Enzyme kinetic approach for mechanistic insight and p digestibility and the glycaemic index of foods

Trends in Food Science and Technology 120, 254-264 DOI: 10.1016/j.tifs.2021.11.015

Citation Report

CITATION REPORT

#	Article	IF	CITATIONS
1	Analysis of starch digestograms using Monte Carlo simulations. Carbohydrate Polymers, 2022, 291, 119589.	10.2	3
2	Definition of starch components in foods by first-order kinetics to better understand their physical basis. Food Hydrocolloids, 2022, 133, 107953.	10.7	4
3	Understanding starch digestibility of rice: a study in brown rice. International Journal of Food Science and Technology, 2022, 57, 6699-6710.	2.7	3
4	Physicochemical, antioxidant and starch-digesting enzymes inhibitory properties of pearl millet and sweet detar gluten-free flour blends, and sensory qualities of their breads. Frontiers in Food Science and Technology, 0, 2, .	1.6	7
5	Physical barrier effects of dietary fibers on lowering starch digestibility. Current Opinion in Food Science, 2022, 48, 100940.	8.0	16
6	Are Dietary Sugars Potent Adipose Tissue and Immune Cell Modulators?. International Journal of Diabetology, 2023, 4, 30-45.	2.0	0
7	Impact of chemical and rheological properties on <scp>3D</scp> printability and starch digestibility of potato pastes from different cultivars. International Journal of Food Science and Technology, 2023, 58, 1912-1921.	2.7	0
8	Shading affects the starch structure and digestibility of wheat by regulating the photosynthetic light response of flag leaves. International Journal of Biological Macromolecules, 2023, 236, 123972.	7.5	4
9	A more general approach for predicting the glycemic index (GI) values of commercial noodles. Journal of Food Composition and Analysis, 2023, 119, 105226.	3.9	3
10	Antioxidant, starch-digesting enzymes inhibitory, and pasting properties of elite yellow-fleshed cassava genotypes. Frontiers in Sustainable Food Systems, 0, 7, .	3.9	2
11	Postharvest ripening of newly harvested corn: Structural, rheological, and digestive characteristics of starch. LWT - Food Science and Technology, 2023, 180, 114728.	5.2	3
12	Improved Hydrolysis of Granular Starches by a Psychrophilic α-Amylase Starch Binding Domain-Fusion. Journal of Agricultural and Food Chemistry, 2023, 71, 9040-9050.	5.2	3
13	Harnessing in vitro digestion of commercial oats for predicting their glycemic index (GI). European Food Research and Technology, 2023, 249, 2101-2111.	3.3	1
14	Digestion kinetics and molecular structural evolution during in vitro digestion of green banana (cv.) Tj ETQq1 1 ().784314 ı 6.2	gBT /Overlo
15	Effects of milling on texture and in vitro starch digestibility of oat rice. Food Chemistry: X, 2023, 19, 100783.	4.3	0
16	<i>In silico</i> study on antidiabetic and antioxidant activity of bioactive compounds in <i>Ficus carica</i> L. Journal of Biomolecular Structure and Dynamics, 0, , 1-17.	3.5	1
17	Computational characteristics of kinetic models for in vitro protein digestion: A review. Journal of Food Engineering, 2024, 360, 111690.	5.2	0
18	Investigation of Physicochemical Properties of Tapioca Starch–Methyl Myristate Complexes. Starch/Staerke, 2023, 75, .	2.1	0

#	Article	IF	CITATIONS
19	Exploring the relationship between nutritional properties and structure of chestnut resistant starch constructed by extrusion with starch-proanthocyanidins interactions. Carbohydrate Polymers, 2024, 324, 121535.	10.2	0
20	Functional Roles of N-Terminal Domains in Pullulanase from Human Gut <i>Lactobacillus acidophilus</i> . Journal of Agricultural and Food Chemistry, 2023, 71, 18898-18908.	5.2	0
22	Effects of heat variables on the starch content of cooked white rice: Searching for diabetes-friendly food. Bioactive Carbohydrates and Dietary Fibre, 2024, 31, 100395.	2.7	0
23	Triple coumarin-based 5-fluorouracil prodrugs, their synthesis, characterization, and release kinetics. Journal of Molecular Structure, 2024, 1301, 137415.	3.6	0
24	Effect of milling and defatting treatment on texture and digestion properties of oat rice. Food Chemistry: X, 2024, 21, 101135.	4.3	0
25	Bioaccessibility and associated concepts: Need for a consensus. Trends in Food Science and Technology, 2024, 145, 104373.	15.1	1
26	Macromolecular, thermal, and nonthermal technologies for reduction of glycemic index in food-A review. Food Chemistry, 2024, 445, 138742.	8.2	0
27	Influence of enzymatic extraction on the properties of corn starch. Food Bioscience, 2024, 58, 103775.	4.4	0
28	Effects of Kiwifruit Dietary Fibers on Pasting Properties and In Vitro Starch Digestibility of Wheat Starch. Nutrients, 2024, 16, 749.	4.1	0