Application of thin films to solar energy utilization

Journal of Vacuum Science and Technology 13, 127-134

DOI: 10.1116/1.568805

Citation Report

#	Article	IF	CITATIONS
1	Selective black absorbers using MgO/Au cermet films. Applied Physics Letters, 1976, 29, 478-480.	3.3	84
2	The unusual and useful optical properties of electrodeposited chrome-black films. Journal Physics D: Applied Physics, 1977, 10, 1863-1869.	2.8	35
3	Selective absorption of solar energy in ultrafine chromium particles. Applied Physics Letters, 1977, 31, 665-666.	3.3	18
4	Selective black absorbers using rfâ€sputtered Cr2O3/Cr cermet films. Applied Physics Letters, 1977, 30, 511-513.	3.3	90
5	Survey of selective absorber coatings for solar energy technology. Journal of Energy, 1977, 1, 100-107.	0.2	18
6	Optical properties and selective solar absorption of composite material films. Thin Solid Films, 1977, 45, 9-18.	1.8	64
7	Some chemical aspects of solar energy utilization. Journal of Solid State Chemistry, 1977, 22, 31-39.	2.9	3
8	Black germanium solar selective absorber surfaces. Thin Solid Films, 1978, 54, 149-157.	1.8	35
9	Growth and properties of low resistivity CdS films. Thin Solid Films, 1978, 55, 413-419.	1.8	17
10	Selective-black absorbers using sputtered cermet films. Thin Solid Films, 1978, 54, 139-148.	1.8	40
11	Selective electroplated chromium blacks. Applied Optics, 1978, 17, 2637.	2.1	30
12	Ultrafine chromium particles for photothermal conversion of solar energy. Journal of Applied Physics, 1978, 49, 3512-3520.	2.5	49
14	SELECTIVE COATINGS FOR SOLAR ENERGY CONVERSION. , 1978, , 842-844.		1
15	Analysis of chromeâ€black solarâ€absorber surfaces. Journal of Applied Physics, 1979, 50, 4791-4793.	2.5	10
16	Microstructure dependence of the optical properties of solarâ€absorbing black chrome. Applied Physics Letters, 1979, 34, 42-44.	3.3	32
17	Matériaux sélectifs pour la conversion photothermique de l'énergie solaire. Revue De Physique Appliquée, 1979, 14, 67-80.	0.4	24
18	Inhomogeneous surfaces as selective solar absorbers. Solar Energy Materials and Solar Cells, 1979, 1, 397-410.	0.4	19
19	Thermal degradation of chromium black solar selective absorbers. Solar Energy Materials and Solar Cells, 1979, 2, 167-176.	0.4	23

#	ARTICLE	IF	Citations
20	Stabilized CVD amorphous silicon for high temperature photothermal solar energy conversion. Solar Energy Materials and Solar Cells, 1979, 2, 107-124.	0.4	45
21	Chromium black coatings for photothermal conversion of solar energy, Part II: Optical properties. Solar Energy Materials and Solar Cells, 1979, 1, 201-213.	0.4	18
22	Metal/insulator composite selective absorbers. Solar Energy Materials and Solar Cells, 1979, 1, 105-124.	0.4	103
23	Optical and topographical properties of selective black chrome. Thin Solid Films, 1979, 63, 183-187.	1.8	10
24	Selective absorption of solar energy in chromium particles: Model calculations. Thin Solid Films, 1979, 57, 303-307.	1.8	7
25	Application of the resonant $52Cr(p, \hat{l}^3)53Mn$ reaction to the measurement of chromium depth distributions. Nuclear Instruments & Methods, 1979, 159, 407-411.	1.2	8
26	A study of selective electroplated chrome blacks. Thin Solid Films, 1979, 57, 309-314.	1.8	8
27	Chromium black coatings for photothermal conversion of solar energy, part I: Preparation and structural characterization. Solar Energy Materials and Solar Cells, 1979, 1, 189-200.	0.4	29
28	The surface microstructure optical properties relationship in solar absorbers: black chrome. Solar Energy Materials and Solar Cells, 1979, 1, 69-79.	0.4	64
29	Composite semiconductors: Selective absorbers of solar energy. Solar Energy Materials and Solar Cells, 1979, 1, 93-104.	0.4	35
30	Optical properties of aggregated gold on aluminum. Applied Optics, 1979, 18, 3119.	2.1	16
31	ECONOMIC ANALYSIS OF SOLAR-THERMAL SYSTEMS. , 1979, , 272-308.		O
32	Selective absorption of solar energy in ultrafine metal particles: Model calculations. Journal of Applied Physics, 1979, 50, 1058-1065.	2.5	41
33	Spectrally selective surfaces and their impact on photothermal solar energy conversion. Topics in Applied Physics, 1979, , 5-55.	0.8	44
34	Spectrally selective surfaces for photothermal conversion of solar energy. Physica Status Solidi A, 1980, 60, 11-25.	1.7	17
35	Preparation and characterisation of a spectrally selective black chrome coating for solar energy applications. Applied Energy, 1980, 7, 299-303.	10.1	3
36	Metallurgical analysis and high temperature degradation of the black chrome solar selective absorber. Thin Solid Films, 1980, 72, 73-82.	1.8	35
37	Le dépôt électrolytique de chrome noir : Caractérisation et stabilité thermique. Revue De Physique Appliquée, 1980, 15, 397-402.	0.4	8

#	Article	IF	CITATIONS
38	Refinement of solar absorbing black chrome microstructure and its relationship to optical degradation mechanisms. Journal of Applied Physics, 1980, 51, 5544.	2.5	62
39	Retarding crystallization of CVD amorphous silicon by alloying. Journal of Non-Crystalline Solids, 1980, 35-36, 213-218.	3.1	31
40	Nickel pigmented anodic aluminum oxide for selective absorption of solar energy. Journal of Applied Physics, 1980, 51, 754-764.	2.5	174
41	Radiative heating and cooling with spectrally selective surfaces. Applied Optics, 1981, 20, 2606.	2.1	249
42	Chemically vapor-deposited black molybdenum films of high IR reflectance and significant solar absorptance. Thin Solid Films, 1981, 83, 387-392.	1.8	19
43	Spectrally selective surfaces of cuprous oxide (Cu2O). Solar Energy Materials and Solar Cells, 1981, 5, 211-220.	0.4	22
44	An electrochemical approach to the characterisation of black chrome selective surfaces. Solar Energy Materials and Solar Cells, 1981, 4, 179-202.	0.4	36
45	The present status of black chromium plating. Surface Technology, 1981, 14, 119-132.	0.4	6
46	Selective blacks for enhanced photothermal solar energy conversion. Energy Conversion and Management, 1981, 21, 239-251.	9.2	9
47	A parametric analysis of the performances of a linear collectors' network of a solar power plant. Il Nuovo Cimento Della SocietÀ Italiana Di Fisica C, 1982, 5, 359-373.	0.2	0
49	Surfaces for selective absorption of solar energy: an annotated bibliography 1955?1981. Journal of Materials Science, 1983, 18, 3475-3534.	3.7	121
50	A selective solar absorbing surface by control of surface microtopography. Vacuum, 1983, 33, 849-853.	3.5	1
51	Spectrally selective black tungsten films. Thin Solid Films, 1983, 105, 203-211.	1.8	12
52	The selective solar properties of oxide films grown in-situ cobalt and cobalt alloys. Solar Energy Materials and Solar Cells, 1984, 11, 299-310.	0.4	3
53	Spectrally selective surfaces by chemical vapor deposition. Solar Energy Materials and Solar Cells, 1985, 12, 87-129.	0.4	12
54	Cr/SiO on Cu solar selective absorbers. Solar Energy Materials and Solar Cells, 1985, 12, 199-209.	0.4	16
55	Improvement of Selective Film for Stainless Steel Solar Collector. Japanese Journal of Applied Physics, 1987, 26, 1056-1063.	1.5	3
56	Black cobalt solar absorber coatings. Solar Energy Materials and Solar Cells, 1991, 22, 293-302.	0.4	10

#	Article	IF	CITATIONS
57	Characterizations of the mirror attenuator mosaic: solar diffuser plate. Applied Optics, 1992, 31, 6643.	2.1	10
58	Spectral selective properties of Cu-Cu2O cermet films. Journal of Materials Science Letters, 1992, 11, 299-301.	0.5	1
59	The preparation process and property analysis of a solar selective absorbing surface on milled steel. Solar Energy Materials and Solar Cells, 1993, 30, 285-290.	6.2	1
60	Titanium–tin oxide protective films on a black cobalt photothermal absorber. Solar Energy Materials and Solar Cells, 1999, 57, 127-140.	6.2	22
61	Degradation study of black cobalt coating. Surface Engineering, 2000, 16, 50-53.	2.2	2
62	Electrolytic Nickel Impregnation of Porous Anodic Aluminum Oxide Films Using AC Voltage as Solar Selective Absorber. Energy Procedia, 2014, 57, 2733-2742.	1.8	2
63	Solar Radiation Conversion With Mesoporous Silica Activated by Rare-Earth Ions. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.8	1
64	Spectral selectivity of composite materials. Topics in Applied Physics, 1979, , 57-114.	0.8	15
65	THE EMISSIVITY OF METALS11This work was supported by the Solar Energy Research Institute Contract No. XH-9-8158-1. Additional support was received from the National Science Foundation under grant No. DMR-76-81083 through the Cornell Materials Science Center. MSC Report #4190 , 1980, , 229-254.		2
66	Black chromium coatings: experimental and calculated optical properties using inhomogeneous medium theories. Journal De Physique, 1979, 40, 1093-1103.	1.8	20
67	SELECTIVE ABSORPTION OF SOLAR ENERGY BY ULTRAFINE METAL PARTICLES. , 1978, , 870-874.		0
68	Proton Processes on the Surfaces of Semiconductors and Insulators. Springer Series in Surface Sciences, 1987, , 214-247.	0.3	0
69	Inexspensive all-season passive thin metal film for energy savings in cities. Energy for Sustainable Development, 2023, 73, 232-235.	4.5	1