Lab-on-Chip for In Situ Analysis of Nutrients in the Dee

ACS Sensors 7, 89-98 DOI: 10.1021/acssensors.1c01685

Citation Report

#	Article	IF	CITATIONS
1	High-Pressure Microfluidics for Ultra-Fast Microbial Phenotyping. Frontiers in Microbiology, 2022, 13,	3.5	2
2	The optimization of bimetallic electrodes' sensitivity using copper nucleation on metallic substrates to detect nitrates in seawater. Journal of Electroanalytical Chemistry, 2022, 918, 116497.	3.8	2
3	Real-Time Underway Mapping of Nutrient Concentrations of Surface Seawater Using an Autonomous Flow Analyzer. Analytical Chemistry, 2022, 94, 11307-11314.	6.5	6
4	Recent advances in microfluidic sensors for nutrients detection in water. TrAC - Trends in Analytical Chemistry, 2023, 158, 116790.	11.4	9
5	Simultaneous in situ Nitrate and Orthophosphate Measurement Using a Dual Chemistry Microfluidic Sensor. , 2022, , .		0
6	Two chemistries on a single lab-on-chip: Nitrate and orthophosphate sensing underwater with inlaid microfluidics. Frontiers in Sensors, 0, 3, .	3.3	1
7	An Automated Microfluidic Analyzer for <i>In Situ</i> Monitoring of Total Alkalinity. ACS Sensors, 2023, 8, 344-352.	7.8	12
9	The Use of Bi-Potentiostat as a Simple and Accurate Electrochemical Approach for the Determination of Orthophosphate in Seawater. Sensors, 2023, 23, 2123.	3.8	4
10	TRIDENT – Technology based impact assessment tool foR sustaInable, transparent Deep sEa miNing exploraTion and exploitation: A project overview. , 2023, , .		1
11	New tools and recommendations for a better management of harmful algal blooms under the European Marine Strategy Framework Directive. , 0, 1, .		1
12	Programmable flow injection: a versatile technique for benchtop and autonomous analysis of phosphate and silicate in seawater. Frontiers in Marine Science, 0, 11, .	2.5	0
13	Measurements and analysis of nitrogen and phosphorus in oceans: Practice, frontiers, and insights. Heliyon, 2024, 10, e28182.	3.2	0