Phytoplankton Adaptation to Environmental Stresses from Pollutants $\hat{a} {\ensuremath{\in}}$ " a Warning

Journal of the Fisheries Research Board of Canada 33, 2089-2096 DOI: 10.1139/f76-260

Citation Report

#	Article	IF	CITATIONS
1	The effects of the pulp and paper industry on the aquatic environment. C R C Critical Reviews in Environmental Control, 1977, 8, 153-195.	1.0	22
2	GROWTH OF A MARINE DIATOM AND A HAPTOPHYCEAN ALGA ON PHENYLALANINE OR TYROSINE SERVING AS SOLE NITROGEN SOURCE ¹ . Journal of Phycology, 1977, 13, 231-238.	2.3	9
3	On the dynamics of exploited populations ofTisbe holothuriae (Copepoda, Harpacticoida). HelgolÃ ¤ der Wissenschaftliche Meeresuntersuchungen, 1977, 29, 503-523.	0.6	15
4	Culture Studies on the Effects from Fluoride Pollution on the Growth of Marine Phytoplankters. Journal of the Fisheries Research Board of Canada, 1978, 35, 1500-1504.	0.9	23
5	The Hemolymph Bactericidin of American Lobster (Homarus americanus): Adsorption and Activation. Journal of the Fisheries Research Board of Canada, 1978, 35, 1504-1507.	0.9	22
6	Pollution Studies with Marine Plankton. Advances in Marine Biology, 1979, , 381-508.	1.4	125
7	The potential effects of energy related activities on the seasonal trajectories of epiphytic marine diatoms. Hydrobiologia, 1979, 67, 51-80.	2.0	1
8	Concentration Requirement of glycine as nitrogen source for supporting effective growth of certain marine microplanktonic algae. Marine Biology, 1979, 55, 83-92.	1.5	20
9	The effect of cadmium and lead on the growth of two species of marine phytoplankton with particular reference to the development of tolerance. Journal of Plankton Research, 1979, 1, 121-136.	1.8	24
10	Algal and invertebrate communities in three subarctic lakes receiving mine wastes. Water Research, 1979, 13, 1193-1202.	11.3	12
11	Environmental Disturbance and Life Histories: Principles and Examples. Journal of the Fisheries Research Board of Canada, 1979, 36, 329-334.	0.9	21
12	Sorption of Cadmium and its Effect on Growth and the Utilization of Inorganic Carbon and Phosphorus of Two Freshwater Diatoms. Journal of the Fisheries Research Board of Canada, 1979, 36, 579-586.	0.9	32
13	Algal bioassays to determine toxicity of metal mixtures. Hydrobiologia, 1980, 74, 199-208.	2.0	31
14	Effects of sublethal concentrations of mercuric chloride on ammonium-limitedSkeletonema costatum. Marine Biology, 1980, 56, 219-231.	1.5	7
15	Absorption of fenitrothion by plankton and benthic algae. Bulletin of Environmental Contamination and Toxicology, 1980, 24, 389-396.	2.7	12
16	The Effects of Mercury Exposure on Intracellular Distribution of Mercury, Copper and Zinc in Skeletonema costatum (Grev.) Cleve. Botanica Marina, 1980, 23, .	1.2	5
17	Cellular accumulation and distribution of cadmium in Isochrysis galbana during growth inhibition and recovery. Journal of Plankton Research, 1980, 2, 283-294.	1.8	15
18	Bioassays: Use and Misuse in Marine Pollution Studies. , 1981, , .		0

#	Article	IF	CITATIONS
20	Influence of Temperature and Light Intensity on the Utilization of Glycine as Nitrogen Source for Phototrophic Growth of a Marine Unicellular Cyanophyte (Cyanobacterium). Botanica Marina, 1982, 25, .	1.2	3
21	Effect of Cu2+ stress on an aquatic microcosm: A holistic study. Environmental Research, 1982, 27, 307-315.	7.5	19
22	Bioaccumulation and Effects of Cadmium and Zinc in a Lake Michigan Plankton Community. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40, 1469-1479.	1.4	11
23	Relationship between hydrocarbons and bacterial activity in mediterranean sediments: Part 2—hydrocarbon degrading activity of bacteria from sediments. Marine Environmental Research, 1983, 9, 19-36.	2.5	10
24	Evidence of nickel ion requirement for autotrophic growth of a marine diatom with urea serving as nitrogen source. British Phycological Journal, 1984, 19, 125-134.	1.2	36
25	Herbicide effects on the population growth of some green algae and cyanobacteria. Journal of Applied Bacteriology, 1984, 57, 369-379.	1.1	47
26	Use of a mixed algal culture to characterize industrial wastewaters. Ecotoxicology and Environmental Safety, 1984, 8, 80-96.	6.0	8
27	Use of large enclosures for perturbation experiments in lentic ecosystems: A review. Environmental Monitoring and Assessment, 1985, 5, 55-99.	2.7	12
28	Some aspects on algal toxicity tests with natural phytoplankton. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1985, 22, 2463-2468.	0.1	0
29	Comparison of algal assay systems for detecting waterborne herbicides and metals. Water Research, 1986, 20, 91-96.	11.3	52
30	Factors affecting metal toxicity to (and accumulation by) aquatic organisms — Overview. Environment International, 1987, 13, 437-457.	10.0	123
31	Modeling the inhibitory effects of metals on phytoplankton growth. Aquatic Toxicology, 1987, 10, 265-278.	4.0	9
32	Influence of the photosynthesis-inhibiting herbicides goltix and sencor on growth and nitrogenase activity of Anabaena cylindrica and Nostoc muscorum. Biology and Fertility of Soils, 1987, 3, 171-177.	4.3	6
33	Short-term effects of polynuclear aromatic hydrocarbons on sea-surface microlayer phytoneuston. Bulletin of Environmental Contamination and Toxicology, 1987, 38, 1037-1043.	2.7	7
34	Some important parameters in the evaluation of herbicide toxicity in diazotrophic cyanobacteria. Journal of Applied Bacteriology, 1988, 64, 365-370.	1.1	6
35	Induced Community Tolerance in Marine Periphyton established under Arsenate Stress. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45, 1816-1819.	1.4	127
36	Measurement of manganese amelioration of cadmium toxicity inChlorella pyrenoidosa using turbidostat culture. Archives of Environmental Contamination and Toxicology, 1990, 19, 118-123.	4.1	11
37	Toxicity test with algae—A discussion on the batch method. Ecotoxicology and Environmental Safety, 1990, 20, 343-353.	6.0	48

#	Article	IF	CITATIONS
38	Time lags in algal growth: generality, causes and consequences. Journal of Plankton Research, 1990, 12, 873-883.	1.8	36
39	Effects of Selenite and Selenate on the Growth and Motility of Seven Species of Marine Microalgae. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48, 1193-1200.	1.4	28
40	Dose-response relationship of Anabaena flos-aquae and Selenastrum capricornutum to atrazine and hexazinone using chlorophyll (a) content and 14C uptake. Aquatic Toxicology, 1991, 20, 195-204.	4.0	23
41	Growth response of freshwater algae,Anabaena flos-aquae andSelenastrum capricornutum to atrazine and hexazinone herbicides. Bulletin of Environmental Contamination and Toxicology, 1991, 46, 223-229.	2.7	56
42	Pesticide Effects on Soil Algae and Cyanobacteria. Reviews of Environmental Contamination and Toxicology, 1992, , 95-170.	1.3	25
43	Community Response to Cumulative Toxic Impact: Effects of Acclimation on Zinc Tolerance of Aufwuchs. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 2155-2163.	1.4	31
44	CHRONIC EFFECTS OF ULTRAVIOLET-B RADIATION ON GROWTH AND CELL VOLUME OF PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE)1. Journal of Phycology, 1992, 28, 757-760.	2.3	62
45	Effects of previous zinc exposure on pH tolerance of periphyton communities. Environmental Toxicology and Chemistry, 1993, 12, 743-753.	4.3	14
46	Survival and growth of post-set oysters and clams on diets of cadmium-contaminated microalgal cultures. Marine Environmental Research, 1994, 37, 257-281.	2.5	11
47	Effect of atrazine herbicide on growth, photosynthesis, protein synthesis, and fatty acid composition in the unicellular green alga Chlorella kessleri. Ecotoxicology and Environmental Safety, 1994, 29, 349-358.	6.0	46
48	Fitness tradeâ€offs of <i>Selenastrum capricornutum</i> strains selected for rapid growth on copperâ€spiked solidified nutrient medium. Environmental Toxicology and Chemistry, 1995, 14, 1789-1798.	4.3	3
49	Adaptation of the Growth of the Diatom Fragilaria crotonensis (Kitton) and the Phytoplankton Assemblage of Lake Erie to Chromium Toxicity. Journal of Great Lakes Research, 1996, 22, 55-62.	1.9	5
50	Bioavailability, Biodegradation, and Acclimation of Tetrahymena pyriformis to 1-Octanol. Ecotoxicology and Environmental Safety, 1999, 44, 86-91.	6.0	5
51	Effects of chronic, low levels of UV radiation on carbon allocation in Cryptomonas erosa and competition between C.erosa and bacteria in continuous cultures. Journal of Plankton Research, 2000, 22, 1277-1298.	1.8	15
52	Algal Toxicity Tests for Environmental Risk Assessments of Metals. Reviews of Environmental Contamination and Toxicology, 2003, 178, 23-52.	1.3	33
54	Microalgae – A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 2015, 113, 329-352.	6.0	595
55	Coastal phytoplankton responses to atmospheric deposition during summer. Limnology and Oceanography, 2021, 66, 1298-1315.	3.1	12
56	Marine Primary Producers. , 1981, , 9-69.		5

#	Article	IF	CITATIONS
57	Evidence for the subcellular localization and specificity of chlordane inhibition in the marine bacterium Aeromonas proteolytica. Applied and Environmental Microbiology, 1979, 37, 471-479.	3.1	12
58	Ecotoxicological considerations. , 1991, , 79-118.		1
59	GROWTH OF A MARINE DIATOM AND A HAPTOPHYCEAN ALGA ON PHENYLALANINE OR TYROSINE SERVING AS SOLE NITROGEN SOURCE1. Journal of Phycology, 1977, 13, 231-238.	2.3	0
60	GROWTH OF A MARINE DIATOM AND A HAPTOPHYCEAN ALGA ON PHENYLALANINE OR TYROSINE SERVING AS SOLE NITROGEN SOURCE1. Journal of Phycology, 1977, 13, 231-238.	2.3	6

CITATION REPORT