Tracking the temporal variation of COVID-19 surges threepidemiology during the peak of the pandemic: A six-m Carolina

Science of the Total Environment 814, 152503

DOI: 10.1016/j.scitotenv.2021.152503

Citation Report

#	Article	IF	Citations
1	Performance evaluation of virus concentration methods for implementing SARS-CoV-2 wastewater based epidemiology emphasizing quick data turnaround. Science of the Total Environment, 2021, 801, 149656.	8.0	37
2	"pySewage†a hybrid approach to predict the number of SARS-CoV-2-infected people from wastewater in Brazil. Environmental Science and Pollution Research, 2022, 29, 67260-67269.	5.3	7
3	Assessment of Concentration, Recovery, and Normalization of SARS-CoV-2 RNA from Two Wastewater Treatment Plants in Texas and Correlation with COVID-19 Cases in the Community. ACS ES&T Water, 2022, 2, 2060-2069.	4.6	12
5	Five-week warning of COVID-19 peaks prior to the Omicron surge in Detroit, Michigan using wastewater surveillance. Science of the Total Environment, 2022, 844, 157040.	8.0	31
6	Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations. Science of the Total Environment, 2022, 852, 158448.	8.0	12
7	Wastewater surveillance in smaller college communities may aid future public health initiatives. PLoS ONE, 2022, 17, e0270385.	2.5	3
8	Implementing Wastewater Surveillance for SARSâ€CoVâ€2 on a University Campus: Lessons Learned. Water Environment Research, 0, , .	2.7	5
9	Regional and temporal differences in the relation between SARS-CoV-2 biomarkers in wastewater and estimated infection prevalence $\hat{a} \in \mathbb{C}$ Insights from long-term surveillance. Science of the Total Environment, 2023, 857, 159358.	8.0	5
10	Detection of SARS-CoV-2 RNA in wastewater and comparison to COVID-19 cases in two sewersheds, North Carolina, USA. Science of the Total Environment, 2023, 858, 159996.	8.0	6
11	Monitoring of COVID-19 in wastewater across the Eastern Upper Peninsula of Michigan. Environmental Advances, 2023, 11, 100326.	4.8	7
12	Wastewater-based prediction of COVID-19 cases using a highly sensitive SARS-CoV-2 RNA detection method combined with mathematical modeling. Environment International, 2023, 173, 107743.	10.0	21
13	Simple methods for early warnings of COVID-19 surges: Lessons learned from 21 months of wastewater and clinical data collection in Detroit, Michigan, United States. Science of the Total Environment, 2023, 864, 161152.	8.0	16
14	Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. Science of the Total Environment, 2023, 878, 162953.	8.0	17
15	Contribution of wastewater-based epidemiology to SARS-CoV-2 screening in Brazil and the United States. Journal of Water and Health, 2023, 21, 343-353.	2.6	O
16	Exploration on wastewater-based epidemiology of SARS-CoV-2: Mimic relative quantification with endogenous biomarkers as internal reference. Heliyon, 2023, 9, e15705.	3.2	1
17	Wastewater early warning system for SARS-CoV-2 outbreaks and variants in a Coruña, Spain. Environmental Science and Pollution Research, 2023, 30, 79315-79334.	5. 3	6
18	COVID-19 monitoring with sparse sampling of sewered and non-sewered wastewater in urban and rural communities. IScience, 2023, 26, 107019.	4.1	8
19	Targeting a free viral fraction enhances the early alert potential of wastewater surveillance for SARS-CoV-2: a methods comparison spanning the transition between delta and omicron variants in a large urban center. Frontiers in Public Health, 0, 11, .	2.7	1

#	Article	IF	CITATIONS
20	Using detrending to assess SARS-CoV-2 wastewater loads as a leading indicator of fluctuations in COVID-19 cases at fine temporal scales: Correlations across twenty sewersheds in North Carolina. , $2023, 2, e0000140$.		0
22	COVID-19 hospitalizations and deaths predicted by SARS-CoV-2 levels in Boise, Idaho wastewater. Science of the Total Environment, 2023, , 167742.	8.0	2
23	Beyond linear regression: Modeling COVID-19 clinical cases with wastewater surveillance of SARS-CoV-2 for the city of Athens and Ohio University campus. Science of the Total Environment, 2023, , 169028.	8.0	0
24	Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: update of a systematic review during the second year of the pandemic. Journal of Water and Health, 0, , .	2.6	0
25	Application and challenge of wastewater-based epidemiology for the COVID-19 epidemic control in countries at different developing levels. Journal of Water Process Engineering, 2024, 58, 104911.	5.6	0
26	Administration of a bacterial lysate to the airway compartment is sufficient to inhibit allergen-induced lung eosinophilia in germ-free mice. Journal of Leukocyte Biology, 0, , .	3.3	0