fc-l ³ R-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. Nature Microbiology, 2023, 8, 569-580.	13.3	33
325	Evolution of Immune Evasion and Host Range Expansion by the SARS-CoV-2 B.1.1.529 (Omicron) Variant. MBio, 2023, 14, .	4.1	9
326	Murine Coronavirus Disease 2019 Lethality Is Characterized by Lymphoid Depletion Associated with Suppressed Antigen-Presenting Cell Functionality. American Journal of Pathology, 2023, 193, 866-882.	3.8	2
327	Cryo-EM structures and binding of mouse and human ACE2 to SARS-CoV-2 variants of concern indicate that mutations enabling immune escape could expand host range. PLoS Pathogens, 2023, 19, e1011206.	4.7	8
328	SARS-CoV-2 Variant Pathogenesis Following Primary Infection and Reinfection in Syrian Hamsters. MBio, $0, , .$	4.1	4
329	Effectiveness of inactivated COVID-19 vaccines among older adults in Shanghai: retrospective cohort study. Nature Communications, 2023, 14, .	12.8	8
330	<i>In silico</i> analysis of <i>ACE2</i> from different animal species provides new insights into SARS-CoV-2 species spillover. Future Virology, 2023, 18, 359-371.	1.8	1
331	Analysis of SARS-CoV-2 variants from patient specimens in Nevada from October 2020 to August 2021. Infection, Genetics and Evolution, 2023, 111, 105434.	2.3	1
332	Understanding COVID-19-related myocarditis: pathophysiology, diagnosis, and treatment strategies. Cardiology Plus, 0, Publish Ahead of Print, .	0.7	1
333	Associations between SARS-CoV-2 infection and incidence of new chronic condition diagnoses: a systematic review. Emerging Microbes and Infections, 2023, 12, .	6.5	3
335	Mice Humanized for MHC and hACE2 with High Permissiveness to SARS-CoV-2 Omicron Replication. Microbes and Infection, 2023, , 105142.	1.9	0
336	Virulence Profiles of Wild-Type, P.1 and Delta SARS-CoV-2 Variants in K18-hACE2 Transgenic Mice. Viruses, 2023, 15, 999.	3.3	3
337	Trends in Severe Outcomes Among Adult and Pediatric Patients Hospitalized With COVID-19 in the Canadian Nosocomial Infection Surveillance Program, March 2020 to May 2022. JAMA Network Open, 2023, 6, e239050.	5.9	8
338	Toward a pan-SARS-CoV-2 vaccine targeting conserved epitopes on spike and non-spike proteins for potent, broad and durable immune responses. PLoS Pathogens, 2023, 19, e1010870.	4.7	11
339	Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6. Nature Communications, 2023, 14, .	12.8	15
340	Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nature Communications, 2023, 14, .	12.8	116

#	Article	IF	Citations
341	Omicron variant evolution on vaccines and monoclonal antibodies. Inflammopharmacology, 2023, 31, 1779-1788.	3.9	9
345	A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo. Communications Biology, 2023, 6, .	4.4	2
346	Accelerating antiviral drug discovery: lessons from COVID-19. Nature Reviews Drug Discovery, 2023, 22, 585-603.	46.4	25
347	A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8. Nature Communications, 2023, 14, .	12.8	5
348	Vectored immunoprophylaxis and treatment of SARS-CoV-2 infection in a preclinical model. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	4
349	Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. ELife, 0, 12, .	6.0	0
351	Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity. Heliyon, 2023, 9, e16750.	3.2	1
352	Role of Therapeutic Anticoagulation in COVID-19: The Current Situation. Hematology Reports, 2023, 15, 358-369.	0.8	4
353	SARSâ€CoVâ€2 Omicron (B.1.1.529) infection in rhesus macaques, hamsters, and BALB/c mice with severe lung histopathological damage. Journal of Medical Virology, 2023, 95, .	5.0	2
354	De Novo Human Angiotensin-Converting Enzyme 2 Decoy NL-CVX1 Protects Mice From Severe Disease After Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Journal of Infectious Diseases, 0, , .	4.0	0
355	A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. IScience, 2023, 26, 107085.	4.1	3
356	VSV-ΔG-Spike Candidate Vaccine Induces Protective Immunity and Protects K18-hACE2 Mice against SARS-CoV-2 Variants. Viruses, 2023, 15, 1364.	3.3	0
357	Altered hACE2 binding affinity and S1/S2 cleavage efficiency of SARS-CoV-2 spike protein mutants affect viral cell entry. Virologica Sinica, 2023, 38, 595-605.	3.0	1
358	Structural Basis for the Enhanced Infectivity and Immune Evasion of Omicron Subvariants. Viruses, 2023, 15, 1398.	3.3	1
359	OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model. Frontiers in Immunology, 0, 14, .	4.8	5
360	Transmission and re-infection of Omicron variant XBB.1.5 in hamsters. EBioMedicine, 2023, 93, 104677.	6.1	5
361	Immunological imprinting of humoral immunity to SARS-CoV-2 in children. Nature Communications, 2023, 14, .	12.8	6
362	Infection with Seasonal H1N1 Influenza Results in Comparable Disease Kinetics and Host Immune Responses in Ferrets and Golden Syrian Hamsters. Pathogens, 2023, 12, 668.	2.8	2

#	Article	IF	CITATIONS
364	SARS-CoV-2 Omicron variant causes brain infection with lymphoid depletion in a mouse COVID-19 model. Laboratory Animal Research, 2023, 39, .	2.5	5
365	Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens, 2023, 12, 713.	2.8	4
366	Antiviral activity of basidial fungus <i>Inonotus obliquus</i> aqueous extract against SARS-CĐ¾V-2 virus (Coronaviridae: Betacoronavirus: Sarbecovirus) in vivo in BALB/c mice model. Voprosy Virusologii, 2023, 68, 152-160.	0.7	0
367	SARS-CoV-2 bivalent mRNA vaccine with broad protection against variants of concern. Frontiers in Immunology, 0, 14, .	4.8	1
370	The NSP4 T492I mutation increases SARS-CoV-2 infectivity by altering non-structural protein cleavage. Cell Host and Microbe, 2023, 31, 1170-1184.e7.	11.0	7
373	An immunostimulatory glycolipid that blocks SARS-CoV-2, RSV, and influenza infections in vivo. Nature Communications, 2023, 14 , .	12.8	5
374	Determining the Time of Booster Dose Based on the Half-Life and Neutralization Titers against SARS-CoV-2 Variants of Concern in Fully Vaccinated Individuals. Microbiology Spectrum, 2023, 11, .	3.0	1
375	IL-9 aggravates SARS-CoV-2 infection and exacerbates associated airway inflammation. Nature Communications, 2023, 14, .	12.8	8
376	Structural and functional characteristics of the SARS-CoV-2 Omicron subvariant BA.2 spike protein. Nature Structural and Molecular Biology, 2023, 30, 980-990.	8.2	9
377	ACE2 receptor polymorphism in humans and animals increases the risk of the emergence of SARS-CoV-2 variants during repeated intra- and inter-species host-switching of the virus. Frontiers in Microbiology, $0,14,.$	3.5	5
378	In vitro and in vivo characterization of SARS-CoV-2 resistance to ensitrelvir. Nature Communications, 2023, 14, .	12.8	15
379	Immunogenicity and efficacy of vaccine boosters against SARS-CoV-2 Omicron subvariant BA.5 in male Syrian hamsters. Nature Communications, 2023, 14, .	12.8	6
380	Differential Characteristics of Patients for Hospitalized Severe COVID-19 Infected by the Omicron Variants and Wild Type of SARS-CoV-2 in China. Journal of Inflammation Research, 0, Volume 16, 3063-3078.	3.5	3
381	Potent antibodies against immune invasive SARS-CoV-2 Omicron subvariants. International Journal of Biological Macromolecules, 2023, 249, 125997.	7.5	0
382	Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Nature Communications, 2023, 14 , .	12.8	15
384	SARS-CoV-2 Omicron entry is type II transmembrane serine protease-mediated in human airway and intestinal organoid models. Journal of Virology, 2023, 97, .	3.4	7
385	Efficacy, Pharmacokinetics, and Toxicity Profiles of a Broad Anti-SARS-CoV-2 Neutralizing Antibody. Viruses, 2023, 15, 1733.	3.3	0
386	Transchromosomic bovine-derived anti-SARS-CoV-2 polyclonal human antibodies protects hACE2 transgenic hamsters against multiple variants. IScience, 2023, 26, 107764.	4.1	2

#	Article	IF	CITATIONS
387	Key Considerations during the Transition from the Acute Phase of the COVID-19 Pandemic: A Narrative Review. Vaccines, 2023, 11, 1502.	4.4	3
388	Animal models to study the neurological manifestations of the post-COVID-19 condition. Lab Animal, 2023, 52, 202-210.	0.4	2
389	Broad-spectrum vaccine via combined immunization routes triggers potent immunity to SARS-CoV-2 and its variants. Journal of Virology, 2023, 97, .	3.4	1
390	Characterization of the SARS-CoV-2 BA.5.5 and BQ.1.1 Omicron variants in mice and hamsters. Journal of Virology, 2023, 97, .	3.4	2
391	SARS-CoV-2 nonstructural protein 6 from Alpha to Omicron: evolution of a transmembrane protein. MBio, 0 , , .	4.1	1
392	Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Frontiers in Immunology, 0, 14 , .	4.8	4
393	Multi-omics analysis of attenuated variant reveals potential evaluation marker of host damaging for SARS-CoV-2 variants. Science China Life Sciences, 0, , .	4.9	0
394	SuPAR mediates viral response proteinuria by rapidly changing podocyte function. Nature Communications, 2023, 14, .	12.8	1
396	Omicron sub-lineage BA.5 infection results in attenuated pathology in hACE2 transgenic mice. Communications Biology, 2023, 6, .	4.4	2
397	The Influence of the Omicron Variant on RNA Extraction and RT-qPCR Detection of SARS-CoV-2 in a Laboratory in Brazil. Viruses, 2023, 15, 1690.	3.3	0
398	Subunit vaccine raised against the SARSâ€CoVâ€2 spike of Delta and Omicron variants. Journal of Medical Virology, 2023, 95, .	5.0	1
399	Association of SARS-CoV-2 viral load with abnormal laboratory characteristics and clinical outcomes in hospitalised COVID-19 patients. Epidemiology and Infection, 2023, 151, .	2.1	0
400	Report of the Assay Guidance Workshop on 3-Dimensional Tissue Models for Antiviral Drug Development. Journal of Infectious Diseases, 2023, 228, S337-S354.	4.0	0
401	Cross-protection and cross-neutralization capacity of ancestral and VOC-matched SARS-CoV-2 adenoviral vector-based vaccines. Npj Vaccines, 2023, 8, .	6.0	0
402	Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants. Nature Communications, 2023, 14, .	12.8	8
403	A Mosaic Nanoparticle Vaccine Elicits Potent Mucosal Immune Response with Significant Crossâ€Protection Activity against Multiple SARS oVâ€2 Sublineages. Advanced Science, 2023, 10, .	11.2	3
404	The viral fitness and intrinsic pathogenicity of dominant SARS-CoV-2 Omicron sublineages BA.1, BA.2, and BA.5. EBioMedicine, 2023, 95, 104753.	6.1	8
405	Upper Respiratory Tract OC43 Infection Model for Investigating Airway Immune-modifying Therapies. American Journal of Respiratory Cell and Molecular Biology, 0, , .	2.9	0

#	Article	IF	CITATIONS
410	Domain-based mRNA vaccines encoding spike protein N-terminal and receptor binding domains confer protection against SARS-CoV-2. Science Translational Medicine, 2023, 15, .	12.4	1
411	Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection. Science Advances, 2023, 9, .	10.3	6
412	Age-dependent acquisition of pathogenicity by SARS-CoV-2 Omicron BA.5. Science Advances, 2023, 9, .	10.3	4
414	Ancestral, Delta, and Omicron (BA.1) SARS-CoV-2 strains are dependent on serine proteases for entry throughout the human respiratory tract. Med, 2023, , .	4.4	0
417	Humoral and cellular immunity against diverse SARS-CoV-2 variants. Journal of Genetics and Genomics, 2023, 50, 934-947.	3.9	1
418	Transgenic mouse models support a protective role of type I IFN response in SARS-CoV-2 infection-related lung immunopathology and neuroinvasion. Cell Reports, 2023, 42, 113275.	6.4	0
419	An interferon-integrated mucosal vaccine provides pan-sarbecovirus protection in small animal models. Nature Communications, $2023,14,.$	12.8	2
420	Omicron breakthrough infections in vaccinated or previously infected hamsters. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
421	Phenotyping the virulence of SARS-CoV-2 variants in hamsters by digital pathology and machine learning. PLoS Pathogens, 2023, 19, e1011589.	4.7	3
422	From Emergence to Endemicity: A Comprehensive Review of COVID-19. Cureus, 2023, , .	0.5	1
423	Intranasal Liposomal Formulation of Spike Protein Adjuvanted with CpG Protects and Boosts Heterologous Immunity of hACE2 Transgenic Mice to SARS-CoV-2 Infection. Vaccines, 2023, 11, 1732.	4.4	0
424	Use of a point-of-care test to rapidly assess levels of SARS-CoV-2 nasal neutralising antibodies in vaccinees and breakthrough infected individuals. Scientific Reports, 2023, 13, .	3.3	O
425	Low level of tonic interferon signalling is associated with enhanced susceptibility to SARS-CoV-2 variants of concern in human lung organoids. Emerging Microbes and Infections, 2023, 12, .	6.5	1
426	Utility of Bronchoalveolar Lavage for the Diagnosis and Management of COVID-19 in Patients With Cancer. Journal of Infectious Diseases, 2023, 228, 1549-1558.	4.0	0
427	Challenges and Prospects in Developing Future SARS-CoV-2 Vaccines: Overcoming Original Antigenic Sin and Inducing Broadly Neutralizing Antibodies. Journal of Immunology, 2023, 211, 1459-1467.	0.8	2
428	Evolution of SARS-CoV-2 Spikes shapes their binding affinities to animal ACE2 orthologs. Microbiology Spectrum, 2023, 11, .	3.0	0
429	One Health and Engineering: using engineering to further pave the roadmap towards global health security, pandemic preparedness, and personalized medicine. DYNA (Colombia), 2023, 90, 22-28.	0.4	0
430	SARS-CoV-2 omicron BA.5 and XBB variants have increased neurotropic potential over BA.1 in K18-hACE2 mice and human brain organoids. Frontiers in Microbiology, 0, 14, .	3.5	1

#	Article	IF	CITATIONS
431	Cleavage-Activation of Respiratory Viruses – Half a Century of History from Sendai Virus to SARS-CoV-2. Japanese Journal of Infectious Diseases, 2024, 77, 1-6.	1.2	O
432	Effectiveness of remdesivir-based therapy for moderate COVID-19: comparison of Omicron and other variant phases. Journal of Chemotherapy, 0 , 0 , 0 , 0 .	1.5	0
433	Lack of detection of SARS-CoV-2 in British wildlife 2020–21 and first description of a stoat (Mustela) Tj ETQq0	0 0 rgBT /	Overlock 10
434	Virological Characteristics of Five SARS-CoV-2 Variants, Including Beta, Delta and Omicron BA.1, BA.2, BA.5. Viruses, 2023, 15, 2394.	3.3	О
435	Growth hormone–releasing hormone receptor antagonist MIA-602 attenuates cardiopulmonary injury induced by BSL-2 rVSV-SARS-CoV-2 in hACE2 mice. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
436	Inactivated whole virion vaccine protects K18â€hACE2 Tg mice against the Omicron SARSâ€CoVâ€2 variant via crossâ€reactive T cells and nonneutralizing antibody responses. European Journal of Immunology, 0, , .	2.9	0
437	Prevalência de Influenza A, vÃrus sincicial respiratório e SARS-COV-2 em pacientes com sÃndrome respiratória aguda grave em Passo Fundo - RS. Semina: Ciências Biológicas E Da Saúde, 2023, 44, 113-126.	0.2	0
438	Characterization of a SARS-CoV-2 EG.5.1 clinical isolate inÂvitro and inÂvivo. Cell Reports, 2023, 42, 113580.	6.4	4
439	Divergent trajectory of replication and intrinsic pathogenicity of SARS-CoV-2 Omicron post-BA.2/5 subvariants in the upper and lower respiratory tract. EBioMedicine, 2024, 99, 104916.	6.1	1
440	Mosaic RBD Nanoparticles Elicit Protective Immunity Against Multiple Human Coronaviruses in Animal Models. Advanced Science, 2024, 11, .	11.2	2
441	Changing character and waning impact of COVID-19 at a tertiary centre in Cape Town, South Africa. Southern African Journal of Infectious Diseases, 2023, 38, .	0.5	0
442	Efficacy and safety of glucocorticoids use in patients with COVID-19: a systematic review and network metaâ€'analysis. BMC Infectious Diseases, 2023, 23, .	2.9	0
444	Immune response and severity of Omicron BA.5 reinfection among individuals previously infected with different SARS-CoV-2 variants. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	1
445	Differential Outcomes of Infection by Wild-Type SARS-CoV-2 and the B.1.617.2 and B.1.1.529 Variants of Concern in K18-hACE2 Transgenic Mice. Viruses, 2024, 16, 60.	3.3	0
446	Combination therapy with oral antiviral and anti-inflammatory drugs improves the efficacy of delayed treatment in a COVID-19 hamster model. EBioMedicine, 2024, 99, 104950.	6.1	0
447	Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. MBio, 2024, 15, .	4.1	1
448	SARS-CoV-2 immunity in animal models. , 2024, 21, 119-133.		1
449	The Abundant Distribution and Duplication of SARS-CoV-2 in the Cerebrum and Lungs Promote a High Mortality Rate in Transgenic hACE2-C57 Mice. International Journal of Molecular Sciences, 2024, 25, 997.	4.1	1

#	Article	IF	CITATIONS
450	SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell, 2024, 187, 596-608.e17.	28.9	9
451	Chronic Lung Injury after COVID-19 Pneumonia: Clinical, Radiologic, and Histopathologic Perspectives. Radiology, 2024, 310, .	7.3	0
452	Augmentation of Omicron BA.1 pathogenicity in hamsters using intratracheal inoculation. , 2024, 2, .		0
453	ACE2 and TMPRSS2 distribution in the respiratory tract of different animal species and its correlation with SARS-CoV-2 tissue tropism. Microbiology Spectrum, 2024, 12, .	3.0	0
454	Nanoparticle-based DNA vaccine protects against SARS-CoV-2 variants in female preclinical models. Nature Communications, 2024, 15 , .	12.8	1
455	An intranasally delivered ultra-conserved siRNA prophylactically represses SARS-CoV-2 infection in the lung and nasal cavity Antiviral Research, 2024, 222, 105815.	4.1	0
456	Divergent pathogenetic outcomes in BALB/c mice following Omicron subvariant infection. Virus Research, 2024, 341, 199319.	2.2	0
457	Cross-protection induced by highly conserved human B, CD4+, and CD8+ T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern. Frontiers in Immunology, 0, 15, .	4.8	0
458	Causes and Consequences of Coronavirus Spike Protein Variability. Viruses, 2024, 16, 177.	3.3	0
459	Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue. Nature Communications, 2024, 15, .	12.8	0
460	Bioluminescence imaging reveals enhanced SARS-CoV-2 clearance in mice with combinatorial regimens. IScience, 2024, 27, 109049.	4.1	0
461	Lack of detection of SARS-CoV-2 in wildlife from Kerala, India in 2020–21. Access Microbiology, 2024, 6,	0.5	0
462	Prototype and BA.5 protein nanoparticle vaccines protect against Omicron BA.5 variant in Syrian hamsters. Journal of Virology, 2024, 98, .	3.4	0
463	Mucosal vaccine-induced cross-reactive CD8+ T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection. Nature Immunology, 2024, 25, 537-551.	14.5	0
464	Identification of SARS-CoV-2 in urban rodents from Southern Mexico City at the beginning of the COVID-19 pandemic. Revista Do Instituto De Medicina Tropical De Sao Paulo, 0, 66, .	1.1	0
465	A monoclonal antibody targeting a large surface of the receptor binding motif shows pan-neutralizing SARS-CoV-2 activity. Nature Communications, 2024, 15, .	12.8	0
466	Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence, 2024, 15, .	4.4	0
467	A Novel Rat Model to Simulate the Benign Esophageal Stricture Induced by Endoscopic Submucosal Dissection. Clinical and Experimental Gastroenterology, 0, Volume 17, 41-50.	2.3	0

#	ARTICLE	IF	CITATIONS
469	Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. ELife, 0, 12, .	6.0	O
470	The SARS-CoV-2 Spike is a virulence determinant and plays a major role on the attenuated phenotype of Omicron virus in a feline model of infection. Journal of Virology, 2024, 98, .	3.4	0
471	Comparison of Computed Tomography and Clinical Features Between Patients Infected with the SARSâ€CoVâ€2 Omicron Variant and the Original Strain. Infection and Drug Resistance, 0, Volume 17, 807-818.	2.7	0
473	Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0
474	Characterization of Omicron BA.4.6, XBB, and BQ.1.1 subvariants in hamsters. Communications Biology, 2024, 7 , .	4.4	0
475	Socioeconomic inequalities in healthcare system efficiency in Japan during COVID-19 pandemic: an analysis of the moderating role of vaccination. Frontiers in Public Health, 0, 12, .	2.7	0