Realizing 19.05% Efficiency Polymer Solar Cells by Prog Extraction and Suppressing Charge Recombination

Advanced Materials 34, e2109516 DOI: 10.1002/adma.202109516

Citation Report

#	Article	IF	CITATIONS
1	Synergistic enhancement in open-circuit voltage and photovoltaic performance via linear naphthyldithiophene building block. Polymer, 2022, 246, 124639.	1.8	2
2	A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. Energy and Environmental Science, 2022, 15, 2130-2138.	15.6	38
3	é«~性能简å•结构èš(å™»å©-å−¹å−"啉)类给体å‰ä¼ææ−™. Scientia Sinica Chimica, 2022, , .	0.2	0
4	Hole/Electron Transporting Materials for Nonfullerene Organic Solar Cells. Chemistry - A European Journal, 2022, 28, .	1.7	20
5	Peryleneâ€diimideâ€based cathode interlayer materials for high performance organic solar cells. SusMat, 2022, 2, 243-263.	7.8	38
6	Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Lowâ€Cost Incompletely Separated Fullerenes. Macromolecular Rapid Communications, 2022, 43, e2200139.	2.0	14
7	Solvent influenced morphology control of hole transport layer of CuSCN on performance of organic solar cells. Materials Chemistry and Physics, 2022, 282, 125898.	2.0	11
8	Morphology manipulation for highly miscible photovoltaic blend of carboxylate-substituted polythiophene:Y6. Dyes and Pigments, 2022, 202, 110269.	2.0	2
9	Palladium(II) and Platinum(II) Porphyrin Donors for Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5, 4916-4925.	2.5	9
10	Organic solar cells with efficiency of 17.6% and fill factor of 78.3% based on perylene-diimide derivative as cathode interface layer. Chemical Engineering Journal, 2022, 443, 136455.	6.6	24
11	All‧mallâ€Molecule Organic Solar Cells with Efficiency Approaching 16% and FF over 80%. Small, 2022, 18, e2201400.	5.2	21
12	Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes. Journal of the American Chemical Society, 2022, 144, 8658-8668.	6.6	116
13	15.8% efficiency all-small-molecule solar cells enabled by a combination of side-chain engineering and polymer additive. Journal of Materials Chemistry A, 2022, 10, 10926-10934.	5.2	12
14	Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21, 656-663.	13.3	1,214
15	Control of Phase Separation and Crystallization for <scp>Highâ€Efficiency</scp> and <scp>Mechanically Deformable</scp> Organic Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	6
16	AÂNew Diazabenzo[<i>k</i>]fluorantheneâ€BasedÂDâ€A Conjugated Polymer Donor for Efficient Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200276.	2.0	4
17	Unraveling the Photovoltaic, Mechanical, and Microstructural Properties and Their Correlations in Simple Poly(3â€pentylthiophene) Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200229.	2.0	4
18	The Intrinsic Role of the Fusion Mode and Electronâ€Deficient Core in Fusedâ€Ring Electron Acceptors for Organic Photovoltaics. Angewandte Chemie - International Edition, 2022, 61,	7.2	25

TITATION REDORT

#	Article	IF	CITATIONS
19	Fineâ€Tuning of Siloxane Pendant Distance for Achieving Highly Efficient Ecoâ€Friendly Nonfullerene Solar Cells. ChemSusChem, 2022, 15, .	3.6	4
20	Kinetic processes of phase separation and aggregation behaviors in slot-die processed high efficiency Y6-based organic solar cells. Journal of Materials Chemistry A, 2022, 10, 13439-13447.	5.2	14
21	The Intrinsic Role of the Fusion Mode and Electronâ€Deficient Core in Fusedâ€Ring Electron Acceptors for Organic Photovoltaics. Angewandte Chemie, 2022, 134, .	1.6	4
22	Wide Bandgap Dâ€A Copolymer Based on BDTTz Donor and TPD Acceptor for Polymer Solar Cells Using Fullerene and Nonâ€Fullerene Acceptors. Energy Technology, 0, , .	1.8	1
23	Realizing the efficiency-stability balance for all-polymer photovoltaic blends. Journal of Materials Chemistry C, 2022, 10, 9723-9729.	2.7	12
24	18.01% Efficiency organic solar cell and 2.53% light utilization efficiency semitransparent organic solar cell enabled by optimizing PM6:Y6 active layer morphology. Science China Chemistry, 2022, 65, 1615-1622.	4.2	26
25	Improved Current Density and Fill Factor of Nonâ€Fullerene Organic Solar Cells Prepared under Solvent Vapor Atmosphere. Solar Rrl, 2022, 6, .	3.1	6
26	Effects of Oxygen Position in the Alkoxy Substituents on the Photovoltaic Performance of A-DA′D-A Type Pentacyclic Small Molecule Acceptors. ACS Energy Letters, 2022, 7, 2373-2381.	8.8	19
27	Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Advanced Materials, 2022, 34, .	11.1	384
28	Conductive Polymers for Flexible and Stretchable Organic Optoelectronic Applications. ACS Applied Polymer Materials, 2022, 4, 4609-4623.	2.0	26
29	Hybrid Dihalogenation on the End Group of Indacenodithieno[3,2- <i>b</i>]thiophene-Based Small-Molecule Acceptors Enables Efficient Polymer Solar Cells Processed from Nonhalogenated Solvents and Additives. ACS Applied Energy Materials, 2022, 5, 8731-8742.	2.5	2
30	Thiophene–Perylenediimide Bridged Dimeric Porphyrin Donors Based on the Donor–Acceptor–Donor Structure for Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5, 7287-7296.	2.5	4
31	Nonhalogenated Dualâ€Slotâ€Die Processing Enables Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2022, 34, .	11.1	56
32	Intramolecular Chloro–Sulfur Interaction and Asymmetric Sideâ€Chain Isomerization to Balance Crystallinity and Miscibility in Allâ€Smallâ€Molecule Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
33	Understanding the blade coated to roll-to-roll coated performance gap in organic photovoltaics. Solar Energy Materials and Solar Cells, 2022, 245, 111852.	3.0	6
34	Overcoming efficiency loss of large-area all-polymer solar cells via asymmetric alkyl side-chain engineering of naphthalene diimide-based n-type polymer. Chemical Engineering Journal, 2022, 448, 137554.	6.6	5
35	Highly efficient layer-by-layer deposition solar cells achieved with halogen-free solvents and molecular engineering of non-fullerene acceptors. Chemical Engineering Journal, 2022, 448, 137621.	6.6	12
36	Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic	15.6	66

	CITATION	Report	
#	Article	IF	Citations
37	Application of indacenodiselenophene central core and modulation of terminal group interaction for high-efficient P3HT-based organic solar cells. Journal of Materials Chemistry C, 2022, 10, 10114-10123.	2.7	3
38	End-group modification of non-fullerene acceptors enables efficient organic solar cells. Journal of Materials Chemistry C, 2022, 10, 10389-10395.	2.7	8
39	Combination of Highly Photovoltaic and Highly Transparent Materials Enables Record Performance Semitransparent Organic Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
40	An unfused-ring acceptor enabling â^1⁄412% efficiency for layer-by-layer organic solar cells. Journal of Materials Chemistry C, 2022, 10, 10511-10518.	2.7	5
41	Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy and Environmental Science, 2022, 15, 3630-3669.	15.6	58
42	When Electronically Inert Polymers Meet Conjugated Polymers: Emerging Opportunities in Organic Photovoltaics. Chinese Journal of Polymer Science (English Edition), 2022, 40, 861-869.	2.0	5
43	Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable. Nature Communications, 2022, 13, .	5.8	38
44	Unaxisymmetric Non-Fused Electron Acceptors for Efficient Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 944-950.	2.0	7
45	Performance enhancement in organic solar cells and photodetectors enabled by donor phase optimization at the surface of hole transport layer. Chinese Chemical Letters, 2023, 34, 107641.	4.8	3
46	Planarized Polymer Acceptor Featuring High Electron Mobility for Efficient All-Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 968-978.	2.0	3
47	Lowly Fused Non-Fullerene Acceptors Towards Efficient Organic Solar Cells Enabled by Isomerization. Chinese Journal of Polymer Science (English Edition), 2022, 40, 928-936.	2.0	2
48	100 cm2 Organic Photovoltaic Cells with 23% Efficiency under Indoor Illumination. Chinese Journal of Polymer Science (English Edition), 2022, 40, 979-988.	2.0	18
49	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	8.8	109
50	Linker Unit Modulation of Polymer Acceptors Enables Highly Efficient Airâ€Processed Allâ€Polymer Solar Cells. Advanced Science, 2022, 9, .	5.6	12
51	Highly Efficient Layerâ€by‣ayer Processed Quaternary Organic Solar Cells with Improved Charge Transport and Reduced Energy Loss. Solar Rrl, 2022, 6, .	3.1	10
52	2D Outer Side Chainâ€Incorporated Y Acceptors for Highly Efficient Organic Solar Cells with Nonhalogenated Solvent and Annealingâ€Free Process. Advanced Energy and Sustainability Research, 2022, 3,	2.8	9
53	Intramolecular Chloro–Sulfur Interaction and Asymmetric Sideâ€Chain Isomerization to Balance Crystallinity and Miscibility in Allâ€Smallâ€Molecule Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	3
54	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36

#	Article	IF	CITATIONS
55	Thermoplastic elastomer enhanced interface adhesion and bending durability for flexible organic solar cells. Npj Flexible Electronics, 2022, 6, .	5.1	10
56	Molecular Insights of Nonâ€fused Ring Acceptors for Highâ€Performance Nonâ€fullerene Organic Solar Cells. Chemistry - A European Journal, 2022, 28, .	1.7	22
57	Fineâ€Tuned Morphology Based on Two Wellâ€Miscible Polymer Donors Enables Higher Openâ€Circuit Voltage and Enhanced Stability for Highly Efficient Ternary Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
58	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie, 2022, 134, .	1.6	10
59	Recent Progress of Y6â€Đerived Asymmetric Fused Ring Electron Acceptors. Advanced Functional Materials, 2022, 32, .	7.8	114
60	Can Organic Solar Cells Beat the Near-Equilibrium Thermodynamic Limit?. Journal of Physical Chemistry Letters, 2022, 13, 6514-6519.	2.1	2
61	A New Polymer Donor Enables Binary Allâ€Polymer Organic Photovoltaic Cells with 18% Efficiency and Excellent Mechanical Robustness. Advanced Materials, 2022, 34, .	11.1	150
62	Recent Advances in Singleâ€Junction Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	103
63	Star polymer donors. Journal of Semiconductors, 2022, 43, 070201.	2.0	11
64	Isomerization of Noncovalently Conformational Lock in Nonfused Electron Acceptor toward Efficient Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 10224-10232.	2.5	11
65	Improved Predictions of Organic Photovoltaic Performance through Machine Learning Models Empowered by Artificially Generated Failure Data. Chemistry of Materials, 2022, 34, 6912-6920.	3.2	6
66	Central Unit Fluorination of Nonâ€Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency. Angewandte Chemie, 2022, 134, .	1.6	7
67	Qualified interlayer modifier for organic solar cells with optimized interfacial topography and boosted efficiency based on biomass-derived acid. Chemical Engineering Journal, 2022, 450, 138169.	6.6	11
68	Optimizing sequence structures by stepwise-feeding terpolymerization for high-performance organic solar cells. Journal of Materials Chemistry A, 2022, 10, 18714-18722.	5.2	13
69	Spectroelectrochemically determined energy levels of PM6:Y6 blends and their relevance to solar cell performance. Journal of Materials Chemistry C, 2022, 10, 11565-11578.	2.7	14
70	Central Unit Fluorination of Nonâ€Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency. Angewandte Chemie - International Edition, 2022, 61, .	7.2	85
71	Highly Efficient Organic Solar Cells Enabled by the Incorporation of a Sulfonated Graphene Doped PEDOT:PSS Interlayer. ACS Applied Materials & amp; Interfaces, 2022, 14, 34814-34821.	4.0	20
72	Three Isomeric Non-Fullerene Acceptors Comprising a Mono-Brominated End-Group for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 35985-35996.	4.0	6

#	Article	IF	CITATIONS
73	High-performance organic photovoltaic modules using eco-friendly solvents for various indoor application scenarios. Joule, 2022, 6, 2138-2151.	11.7	32
74	Achieving and Understanding of Highly Efficient Ternary Organic Photovoltaics: From Morphology and Energy Loss to Working Mechanism. Small Methods, 2022, 6, .	4.6	16
75	Identifying the Signatures of Intermolecular Interactions in Blends of PM6 with Y6 and N4 Using Absorption Spectroscopy. Advanced Functional Materials, 2022, 32, .	7.8	19
76	Efficient Polymer Solar Cells Facilitated by Halogenated Substituted Wideâ€Bandgap Polymers and a Backbone Twisted Lowâ€Bandgap Acceptor. ChemistrySelect, 2022, 7, .	0.7	0
77	High-Performance Ternary Organic Solar Cells Enabled by Introducing a New A-DAâ€2D-A Guest Acceptor with Higher-Lying LUMO Level. ACS Applied Materials & Interfaces, 2022, 14, 36582-36591.	4.0	21
78	Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics. Advanced Energy Materials, 2022, 12, .	10.2	114
79	Simultaneously Enhancing Exciton/Charge Transport in Organic Solar Cells by an Organoboron Additive. Advanced Materials, 2022, 34, .	11.1	37
80	A Random Terpolymer Donor with Similar Monomers Enables 18.28% Efficiency Binary Organic Solar Cells with Well Polymer Batch Reproducibility. ACS Energy Letters, 2022, 7, 3045-3057.	8.8	46
81	Balancing the Selective Absorption and Photonâ€ŧoâ€Electron Conversion for Semitransparent Organic Photovoltaics with 5.0% Lightâ€Utilization Efficiency. Advanced Materials, 2022, 34, .	11.1	54
82	Passivating the Interfacial Chemical Reaction via Selfâ€Assembly Layer for Efficient and Stable Inverted Nonfullerene Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	2
83	Over 18% binary organic solar cells enabled by isomerization of non-fullerene acceptors with alkylthiophene side chains. Science China Chemistry, 2022, 65, 1758-1766.	4.2	43
84	Nonfullerene acceptors with cyano-modified terminal groups for organic solar cells: Effect of substitution position on photovoltaic properties. Dyes and Pigments, 2022, 206, 110661.	2.0	4
85	A new perspective to develop regiorandom polymer acceptors with high active layer ductility, excellent device stability, and high efficiency approaching 17%. , 2023, 5, .		46
86	Recent advances of nonfullerene acceptors in organic solar cells. Nano Energy, 2022, 103, 107802.	8.2	28
87	Semitransparent polymer solar cell/triboelectric nanogenerator hybrid systems: Synergistic solar and raindrop energy conversion for window-integrated applications. Nano Energy, 2022, 103, 107776.	8.2	13
88	Improving the performance of PM6 donor polymer by random ternary copolymerization of BDD and DTBT segments. Chemical Engineering Journal, 2023, 451, 139046.	6.6	19
89	Organic photovoltaic cells offer ultrahigh VOC ofÂâ^¼Â1.2ÂV under AM 1.5G light and a high efficiency of 21.2Â% under indoor light. Chemical Engineering Journal, 2023, 451, 139080.	6.6	30
90	Combination of highly photovoltaic and highly transparent materials enables record performance semitransparent organic solar cells. Chemical Engineering Journal, 2023, 451, 139081.	6.6	7

#	Article	IF	Citations
91	An acceptor with an asymmetric and extended conjugated backbone for high-efficiency organic solar cells with low nonradiative energy loss. Journal of Materials Chemistry A, 2022, 10, 16714-16721.	5.2	17
92	Computational chemistry-assisted design of a non-fullerene acceptor enables 17.4% efficiency in high-boiling-point solvent processed binary organic solar cells. Journal of Materials Chemistry A, 2022, 10, 21061-21071.	5.2	6
93	AzaBenzannulated perylene diimide multimers as electron acceptors for organic solar cells. Materials Chemistry Frontiers, 0, , .	3.2	3
94	Solid additive tuning of polymer blend morphology enables non-halogenated-solvent all-polymer solar cells with an efficiency of over 17%. Energy and Environmental Science, 2022, 15, 4157-4166.	15.6	39
95	Terpolymerization strategy to achieve high-efficiency organic solar cells <i>via</i> construction of D1–A–D1–D2-type polymer donors. Chemical Communications, 2022, 58, 11823-11826.	2.2	2
96	Asymmetric side-chain substitution enables a 3D network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells. Energy and Environmental Science, 2022, 15, 4601-4611.	15.6	67
97	High-performance pseudo-bilayer ternary organic solar cells with PC ₇₁ BM as the third component. Journal of Materials Chemistry A, 2022, 10, 23124-23133.	5.2	12
98	Isomeric non-fullerene acceptors for high-efficiency organic solar cells. Journal of Materials Chemistry C, 2022, 10, 14525-14531.	2.7	2
99	Optimized molecular aggregation and photophysical process synergistically promoted photovoltaic performance in low-regularity benzo[<i>c</i>][1,2,5]thiadiazole-based medium-bandgap copolymers <i>via</i> modulating i€ bridges. Journal of Materials Chemistry C, 2022, 10, 16028-16039.	2.7	16
100	Rationally regulating the π-bridge of small molecule acceptors for efficient organic solar cells. Journal of Materials Chemistry A, 2022, 10, 17808-17816.	5.2	11
101	Effects of the rigid and sterically bulky structure of non-fused nonfullerene acceptors on transient photon-to-current dynamics. Journal of Materials Chemistry A, 2022, 10, 20035-20047.	5.2	5
102	Charge transfer regulated by domain differences between host and guest donors in ternary organic solar cells. Journal of Materials Chemistry A, 2022, 10, 22477-22487.	5.2	4
103	High-Performance Indoor Organic Photovoltaics Enabled by Screening Multiple Cases of Electron Acceptors. SSRN Electronic Journal, 0, , .	0.4	0
104	Binary alloy of functionalized small-molecule acceptors with the A–DA′D–A structure for ternary-blend photovoltaics displaying high open-circuit voltages and efficiencies. Journal of Materials Chemistry A, 2022, 10, 23037-23046.	5.2	19
105	Raman spectroelectrochemical study on the effect of solvent processing on the active layer morphology of polymer solar cells. Chemical Physics, 2023, 564, 111700.	0.9	3
106	Development of non-fullerene electron acceptors for efficient organic photovoltaics. SN Applied Sciences, 2022, 4, .	1.5	8
107	Recent Advances in Singleâ€Junction Organic Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	28
108	High-Efficiency As-Cast Organic Solar Cells Based on an Asymmetric Acceptor. Chemistry of Materials, 2022, 34, 8840-8848.	3.2	6

# 109	ARTICLE High-efficiency ternary sequential solution deposition structure organic solar cells with two	IF 6.6	CITATIONS
110	Unraveling the Effect of Solvent Additive and Fullerene Component on Morphological Control in Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	0
111	Solid-liquid convertible fluorinated terthiophene as additives in mediating morphology and performance of organic solar cells. Chemical Engineering Journal, 2023, 453, 139489.	6.6	9
112	Side Chain Length and Interaction Mediated Charge Transport Networks of Non-Fullerene Acceptors for Efficient Organic Solar Cells. , 2022, 4, 2009-2018.		11
113	Asymmetric Non-Fullerene Small Molecule Acceptor with Unidirectional Non-Fused π-Bridge and Extended Terminal Group for High-Efficiency Organic Solar Cells. International Journal of Molecular Sciences, 2022, 23, 10079.	1.8	0
114	Efficient D ₁ :D ₂ :A Ternary Polymer Solar Cells with Low Voltage Loss and Unblocked Hole Transport Channel Characterized by Kelvin Probe Force Microscopy. ACS Applied Energy Materials, 2022, 5, 11853-11865.	2.5	4
115	Precise Control of Selenium Functionalization in Nonâ€Fullerene Acceptors Enabling Highâ€Efficiency Organic Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	3
116	Molecular engineering of Yâ€series acceptors for nonfullerene organic solar cells. SusMat, 2022, 2, 591-606.	7.8	21
117	Multiphase Morphology with Enhanced Carrier Lifetime via Quaternary Strategy Enables Highâ€Efficiency, Thickâ€Film, and Largeâ€Area Organic Photovoltaics. Advanced Materials, 2022, 34, .	11.1	84
118	Semicrystalline Cathode Interlayer Based on Morphology Control Additives Using Nonconjugated Smallâ€Molecule Zwitterions for Efficient Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
119	Precise Control of Selenium Functionalization in Nonâ€Fullerene Acceptors Enabling Highâ€Efficiency Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
120	18.9% Efficient Organic Solar Cells Based on nâ€Doped Bulkâ€Heterojunction and Halogenâ€Substituted Selfâ€Assembled Monolayers as Hole Extracting Interlayers. Advanced Energy Materials, 2022, 12, .	10.2	42
121	Impact of isomers on the photovoltaic properties of polymerized small-molecule acceptors. , 2022, 1, 100008.		8
122	Simultaneous Optimization of Efficiency, Stretchability, and Stability in <scp>Allâ€Polymer</scp> Solar Cells via Aggregation Control ^{â€} . Chinese Journal of Chemistry, 2023, 41, 159-166.	2.6	29
123	n-Octyl substituted quinoxaline-based polymer donor enabling all-polymer solar cell with efficiency over 17%. Science Bulletin, 2022, 67, 2096-2102.	4.3	6
124	Enhancing exciton diffusion by reducing energy disorder in organic solar cells. Journal of Materials Chemistry A, 2022, 10, 24073-24083.	5.2	1
125	Achieving efficient and stabilized organic solar cells by precisely controlling the proportion of copolymerized units in electron-rich polymers. Nanoscale, 2022, 14, 17714-17724.	2.8	3
126	Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: a nonadiabatic dynamics simulation with optimally tuned range-separated functional. Physical Chemistry Chemical Physics, 2022, 24, 27173-27183.	1.3	2

#	Article	IF	CITATIONS
127	An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency. Energy and Environmental Science, 2022, 15, 5192-5201.	15.6	36
128	Triggering favorable energy landscape: a general approach towards highly efficient and photostable organic solar cells. Energy and Environmental Science, 2022, 15, 5261-5273.	15.6	9
129	Wide Bandâ€Gap Polymer Donors Functionalized with Unconventional Carbamate Side Chains for Polymer Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	3
130	Wide Bandâ€Gap Polymer Donors Functionalized with Unconventional Carbamate Side Chains for Polymer Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
131	Importance of structural hinderance in performance–stability equilibrium of organic photovoltaics. Nature Communications, 2022, 13, .	5.8	50
132	Deciphering the Role of Sideâ€Chain Engineering and Solvent Vapor Annealing for Binary Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	14
133	PTQ10-Based Organic Photovoltaics with a High <i>V</i> _{OC} of â^¼1.2 V via Chlorination of Benzotriazole-Based Nonfullerene Acceptors. ACS Applied Energy Materials, 2022, 5, 14271-14279.	2.5	1
134	The Role of Processing Solvent on Morphology Optimization for Slot-Die Printed Organic Photovoltaics. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	1
135	Passivating the Defects and Modulating the Surface Energy of ZnO Cathode Interlayer for Efficient Nonfullerene Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
136	Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule, 2022, 6, 2835-2848.	11.7	87
137	Asymmetric chlorination of A ₂ –A ₁ –D–A ₁ –A ₂ type non-fullerene acceptors for high-voltage organic photovoltaics. Chemical Communications, 2022, 58, 13373-13376.	2.2	9
138	Two asymmetric small molecule acceptors with aromatic and non-aromatic ring side chains were developed for organic solar cells. Dyes and Pigments, 2023, 209, 110908.	2.0	5
139	Linear Regulating of Polymer Acceptor Aggregation with Short Alkyl Chain Units Enhances Allâ€Polymer Solar Cells' Efficiency. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
140	Dithieno[2,3â€e:3',2'â€g]isoindoleâ€7,9(8H)â€dione and Dithieno[3',2':5,6;2'',3'':7,8]naphtho[2,3â€d]imidazolâ€9(10H)â€one based wide bandgap copolymer for efficien polymer solar cells. Energy Technology, 0, , .	t1.8	0
141	Weak Electron-Deficient Building Block Containing O–B ↕N Bonds for Polymer Donors. Macromolecules, 2022, 55, 9934-9942.	2.2	4
142	Constructing a Double-Cable Polymer Acceptor for Efficient All-Polymer Solar Cells with a Non-Radiative Recombination Energy Loss of 0.16 eV. Chemistry of Materials, 2022, 34, 9970-9981.	3.2	8
143	18.66% Efficiency of Polymer Solar Cells Employing Two Nonfullerene Acceptors with Fluorine or Chlorine Substitution. Solar Rrl, 2023, 7, .	3.1	24
144	Asymmetric Non-Fullerene Acceptors with Branched Alkyl-Chains for Efficient Organic Solar Cells with High Open-Circuit Voltage. Chemistry of Materials, 2022, 34, 10144-10152.	3.2	13

ARTICLE IF CITATIONS Benzothiadiazole-based polymer donors. Nano Energy, 2023, 105, 108017. 8.2 43 145 A <scp>Twoâ€inâ€One</scp> Annealing Enables Dopant Free Block Copolymer Based Organic Solar Cells 146 2.6 with over 16% Efficiency. Chinese Journal of Chemistry, 2023, 41, 672-678. New Method for Preparing ZnO Layer for Efficient and Stable Organic Solar Cells. Advanced 147 11.1 32 Materials, 2023, 35, Benzotriazoleâ€Based Polymer Acceptor for Highâ€Efficiency Allâ€Polymer Solar Cells with High 148 Photocurrent and Low Voltage Loss. Advanced Energy Materials, 2023, 13, . Atomic Optimization on Pyranâ€Fused Nonfullerene Acceptor Enables Organic Solar Cells With an 149 7.8 10 Efficiency Approaching 16% and Reduced Energy Loss. Advanced Functional Materials, 2023, 33, . Tethered Smallâ€Molecule Acceptors Simultaneously Enhance the Efficiency and Stability of Polymer Solar Cells. Advanced Materials, 2023, 35, . 11.1 36 Recent progress in non-fused ring electron acceptors for high performance organic solar cells., 151 30 2023, 1, 60-78. High-efficiency organic solar cells processed from a real green solvent. Materials Horizons, 2023, 10, 6.4 473-482. Realizing 18.03% efficiency and good junction characteristics in organic solar cells <i>via</i> 153 hydrogen-bonding interaction between glucose and ZnO electron transport layers. Journal of 5.2 5 Materials Chemistry A, 2023, 11, 1810-1816. Wide-bandgap polymer donors for non-fullerene organic solar cells. Journal of Materials Chemistry 154 5.2 A, 2022, 11, 17-30. A computational study of thiophene containing small-molecule electron acceptors for non-fullerene 155 1.0 1 organic photovoltaic cells. Materials Science for Energy Technologies, 2023, 6, 137-144. A case study on the thermal-stability of polymerized small molecular acceptor-based polymer solar 156 2.7 cells. Journal of Materials Chemistry C, O, , . Relating reorganization energies, exciton diffusion length and non-radiative recombination to the 157 6.4 3 room temperature UV-vis absorption spectra of NF-SMA. Materials Horizons, 2023, 10, 443-453. Efficient regulation of active layer morphology and interfacial charge-transfer process by porphyrin-based additive in organic solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130818. 2.3 Boosting efficiency and stability for organic solar cells by subtle management electron-withdrawing terminal of electrón acceptors based on asymmetric duál-donor centra. Dyes and Pigments, 2023, 210, 159 2.0 3 111003. High-performance indoor organic photovoltaics enabled by screening multiple cases of electron 1.4 acceptors. Organic Electronics, 2023, 113, 106721. Calixarenes enabling well-adjusted organic-inorganic interface for inverted organic solar cells with 18.25% efficiency and multifold improved photostability under max power point tracking. Science 161 4.2 9 China Chemistry, 2023, 66, 195-201. Nonfullerene Acceptors Based on Naphthalene Substituted Thieno[3,2-b]thiophene Core for Efficient Organic Solar Cells. Russian Journal of General Chemistry, 2022, 92, 2354-2362.

#	Article	IF	CITATIONS
163	Benzotriazole-Featured Polymer Acceptors Toward As-Cast All-Polymer Solar Cells with a Remarkable Short-Circuit Current Density. ACS Applied Polymer Materials, 2022, 4, 9116-9124.	2.0	1
164	Highâ€Performance Green Thickâ€Film Ternary Organic Solar Cells Enabled by Crystallinity Regulation. Advanced Functional Materials, 2023, 33, .	7.8	15
165	Charge Photogeneration and Recombination Dynamics in PTQ10:Y6 Solar Cells. Photonics, 2022, 9, 892.	0.9	4
166	Refining acceptor aggregation in nonfullerene organic solar cells to achieve high efficiency and superior thermal stability. Science China Chemistry, 2023, 66, 202-215.	4.2	21
167	Environmentally friendly cathode interlayer modification on edible bioâ€acids with enhanced electron extraction and improved power conversion efficiency. EcoMat, 0, , .	6.8	0
168	Alkynyl BODIPY-Core Bridged Perylene Diimide Star-Shaped Nonfullerene Acceptors for Efficient Polymer Solar Cells. ACS Applied Energy Materials, 2022, 5, 15624-15637.	2.5	9
169	Over 19% Efficiency Organic Solar Cells by Regulating Multidimensional Intermolecular Interactions. Advanced Materials, 2023, 35, .	11.1	114
170	Organic Photovoltaics Utilizing Smallâ€Molecule Donors and Yâ€Series Nonfullerene Acceptors. Advanced Materials, 2023, 35, .	11.1	14
171	Nonhalogenated Solutionâ€Processed Donorâ€Dispersed Planar Heterojunction Organic Solar Cells with Enhanced Homogeneity in Vertical Phase Separation. Solar Rrl, 2023, 7, .	3.1	6
172	Improving the Thermal Stability of Organic Solar Cells via Crystallinity Control. ACS Applied Energy Materials, 2022, 5, 15656-15665.	2.5	7
173	Nonâ€Fused Ring Acceptors Achieving over 15.6% Efficiency Organic Solar Cell by Long Exciton Diffusion Length of Alloyâ€Like Phase and Vertical Phase Separation Induced by Hole Transport Layer. Advanced Energy Materials, 2023, 13, .	10.2	23
174	Ternary Allâ€Polymer Solar Cells with Efficiency up to 18.14% Employing a Twoâ€Step Sequential Deposition. Advanced Materials, 2023, 35, .	11.1	33
175	Conjugated Polymers: Where We Come From, Where We Stand, and Where We Might Go. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	13
176	Ternary Organic Solar Cells: Recent Insight on Structure–Processing–Property–Performance Relationships. Energy Technology, 2023, 11, .	1.8	8
177	Multifunctional allâ€polymer photovoltaic blend with simultaneously improved efficiency (18.04%), stability and mechanical durability. Aggregate, 2023, 4, .	5.2	28
178	19.10% Efficiency and 80.5% Fill Factor Layerâ€byâ€Layer Organic Solar Cells Realized by 4â€Bis(2â€Thienyl)Pyrroleâ€2,5â€Dione Based Polymer Additives for Inducing Vertical Segregation Morphology. Advanced Materials, 2023, 35, .	11.1	88
179	An Asymmetric Nonâ€fullerene Acceptor with Low Energy Loss and High Photovoltaic Efficiency. Chinese Journal of Chemistry, 2023, 41, 1045-1050.	2.6	6
180	Selenophene-containing benzodithiophene based donors with different alkyl chains in terminal groups for high-performance all-small-molecule organic solar cells. New Journal of Chemistry, 2023, 47, 2840-2846.	1.4	3

#		IE	CITATIONS
#	A Multifluorination Strategy Toward Wide Bandgap Polymers for Highly Efficient Organic Solar	۱۲ 7 9	o
101	Cells. Angewandte Chemie - International Edition, 2023, 62, .	1.2	9
182	Double Asymmetric Core Optimizes Crystal Packing to Enable Selenopheneâ€based Acceptor with Over 18 % Efficiency in Binary Organic Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	43
183	Asymmetric fluorine and chlorine side-chain engineered quinoxaline-based D–A copolymer for both fullerene and nonfullerene polymer solar cells. Polymer Chemistry, 2023, 14, 728-736.	1.9	2
184	19.28% Efficiency and Stable Polymer Solar Cells Enabled by Introducing an NIRâ€Absorbing Guest Acceptor. Advanced Functional Materials, 2023, 33, .	7.8	54
185	Efficient ternary organic photovoltaic device with a non-halogenated solvent <i>via</i> synergistic inhibiting charge recombination and regulating morphology. Journal of Materials Chemistry C, 2023, 11, 2871-2879.	2.7	24
186	Smartly Optimizing Crystallinity, Compatibility, and Morphology for Polymer Solar Cells by Small Molecule Acceptor with Unique 2Dâ€EDOT Side Chain. Advanced Functional Materials, 2023, 33, .	7.8	8
187	Double Asymmetric Core Optimizes Crystal Packing to Enable Selenopheneâ€based Acceptor with Over 18 % Efficiency in Binary Organic Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	1
188	Overcoming Disordered Preaggregation in Liquid State for Highly Efficient Organic Solar Cells Printed from Nonhalogenated Solvents. Advanced Energy Materials, 2023, 13, .	10.2	10
189	Asymmetric nonfullerene acceptors with isomeric trifluorobenzene-substitution for high-performance organic solar cells. Journal of Materials Chemistry A, 2023, 11, 4539-4546.	5.2	5
190	Extending the Absorption Spectra and Enhancing the Charge Extraction by the Organic Bulk Heterojunction for CsPbBr ₃ Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2023, 11, 718-725.	3.2	6
191	Effects of the diphenyl ether additive in halogen-free processed non-fullerene acceptor organic solar cells. Journal of Materials Chemistry A, 2023, 11, 2419-2430.	5.2	14
192	18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule, 2023, 7, 221-237.	11.7	72
193	Efficient Hole Transfer from a Twisted Perylenediimide Acceptor to a Conjugated Polymer in Organic Bulk-Heterojunction Solar Cells. Materials, 2023, 16, 737.	1.3	0
194	Medium Bandgap Nonfullerene Acceptor for Efficient Ternary Polymer Solar Cells with High Open-Circuit Voltage. ACS Omega, 2023, 8, 1989-2000.	1.6	0
195	A Multifluorination Strategy Toward Wide Bandgap Polymers for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	2
196	Yâ€Type Nonâ€Fullerene Acceptors with Outer Branched Side Chains and Inner Cyclohexane Side Chains for 19.36% Efficiency Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	69
197	Nonfullerene acceptor isomer with mono-fluorine end-substitution enables oligothiophene-based terpolymer donor with 17.82% efficiency. Chemical Engineering Journal, 2023, 457, 141281.	6.6	4
198	17% efficiency for linear-shaped ADA-type nonfullerene acceptors enabled by 3D reticulated molecular packing. Nano Energy, 2023, 107, 108116.	8.2	11

#	Article	IF	CITATIONS
199	Recent Advances of Solid Additives Used in Organic Solar Cells: Toward Efficient and Stable Solar Cells. ACS Applied Energy Materials, 2023, 6, 31-50.	2.5	12
200	Recent Developments of Polymer Solar Cells with Photovoltaic Performance over 17%. Advanced Functional Materials, 2023, 33, .	7.8	38
201	An efficient enhancement in organic photovoltaics by introducing simple-structured benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-based large-bandgap small molecules as the third component. Journal of Materials Chemistry C, 2023, 11, 2921-2929.	2.7	4
202	Star-shape non-fullerene acceptor featuring an aza-triangulene core for organic solar cells. Journal of Materials Chemistry C, 2023, 11, 8161-8169.	2.7	3
203	A double-cable Y-series-based polymer acceptor for efficient all-polymer solar cells: a new strategy of polymerizing small molecule acceptors. Journal of Materials Chemistry C, 2023, 11, 3533-3541.	2.7	4
204	Tandem organic solar cells with efficiency over 19% via the careful subcell design and optimization. Science China Chemistry, 0, , .	4.2	3
205	Controlling Morphology and Voltage Loss with Ternary Strategy Triggers Efficient All-Small-Molecule Organic Solar Cells. ACS Energy Letters, 2023, 8, 1058-1067.	8.8	43
206	Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. Advanced Materials, 2023, 35, .	11.1	76
207	A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy and Environmental Science, 2023, 16, 1062-1070.	15.6	50
208	Chlorination effects of a non-fullerene acceptor based on a selenium heterocyclic core for high-efficiency organic solar cells. Journal of Materials Chemistry C, 2023, 11, 3020-3029.	2.7	2
209	A Two-Step Heating Strategy for Nonhalogen Solvent-Processed Organic Solar Cells Based on a Low-Cost Polymer Donor. Macromolecules, 2023, 56, 867-875.	2.2	5
210	Monomer morphology selection rules for an accurate design of bulk heterojunction: An updated theoretical account. International Journal of Quantum Chemistry, 0, , .	1.0	0
211	18.73% efficient and stable inverted organic photovoltaics featuring a hybrid hole-extraction layer. Materials Horizons, 2023, 10, 1292-1300.	6.4	7
212	Enhancing Efficiency of Organic Solar Cells with Alkyl Diamines Doped PEDOT: PSS. , 2023, 5, 656-663.		9
213	Unraveling the device performance differences between bulk-heterojunction and single-component polymer solar cells. Journal of Materials Chemistry A, 2023, 11, 8961-8971.	5.2	1
214	Tuning the LUMO levels of non-fullerene acceptors <i>via</i> extension of ï€-conjugated cores for organic solar cells. Journal of Materials Chemistry C, 2023, 11, 5354-5362.	2.7	3
215	Symmetry breaking: an efficient structure design of nonfullerene acceptors to reduce the energy loss in organic solar cells. Journal of Materials Chemistry C, 2023, 11, 5257-5270.	2.7	1
216	Ambipolar charge transport in a non-fullerene acceptor. APL Materials, 2023, 11, 021105.	2.2	2

#	Article	IF	CITATIONS
217	Machine Learning for Orbital Energies of Organic Molecules Upwards of 100 Atoms. Physica Status Solidi (B): Basic Research, 2024, 261, .	0.7	1
218	Facile Side Chains Optimization of Yâ€series Acceptor Enables High Performance Binary Nonâ€halogenated Solventâ€Processed Organic Solar Cells with Excellent Fill Factor of 79%. Solar Rrl, 2023, 7, .	3.1	5
219	Saddleâ€Shaped Third Component with Outâ€ofâ€Plane Electrostatic Dipole for Realizing Highâ€Performance Photovoltaic Donor Terpolymers. Advanced Materials, 2023, 35, .	11.1	11
220	Low-cost material combination based on PTQ10 and completely non-fused nonfullerene acceptor for high VOC organic photovoltaics. Chemical Engineering Journal, 2023, 464, 142743.	6.6	10
221	D-A non-equivalent random strategy to achieve donor polymers for stable organic solar cells with efficiency over 17%. Chemical Engineering Journal, 2023, 464, 142634.	6.6	3
222	Exploring Electronic Characteristics of Acceptor–Donor–Acceptorâ€Type Molecules by Singleâ€Molecule Charge Transport. Advanced Materials, 2023, 35, .	11.1	1
223	Flexible side-chain optimization in polymer donor enables improved photovoltaic performance. Organic Electronics, 2023, 116, 106765.	1.4	2
224	Structural Fusion Yields Guest Acceptors that Enable Ternary Organic Solar Cells with 18.77 % Efficiency. Angewandte Chemie, 2023, 135, .	1.6	0
225	Structural Fusion Yields Guest Acceptors that Enable Ternary Organic Solar Cells with 18.77 % Efficiency. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
226	Bĩ£¿Nâ€Bondâ€Embedded Triplet Terpolymers with Small Singlet–Triplet Energy Gaps for Suppressing Nonâ€Radiative Recombination and Improving Blend Morphology in Organic Solar Cells. Advanced Materials, 2023, 35, .	11.1	23
227	Overview on Different Types of Solar Cells: An Update. Applied Sciences (Switzerland), 2023, 13, 2051.	1.3	12
228	Selenophene-Containing Small-Molecule Donor with a Medium Band Gap Enables High-Efficiency Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 9764-9772.	4.0	8
229	Controlling Kinetic Quenching Depth Toward Highâ€Performance and Photoâ€Stable Organic Solar Cells Printed from a Nonâ€Halogenated Solvent. Advanced Functional Materials, 2023, 33, .	7.8	4
230	åŸºäºŽé€æ⁻Žæ´»æ€§å±,çš"é«~æ•^柔性åŠé€æ~Žæœ‰æœºå¤~³èf½ç"µæ±. Science China Materials, 2023, 6	6, ₫.₿19-12	726.
231	Modulation of Alkyl Chain Length on the Thiazole Side Group Enables Over 17% Efficiency in All‣mallâ€Molecule Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	18
232	Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells. Chinese Journal of Chemistry, 2023, 41, 1753-1768.	2.6	1
233	Revealing the spacing effect of neighboring sideâ€chains in modulating molecular aggregation and orientation of Mâ€series acceptors. Aggregate, 2023, 4, .	5.2	2
234	Modulation of Molecular Stacking via Tuning 2-Ethylhexyl Alkyl Chain Enables Improved Efficiency for All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 10803-10811.	4.0	5

#	Article	IF	CITATIONS
235	Diffusionâ€Limited Accepter Alloy Enables Highly Efficient and Stable Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	20
236	Heteroatom conjugated-shoulder side-chains-based non-fullerene acceptors for organic solar cells. Cell Reports Physical Science, 2023, 4, 101303.	2.8	2
237	Indacenodithiophene Bridged Dimeric Porphyrin Donor and Absorption Complementary Indacenodithiophene Acceptor for Nonfullerene Organic Photovoltaics. ACS Applied Energy Materials, 2023, 6, 3032-3041.	2.5	1
238	Aggregation state tuning <i>via</i> controlling molecular weights of D–A ₁ –A ₂ type polymer donors for efficient organic photovoltaics. Journal of Materials Chemistry A, 2023, 11, 6997-7005.	5.2	4
239	Interface Engineering for Highly Efficient Organic Solar Cells. Advanced Materials, 0, , .	11.1	40
240	Benzo[d]thiazole Based Wide Bandgap Donor Polymers Enable 19.54% Efficiency Organic Solar Cells Along with Desirable Batchâ€ŧoâ€Batch Reproducibility and General Applicability. Advanced Materials, 2023, 35, .	11.1	82
241	Highâ€Performance Ternary Organic Solar Cells Enabled by Integrating a 3Dâ€&haped Guest Acceptor Derived from Perylene Diimide. Advanced Functional Materials, 2023, 33, .	7.8	15
242	Correlation of Local Isomerization Induced Lateral and Terminal Torsions with Performance and Stability of Organic Photovoltaics. Journal of the American Chemical Society, 2023, 145, 5909-5919.	6.6	25
243	Cyclization of Inner Linear Alkyl Chains in Fusedâ€Ring Electron Acceptors Toward Efficient Organic Solar Cells. Solar Rrl, 2023, 7, .	3.1	2
244	Exciton dynamics of a fused ring π-conjugated nonfullerene molecule based on dithienonaphthobisthiadiazole. Japanese Journal of Applied Physics, 2023, 62, SK1012.	0.8	0
245	High Conductivity, Semiconducting, and Metallic PEDOT:PSS Electrode for All-Plastic Solar Cells. Molecules, 2023, 28, 2836.	1.7	4
246	Multipolaron Complexes in Conducting Polymers: The Importance of Hole–Hole Repulsion in Charge Delocalization. Journal of Physical Chemistry C, 2023, 127, 6414-6424.	1.5	3
247	Dithienobenzoselenadiazole-Based Polymer Donors with Tuned Side Chains for Efficient Polymer Solar Cells. ACS Applied Energy Materials, 2023, 6, 4079-4088.	2.5	4
248	Low-cost organic photovoltaic materials with great application potentials enabled by developing isomerized non-fused ring acceptors. Science China Chemistry, 2023, 66, 1101-1110.	4.2	20
249	Achieving high performance organic solar cells with a closer ï€â€"ï€ distance in branched alkyl-chain acceptors. Journal of Materials Chemistry A, 2023, 11, 9538-9545.	5.2	2
250	Layerâ€byâ€Layerâ€Processed Ternary Allâ€Polymer Organic Solar Cells with 17.74% Efficiency Enabled by Introducing a Designed Narrowâ€Bandgap Guest Polymer Acceptor. Solar Rrl, 2023, 7, .	3.1	3
251	Tandem organic solar cells with 20.6% efficiency enabled by reduced voltage losses. National Science Review, 2023, 10, .	4.6	50
252	Outstanding Fill Factor in Inverted Organic Solar Cells with SnO ₂ by Atomic Layer Deposition. Advanced Materials, 0, , .	11.1	11

ARTICLE IF CITATIONS Refined molecular microstructure and optimized carrier management of multicomponent organic 253 34 15.6 photovoltaics toward 19.3% certified efficiency. Energy and Environmental Science, 2023, 16, 2262-2273. Simultaneous Improvements in Efficiency and Stability of Organic Solar Cells via a 254 10.2 Symmetricâ€Asymmetric Dualâ€Acceptór Strategy. Ádvanced Energy Materials, 2023, 13, . Oligomeric Acceptor Enables Highâ€Performance and Robust Allâ€Polymer Solar Cells with 17.4% 255 10.2 21 Efficiency. Advanced Energy Materials, 2023, 13, . Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced 256 trap-assisted charge recombination. Chemical Engineering Journal, 2023, 465, 142822. Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined<i>ex situ</i>and<i>in situ</i>observations. Energy and Environmental Science, 257 15.6 33 2023, 16, 2316-2326. A <scp>Nonâ€Halogenated</scp> Polymer Donor Based on Imide Unit for Organic Solar Cells with Efficiency Nearly 16%. Chinese Journal of Chemistry, 2023, 41, 2095-2102. 2.6 Efficient Semitransparent Organic Solar Cells Enabled by Ag Grid Electrodes and Optical Coupling 259 1.9 2 Layers. Nanomaterials, 2023, 13, 1308. Regulating Intramolecular Charge Transfer and Resonance Effects to Realize Ultrawide Bandgap Conjugated Polymer for Highâ€Performance Allâ€Polymer Solar Cells. Advanced Functional Materials, 2023, 33, . Comprehensive Understanding of Fluorination-Performance Relationship: The Best-Performed 261 3 1.6 A-D-A-Type Acceptors. Fundamental Research, 2023, , . Fused polycyclic lactam-based π-conjugated polymers for efficient nonfullerene organic solar cells. 5.2 Journal of Materials Chemistry A, 2023, 11, 9840-9845. Star-shaped benzotriindole-based donor compounds for all–small–molecule non-fullerene organic 263 3 2.0 solar cells. Dyes and Pigments, 2023, 216, 111343. Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a 264 5.8 polyfullerene guest acceptor. Nature Communications, 2023, 14, . Side-chain engineering of nonfullerene small-molecule acceptors for organic solar cells. Energy and 27115.6 26 Environmental Science, 2023, 16, 2732-2758. Versatile π-bridges in nonfullerene electron acceptors of organic solar cells. Materials Chemistry Frontiers, 2023, 7, 3855-3878. 3.2 Orthogonal solvent-sequential deposition of a nonfullerene acceptor solution on polymer donor film: complete interpenetration and highly efficient inverted organic solar cells. Journal of Materials 317 5.21 Chemistry A, 2023, 11, 19860-19869. Advances in layer-by-layer processing for efficient and reliable organic solar cells. Materials 345 Advances, 2023, 4, 6031-6063.