Colorimetric detection for uranyl ions in water using vifunctionalized gold nanoparticles based on smartphone

Spectrochimica Acta - Part A: Molecular and Biomolecular Spe 269, 120748

DOI: 10.1016/j.saa.2021.120748

Citation Report

#	Article	IF	CITATIONS
1	Unraveling a role of molecular linker in nanoparticles self-organization by SERS spectroscopy: Comparative study of three aromatic diamines. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128881.	4.7	2
2	Sugar Assisted Copper Sulfide Synthesis at Room Temperature and Pressure for Uranyl Ion Sensing. SSRN Electronic Journal, 0, , .	0.4	0
3	A field-deployable water quality monitoring with machine learning-based smartphone colorimetry. Analytical Methods, 2022, 14, 3458-3466.	2.7	8
4	Topical progress of gold nanoparticles towards diverse metal ion sensing through optical spectrometry and electrochemical techniques – A short review. Journal of Materials Research and Technology, 2023, 22, 1185-1209.	5.8	6
5	Smartphone-assisted colorimetric determination of uranyl ions in aqueous solutions. New Journal of Chemistry, 2023, 47, 4667-4673.	2.8	1
6	Unaided-eye detection of diverse metal ions by AuNPs-based nanocomposites: A review. Microchemical Journal, 2023, 190, 108628.	4.5	3
7	Sugar-assisted copper sulfide synthesis at room temperature and pressure for interaction with uranyl ions. MRS Advances, 0 , , .	0.9	0
8	Progress in the design of portable colorimetric chemical sensing devices. Nanoscale, 2023, 15, 19016-19038.	5. 6	0
9	Electrodes functionalized with advanced recognition materials for trace electrochemical sensing of uranyl ion. Microchemical Journal, 2024, 199, 109924.	4.5	0
10	A dual-ligand lanthanide-based metal–organic framework for highly selective and sensitive colorimetric detection of Fe ²⁺ . Analytical Methods, 2024, 16, 899-906.	2.7	0
11	Colorimetric sensing for the sensitive detection of UO ₂ ²⁺ <i>via</i> the phosphorylation functionalized mesoporous silica-based controlled release system. Analytical Methods, 2024, 16, 837-845.	2.7	0
12	Detection and quantification of Cu2+ ion using gold nanoparticles via Smartphone-based digital imaging colorimetry technique. Results in Chemistry, 2024, 7, 101418.	2.0	0
13	Advanced "turn-on―colorimetric uranium platform based on the enhanced nanozyme activity of a donor-acceptor structured covalent organic framework. Analytica Chimica Acta, 2024, 1302, 342503.	5.4	0