Siberian taiga and tundra fire regimes from 2001–202

Environmental Research Letters 17, 025001 DOI: 10.1088/1748-9326/ac3f07

Citation Report

#	Article	IF	CITATIONS
1	Permafrost Degradation and Its Hydrogeological Impacts. Water (Switzerland), 2022, 14, 372.	2.7	33
2	Catastrophic Pm2.5 Emissions from Siberian Forest Fires: Impacting Factors Analysis. SSRN Electronic Journal, 0, , .	0.4	0
3	Overwintering fires rising in eastern Siberia. Environmental Research Letters, 2022, 17, 045005.	5.2	16
4	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	23.0	182
5	Catastrophic PM2.5 emissions from Siberian forest fires: Impacting factors analysis. Environmental Pollution, 2022, 306, 119324.	7.5	17
6	Spatial patterns of unburned refugia in Siberian larch forests during the exceptional 2020 fire season. Global Ecology and Biogeography, 2022, 31, 2041-2055.	5.8	1
7	We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems. Frontiers in Environmental Science, 0, 10, .	3.3	9
8	Shrubification along Pipeline Corridors in Permafrost Regions. Forests, 2022, 13, 1093.	2.1	1
9	Reassessment of carbon emissions from fires and a new estimate of net carbon uptake in Russian forests in 2001–2021. Science of the Total Environment, 2022, 846, 157322.	8.0	8
10	Experimental assessment of tundra fire impact on element export and storage in permafrost peatlands. Science of the Total Environment, 2022, 853, 158701.	8.0	4
11	Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nature Climate Change, 2022, 12, 841-846.	18.8	32
12	The costs and benefits of fire management for carbon mitigation in Alaska through 2100. Environmental Research Letters, 2022, 17, 105001.	5.2	1
13	Vulnerability of larch forests to forest fires along a latitudinal gradient in eastern Siberia. Canadian Journal of Forest Research, 0, , .	1.7	0
14	Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic. Annual Review of Environment and Resources, 2022, 47, 343-371.	13.4	56
15	Lowland tundra plant stoichiometry is somewhat resilient decades following fire despite substantial and sustained shifts in community structure. Arctic, Antarctic, and Alpine Research, 2022, 54, 525-536.	1.1	2
16	Impact of wildfire on soil carbon and nitrogen storage and vegetation succession in the Nanweng'he National Natural Wetlands Reserve, Northeast China. Catena, 2023, 221, 106797.	5.0	3
17	Regional Spatiotemporal Patterns of Fire in the Eurasian Subarctic Based on Satellite Imagery. Remote Sensing, 2022, 14, 6200.	4.0	0
18	A Wildfire Detection Algorithm Based on the Dynamic Brightness Temperature Threshold. Forests, 2023, 14, 477.	2.1	6

ATION REDO

	CITATION I	on Report	
#	Article	IF	CITATIONS
20	Increasing Fuel Loads, Fire Hazard, and Carbon Emissions from Fires in Central Siberia. Fire, 2023, 6, 63.	2.8	6
21	Shrubs Compensate for Tree Leaf Area Variation and Influence Vegetation Indices in Postâ€Fire Siberian Larch Forests. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	3
23	Simulating dynamic fire regime and vegetation change in a warming Siberia. Fire Ecology, 2023, 19, .	3.0	3
24	The Role of Forest Stands Characteristics on Formation of Exterior Migratory Outbreak Spots by the Siberian Silk Moth Dendrolimus sibiricus (Tschetv.) during Population Collapse. Forests, 2023, 14, 1078.	2.1	1
25	Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost. Environmental Research Letters, 2023, 18, 084010.	5.2	0
26	Proportion of forest area burned at high-severity increases with increasing forest cover and connectivity in western US watersheds. Landscape Ecology, 2023, 38, 2501-2518.	4.2	3
27	Google Earth Engine: A Global Analysis and Future Trends. Remote Sensing, 2023, 15, 3675.	4.0	9
28	Varying effects of tree cover on relationships between satellite-observed vegetation greenup date and spring temperature across Eurasian boreal forests. Science of the Total Environment, 2023, 899, 165650.	8.0	1
29	Trend and Drivers of Satelliteâ€Detected Burned Area Changes Across Arctic Region Since the 21st Century. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	0
30	Facing the flames: insect responses to megafires and changing fire regimes. Current Opinion in Insect Science, 2023, , 101129.	4.4	0
31	Extratropical forests increasingly at risk due to lightning fires. Nature Geoscience, 2023, 16, 1136-1144.	12.9	0
32	Long-term summer warming reduces post-fire carbon dioxide losses in an arctic heath tundra. Agricultural and Forest Meteorology, 2024, 344, 109823.	4.8	0
34	Unrecorded Tundra Fires in Canada, 1986–2022. Remote Sensing, 2024, 16, 230.	4.0	0
35	Fireâ€Induced Carbon Loss and Tree Mortality in Siberian Larch Forests. Geophysical Research Letters, 2024, 51, .	4.0	0
36	Simulating long-term wildfire impacts on boreal forest structure in Central Yakutia, Siberia, since the Last Glacial Maximum. Fire Ecology, 2024, 20, .	3.0	0
37	Assessing changes in global fire regimes. Fire Ecology, 2024, 20, .	3.0	1
38	Summer drought weakens land surface cooling of tundra vegetation. Environmental Research Letters, 2024, 19, 044043.	5.2	0