Transistors based on two-dimensional materials for fut

Nature Electronics 4, 786-799 DOI: 10.1038/s41928-021-00670-1

Citation Report

#	Article	IF	CITATIONS
1	Six Decades of Research on 2D Materials: Progress, Dead Ends, and New Horizons. IEEE Journal of the Electron Devices Society, 2022, 10, 443-451.	2.1	4
2	The role of 2-Dimensional materials for electronic devices. Materials Science in Semiconductor Processing, 2022, 143, 106546.	4.0	18
3	Construction and physical properties of low-dimensional structures for nanoscale electronic devices. Physical Chemistry Chemical Physics, 2022, 24, 9082-9117.	2.8	3
4	Perspective of 2D Integrated Electronic Circuits: Scientific Pipe Dream or Disruptive Technology?. Advanced Materials, 2022, 34, e2201082.	21.0	24
5	2D materials for future heterogeneous electronics. Nature Communications, 2022, 13, 1392.	12.8	174
6	Mechanical, Elastic, and Adhesive Properties of Twoâ€Dimensional Materials: From Straining Techniques to Stateâ€ofâ€theâ€Art Local Probe Measurements. Advanced Materials Interfaces, 2022, 9, .	3.7	24
7	Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chemical Reviews, 2022, 122, 10319-10392.	47.7	89
8	Centimeter-Scale Synthesis of Monolayer WS ₂ Using Single-Zone Atmospheric-Pressure Chemical Vapor Deposition: A Detailed Study of Parametric Dependence, Growth Mechanism, and Photodetector Properties. Crystal Growth and Design, 2022, 22, 3206-3217.	3.0	15
9	Strain-Free Layered Semiconductors for 2D Transistors with On-State Current Density Exceeding 1.3 mA μm ^{–1} . Nano Letters, 2022, 22, 3770-3776.	9.1	17
10	Finding Suitable Gate Insulators for Reliable 2D FETs. , 2022, , .		5
11	Perovskite oxides as a 2D dielectric. Nature Electronics, 2022, 5, 199-200.	26.0	5
12	The Trend of 2D Transistors toward Integrated Circuits: Scaling Down and New Mechanisms. Advanced Materials, 2022, 34, e2201916.	21.0	37
13	Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelectronic Devices. Advanced Materials, 2022, 34, e2200734.	21.0	25
14	Recent Progress in 1D Contacts for 2Dâ€Materialâ€Based Devices. Advanced Materials, 2022, 34, e2202408.	21.0	13
15	Comprehensive understanding of intrinsic mobility and sub-10 nm quantum transportation in Ga ₂ SSe monolayer. Physical Chemistry Chemical Physics, 2022, 24, 15376-15388.	2.8	6
16	Circuitâ€Level Memory Technologies and Applications based on 2D Materials. Advanced Materials, 2022, 34, .	21.0	17
17	Substrate-dependence of monolayer MoS2 thermal conductivity and thermal boundary conductance. Journal of Applied Physics, 2022, 131, .	2.5	11
18	HiPIMS obtained carbon nano-coatings on copper foil and their thermal conductivity. Surface and Coatings Technology, 2022, 442, 128565.	4.8	2

	CITATION R	EPORT	
#	Article	IF	CITATIONS
19	Rail-to-Rail MoS ₂ Inverters. ACS Applied Electronic Materials, 2022, 4, 2636-2640.	4.3	2
20	Contacts in 2D. Nature Electronics, 2022, 5, 255-255.	26.0	4
21	Few-Layered MnAl ₂ S ₄ Dielectrics for High-Performance van der Waals Stacked Transistors. ACS Applied Materials & Interfaces, 2022, 14, 25920-25927.	8.0	8
22	Improving stability in two-dimensional transistors with amorphous gate oxides by Fermi-level tuning. Nature Electronics, 2022, 5, 356-366.	26.0	31
23	Enhancing the electrical stability of two-dimensional transistors. Nature Electronics, 0, , .	26.0	0
24	All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nature Communications, 2022, 13, .	12.8	47
25	Passâ€Transistor Logic Circuits Based on Waferâ€Scale 2D Semiconductors. Advanced Materials, 2022, 34, .	21.0	20
26	Electrical contact properties between Yb and few-layer WS ₂ . Applied Physics Letters, 2022, 120, 253505.	3.3	2
27	Application of 2D Materials in Hardware Security for Internetâ€ofâ€Things: Progress and Perspective. Small Structures, 2022, 3, .	12.0	9
28	van der Waals epitaxy of transition metal dichalcogenides <i>via</i> molecular beam epitaxy: looking back and moving forward. Materials Advances, 2022, 3, 6142-6156.	5.4	13
29	Investigation of MoS ₂ Based Dual Gate MOSFET as a H ₂ Sensor Considering Catalytic Metal Gate Approach. , 2022, , .		1
30	Mechanical reliability of monolayer MoS2 and WSe2. Matter, 2022, 5, 2975-2989.	10.0	5
31	Dual-metal precursors for the universal growth of non-layered 2D transition metal chalcogenides with ordered cation vacancies. Science Bulletin, 2022, 67, 1649-1658.	9.0	10
32	Heterogeneous Integration of Atomically Thin Semiconductors for Nonâ€von Neumann CMOS. Small, 2022, 18, .	10.0	20
33	Electrode Engineering in MoS ₂ MOSFET: Different Semiconductor/Metal Interfaces. Advanced Electronic Materials, 2022, 8, .	5.1	5
34	Engineering Grain Boundaries in Twoâ€Đimensional Electronic Materials. Advanced Materials, 2023, 35, .	21.0	6
35	Wafer-Scale Bi-Assisted Semi-Auto Dry Transfer and Fabrication of High-Performance Monolayer CVD WS ₂ Transistor. , 2022, , .		5
36	How to report and benchmark emerging field-effect transistors. Nature Electronics, 2022, 5, 416-423.	26.0	57

#	Article	IF	CITATIONS
37	Control of the Schottky barrier height in monolayer WS2 FETs using molecular doping. AIP Advances, 2022, 12, .	1.3	4
38	Selectively Modulated Photoresponse in Type″ Heterojunction for Ultrasensitive Selfâ€Powered Photodetectors. Laser and Photonics Reviews, 2022, 16, .	8.7	19
39	Natural p–n Junctions at the MoS ₂ Flake Edges. ACS Applied Materials & Interfaces, 2022, 14, 39039-39045.	8.0	2
40	Atomic Layer Deposition of Large-Area Polycrystalline Transition Metal Dichalcogenides from 100 °C through Control of Plasma Chemistry. Chemistry of Materials, 2022, 34, 7280-7292.	6.7	15
41	Fermi Level Depinning in Two-Dimensional Materials Using a Fluorinated Bilayer Graphene Barrier. ACS Applied Electronic Materials, 2022, 4, 3955-3961.	4.3	1
42	A Study on the Sub-5 nm Nano-Step Height Reference Materials Fabricated by Atomic Layer Deposition Combined with Wet Etching. Micromachines, 2022, 13, 1454.	2.9	2
44	Preparation, properties, and electronic applications of 2D Bi2O2Se. , 2023, 2, 100080.		8
45	Research progress of neuromorphic devices based on two-dimensional layered materials. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 218504.	0.5	1
46	Printing nanoparticle-based isotropic/anisotropic networks for directional electrical circuits. Nanoscale, 2022, 14, 14956-14961.	5.6	2
47	Vertical short-channel MoS ₂ field-effect transistors. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.5	0
48	Simulation of MoS ₂ stacked nanosheet field effect transistor. Journal of Semiconductors, 2022, 43, 082002.	3.7	5
49	Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nature Communications, 2022, 13, .	12.8	25
50	Van der Waals Epitaxial Trilayer MoS ₂ Crystals for Highâ€Speed Electronics. Advanced Functional Materials, 2022, 32, .	14.9	6
51	Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nature Communications, 2022, 13, .	12.8	24
52	Room-Temperature Oxygen Transport in Nanothin Bi _{<i>x</i>} O _{<i>y</i>} Se _{<i>z</i>} Enables Precision Modulation of 2D Materials. ACS Nano, 2022, 16, 13969-13981.	14.6	1
53	Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices. ACS Nanoscience Au, 2022, 2, 450-485.	4.8	27
54	A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nature Electronics, 2022, 5, 643-649.	26.0	49
55	Lowering Contact Resistances of Two-Dimensional Semiconductors by Memristive Forming. Nano Letters, 2022, 22, 7094-7103.	9.1	4

#	Article	IF	Citations
56	Producing ultrathin monocrystalline native oxide dielectrics for 2D transistors. Nature Electronics, 0, , .	26.0	0
57	Doping Engineering in the MoS ₂ /SnSe ₂ Heterostructure toward Highâ€Rejectionâ€Ratio Solarâ€Blind UV Photodetection. Advanced Materials, 2022, 34, .	21.0	23
58	Challenges of Wafer‧cale Integration of 2D Semiconductors for Highâ€Performance Transistor Circuits. Advanced Materials, 2022, 34, .	21.0	28
59	Digital Keying Enabled by Reconfigurable 2D Modulators. Advanced Materials, 2022, 34, .	21.0	2
60	Design and Investigation of Double Gate Field Effect Transistor Based H2 Gas Sensor Using Ultra-Thin Molybdenum Disulfide. Silicon, 2023, 15, 1193-1202.	3.3	5
61	Two dimensional semiconducting materials for ultimately scaled transistors. IScience, 2022, 25, 105160.	4.1	11
62	Atomistic Insight into the Epitaxial Growth Mechanism of Single-Crystal Two-Dimensional Transition-Metal Dichalcogenides on Au(111) Substrate. ACS Nano, 2022, 16, 17356-17364.	14.6	11
63	Surfactant-Assisted Isolation of Small-Diameter Boron-Nitride Nanotubes for Molding One-Dimensional van der Waals Heterostructures. ACS Nano, 2022, 16, 16636-16644.	14.6	9
64	Logic Locking of Integrated Circuits Enabled by Nanoscale MoS ₂ -Based Memtransistors. ACS Applied Nano Materials, 2022, 5, 14447-14455.	5.0	15
65	Strain-Enhanced Mobility of Monolayer MoS ₂ . Nano Letters, 2022, 22, 8052-8059.	9.1	34
66	Toward a Gas Sensor Interface Circuit—A Review. IEEE Sensors Journal, 2022, 22, 18253-18265.	4.7	7
67	Transistors and logic circuits enabled by 2D transition metal dichalcogenides: a state-of-the-art survey. Journal of Materials Chemistry C, 2022, 10, 17002-17026.	5.5	6
68	Gate Dielectrics Integration for 2D Electronics: Challenges, Advances, and Outlook. Advanced Materials, 2023, 35, .	21.0	12
69	A Monolithic Stochastic Computing Architecture for Energy Efficient Arithmetic. Advanced Materials, 2023, 35, .	21.0	7
70	Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks. Nature Communications, 2022, 13, .	12.8	19
71	Two-dimensional devices and integration towards the silicon lines. Nature Materials, 2022, 21, 1225-1239.	27.5	79
72	Glassâ€Assisted CVDâ€Grown Monolayer MoS ₂ : Effective Control of Size Distribution via Surface Patterning. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	2
73	Deep Learning-Based Layer Identification of 2D Nanomaterials. Coatings, 2022, 12, 1551.	2.6	1

#	Article	IF	CITATIONS
74	Application of Two-Dimensional Materials towards CMOS-Integrated Gas Sensors. Nanomaterials, 2022, 12, 3651.	4.1	14
75	Steep-slope transistors enabled with 2D quantum coupling stacks. Nanotechnology, 0, , .	2.6	0
76	Pâ€Type 2D Semiconductors for Future Electronics. Advanced Materials, 2023, 35, .	21.0	15
77	Schottky–Mott limit in graphene inserted 2D semiconductor–metal interfaces. Journal of Applied Physics, 2022, 132, 145301.	2.5	1
78	Direct Epitaxial Growth of InP Nanowires on MoS ₂ with Strong Nonlinear Optical Response. Chemistry of Materials, 2022, 34, 9055-9061.	6.7	5
79	Challenges for Nanoscale CMOS Logic Based on Two-Dimensional Materials. Nanomaterials, 2022, 12, 3548.	4.1	13
80	Poly(vinyl alcohol)-Assisted Exfoliation of van der Waals Materials. ACS Omega, 2022, 7, 38774-38781.	3.5	4
81	Two-dimensional materials based on negative differential transconductance and negative differential resistance for the application of multi-valued logic circuit: a review. Carbon Letters, 2023, 33, 59-76.	5.9	4
82	2D materials-assisted heterogeneous integration of semiconductor membranes toward functional devices. Journal of Applied Physics, 2022, 132, .	2.5	7
83	Structural, electronic and optical properties of monolayer InGeX ₃ (X = S, Se, Te) by first-principles calculations. Journal of Physics Condensed Matter, 2023, 35, 064002.	1.8	0
84	Thickness-Tunable Growth of Composition-Controllable Two-Dimensional Fe _{<i>x</i>} GeTe ₂ . Nano Letters, 2022, 22, 9477-9484.	9.1	5
85	Perspective on oxide-based three-terminal artificial synapses in physical neural networks. Applied Physics Letters, 2022, 121, .	3.3	4
86	Next-Generation Hybrid RF Front-End with MoS2-FET Supply Management Circuit, CNT-FET Amplifiers, and Graphene Thin-Film Antennas. Electronics (Switzerland), 2022, 11, 3708.	3.1	1
87	A Review of the Gate-All-Around Nanosheet FET Process Opportunities. Electronics (Switzerland), 2022, 11, 3589.	3.1	13
88	High-Performance Photodetectors Based on Graphene/MoSâ,, Heterojunction FETs. IEEE Sensors Journal, 2023, 23, 293-299.	4.7	5
89	Silicon-Impurity Defects in Calcium Fluoride: A First Principles Study. , 2022, , .		1
90	Strong Interlayer Interaction for Engineering Two-Dimensional Materials. Accounts of Materials Research, 2022, 3, 1220-1231.	11.7	5
91	Carbon nanotube transistors: Making electronics from molecules. Science, 2022, 378, 726-732.	12.6	29

#	Article	IF	CITATIONS
92	Probing Gate Dielectrics for Two-Dimensional Electronics at Atomistic Scale Using Transmission Electron Microscope. IEEE Transactions on Electron Devices, 2023, 70, 1499-1508.	3.0	4
93	DMP Based Nanomanipulation Robot Trajectory Learning and Planning for Nanowire/tube Assembly. , 2022, , .		0
94	Direct Multitier Synthesis of Two-Dimensional Semiconductor 2H-MoTe ₂ . ACS Applied Electronic Materials, 2022, 4, 5733-5738.	4.3	1
95	Pulsed Carrier Gas Assisted High-Quality Synthetic 3 <i>R</i> -Phase Sword-like MoS ₂ : A Versatile Optoelectronic Material. ACS Nano, 2022, 16, 21366-21376.	14.6	4
96	Tunable electrical contacts in two-dimensional silicon field-effect transistors: The significance of surface engineering. Applied Surface Science, 2023, 614, 156170.	6.1	2
97	ReS ₂ Nanosheet-Based Channels for Two-Dimensional Field Effect Transistors and Phototransistors with High Photoresponsivity. ACS Applied Nano Materials, 2023, 6, 512-522.	5.0	4
98	Hardware and Information Security Primitives Based on 2D Materials and Devices. Advanced Materials, 2023, 35, .	21.0	11
99	Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nature Electronics, 2022, 5, 849-858.	26.0	55
100	Two-dimensional optoelectronic devices for silicon photonic integration. Journal of Materiomics, 2023, 9, 551-567.	5.7	3
101	Graphene Frameworks for Nanodevices. Coatings, 2022, 12, 1936.	2.6	0
102	Investigations of Optical Functions and Optical Transitions of 2D Semiconductors by Spectroscopic Ellipsometry and DFT. Nanomaterials, 2023, 13, 196.	4.1	1
103	Recordâ€High Workâ€Function pâ€Type CuBiP ₂ Se ₆ Atomic Layers for Highâ€Photoresponse van der Waals Vertical Heterostructure Phototransistor. Advanced Materials, 2023, 35, .	21.0	6
104	Optical and Electrical Properties of Low-Dimensional Crystalline Materials: A Review. Crystals, 2023, 13, 108.	2.2	3
105	Efficient Ohmic Contact in Monolayer CrX ₂ N ₄ (X = C, Si) Based Fieldâ€Effect Transistors. Advanced Electronic Materials, 2023, 9, .	5.1	11
106	Approaching the quantum limit in two-dimensional semiconductor contacts. Nature, 2023, 613, 274-279.	27.8	100
107	Quantitative Analysis of Nonequilibrium Phonon Transport Near a Nanoscale Hotspot. Physical Review Applied, 2023, 19,	3.8	5
108	Modifying the Power and Performance of 2-Dimensional MoS ₂ Field Effect Transistors. Research, 2023, 6, .	5.7	9
109	Epitaxial Growth of High-Quality Monolayer MoS ₂ Single Crystals on Low-Symmetry Vicinal Au(101) Facets with Different Miller Indices. ACS Nano, 2023, 17, 312-321.	14.6	8

ARTICLE IF CITATIONS # Insect-Inspired, Spike-Based, in-Sensor, and Night-Time Collision Detector Based on Atomically Thin and 110 14.6 8 Light-Sensitive Memtransistors. ACS Nano, 2023, 17, 1068-1080. Computational Screening and Multiscale Simulation of Barrier-Free Contacts for 2D Semiconductor pFETs., 2022,,. Two-Dimensional Transition Metal Dichalcogenide Based Biosensors: From Fundamentals to 112 4.7 22 Healthcare Applications. Biosensors, 2023, 13, 169. Hardware Trojans based on two-dimensional memtransistors. Nanoscale Horizons, 2023, 8, 603-615. 8.0 Ab Initio Computational Screening and Performance Assessment of van der Waals and Semimetallic Contacts to Monolayer WSe₂P-Type Field-Effect Transistors. IEEE Transactions on 114 3.0 8 Electron Devices, 2023, 70, 2090-2097. Allâ€Transfer Electrode Interface Engineering Toward Harshâ€Environmentâ€Resistant MoS₂ Fieldâ€Effect Transistors. Advanced Materials, 2023, 35, . 21.0 Di-Metal Chalcogenides: A New Family of Promising 2-D Semiconductors for High-Performance 116 3.0 1 Transistors. IEEE Transactions on Electron Devices, 2023, 70, 2445-2452. Discovery of a metastable van der Waals semiconductor <i>via</i> polymorphic crystallization of an amorphous film. Materials Horizons, 2023, 10, 2254-2261. å...‰è®jç®—çš"åʿ展è¶‹åŠ;:æ¨;拟æ^–æ•°å—?. Zhongguo Jiguang/Chinese Journal of Lasers, 2023, 50, 0500001. 118 0 Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices. Science Advances, 2023, 9, . Impedance modeling for excluding contact resistance from cross-plane electronic conductivity 120 2.5 1 measurement of anisotropic two-dimensional Ti3C2Tx MXenes. Journal of Applied Physics, 2023, 133, . Liquid-Metal-Printed Ultrathin Oxides for Atomically Smooth 2D Material Heterostructures. ACS 14.6 Nano, 2023, 17, 7929-7939. Bi2SeO5: A single-crystalline van der Waals dielectric beyond h-BN. Science China Chemistry, 0, , . 122 8.2 0 High Number of Transport Modes: A Requirement for Contact Resistance Reduction to Atomically Thin Semiconductors. IEEE Transactions on Electron Devices, 2023, 70, 1829-1834. Ultrashort channel chemical vapor deposited bilayer WS2 field-effect transistors. Applied Physics 124 11.34 Reviews, 2023, 10, . Influences of point defects on electron transport of two-dimensional gep semiconductor device. Nanotechnology, 2023, 34, 185204. Area-Selective Atomic Layer Deposition of SnS₂ Nanosheets for Applications of 126 5.01 Back-End-of-Line-Compatible Transistors. ACS Applied Nano Materials, 2023, 6, 1678-1685. Thickness Determination of Ultrathin 2D Materials Empowered by Machine Learning Algorithms. Laser and Photonics Reviews, 2023, 17, .

#	Article	IF	CITATIONS
128	Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides. Nature Nanotechnology, 2023, 18, 448-455.	31.5	15
129	How Do Quantum Effects Influence the Capacitance and Carrier Density of Monolayer MoS ₂ Transistors?. Nano Letters, 2023, 23, 1666-1672.	9.1	1
130	Two-Dimensional Dielectrics for Future Electronics: Hexagonal Boron Nitride, Oxyhalides, Transition-Metal Nitride Halides, and Beyond. ACS Applied Electronic Materials, 2023, 5, 623-631.	4.3	8
131	Robust electronic properties of monolayer BeO against molecule adsorption. Physical Chemistry Chemical Physics, 2023, 25, 8853-8860.	2.8	0
132	The insight and evaluation of ultra-scaled sub-1Ânm gate length transistors. Microelectronic Engineering, 2023, 273, 111963.	2.4	2
133	Toward Perfect Surfaces of Transition Metal Dichalcogenides with Ion Bombardment and Annealing Treatment. ACS Applied Materials & Interfaces, 2023, 15, 16153-16161.	8.0	1
135	CMOS-compatible manufacturability of sub-15 nm Si/SiO ₂ /Si nanopillars containing single Si nanodots for single electron transistor applications. Semiconductor Science and Technology, 2023, 38, 055011.	2.0	0
136	Two-dimensional (2D) α-In2Se3/Ta2NiSe5 heterojunction photodetector with high sensitivity and fast response in a wide spectral range. Materials and Design, 2023, 227, 111799.	7.0	7
137	äºŒç»´ææ–™èŒfå¾·åŽå™¨ä»¶ä,界é¢çš"é€åº"电åæ~¾å¾®èj¨å¾• Chinese Science Bulletin, 2023, , .	0.7	1
138	Single-crystalline van der Waals layered dielectric with high dielectric constant. Nature Materials, 2023, 22, 832-837.	27.5	26
139	Role of Chalcogen Defect Introducing Metal-Induced Gap States and Its Implications for Metal–TMDs' Interface Chemistry. ACS Omega, 2023, 8, 10176-10184.	3.5	4
140	Analysis of Physical and Electrical Properties of NiTe2 Single Crystal Grown via Molten Salt Flux Method. Electronic Materials Letters, 2023, 19, 452-461.	2.2	1
141	Diverse modes regulated photoresponse and high-resolution imaging based on van der Waals semimetal PtTe ₂ /semiconductor MoTe ₂ junctions. Journal of Materials Chemistry C, 2023, 11, 5045-5055.	5.5	5
142	Performance Improvement of MoS ₂ -Based MOSFETs With Graphene Quantum Dots Pretreatment Technology. IEEE Transactions on Electron Devices, 2023, 70, 2581-2587.	3.0	0
143	Air‣ensitive HfSe ₂ â€Based Temperature Indicator for 2D Electronic Devices. Physica Status Solidi - Rapid Research Letters, 0, , .	2.4	0
144	2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature, 2023, 616, 66-72.	27.8	42
145	Charge‣tateâ€Enhanced Ion Sputtering of Metallic Gold Nanoislands. Small, 0, , 2207263.	10.0	1
146	Ultrathin 2D Violet Phosphorus Nanosheets: Facile Liquidâ€Phase Exfoliation, Characterization, and	14.9	10

#	Article	IF	CITATIONS
147	Ferroelectric Polarizationâ€Enhanced Performance of Flexible CuInP ₂ S ₆ Piezoelectric Nanogenerator for Biomechanical Energy Harvesting and Voice Recognition Applications. Advanced Functional Materials, 2023, 33, .	14.9	12
148	Geometric, Electronic, and Transport Predictions on Two-Dimensional Semiconducting Silicon with Kagome Lattice: Implications for Nanoscale Field-Effect Transistor Applications. ACS Applied Nano Materials, 2023, 6, 6849-6857.	5.0	1
149	Two-dimensional transition metal dichalcogenides for post-silicon electronics. , 2023, , 20230015.		2
150	Nonvolatile Control of Metal-Insulator Transition in VO2 and Its Applications. Ceramist, 2023, 26, 3-16.	0.1	0
151	γ-Ray-Induced Surface-Charge Redistribution and Change of the Surface Morphology in Monolayer WS ₂ . ACS Applied Nano Materials, 0, , .	5.0	0
152	Uncovering the Different Components of Contact Resistance to Atomically Thin Semiconductors. Advanced Electronic Materials, 2023, 9, .	5.1	3
153	The Schottky barrier transistor in emerging electronic devices. Nanotechnology, 2023, 34, 352002.	2.6	3
154	Enhanced Electrodynamic Gating in Two-Dimensional Transistors Using Ferroelectric Capping. Nano Express, 0, , .	2.4	0
155	二维å,¨èƒ½ææ−™ä,çš,,精细结æž,,ä,Žç‰ ©æ€§. Chinese Science Bulletin, 2023, , .	0.7	1
156	Two-Dimensional Layered Materials Meet Perovskite Oxides: A Combination for High-Performance Electronic Devices. ACS Nano, 2023, 17, 9748-9762.	14.6	4
157	Two-dimensional materials-based integrated hardware. Science China Information Sciences, 2023, 66, .	4.3	2
158	Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS Nano, 2023, 17, 9870-9905.	14.6	8
159	Highly stable integration of graphene Hall sensors on a microfluidic platform for magnetic sensing in whole blood. Microsystems and Nanoengineering, 2023, 9, .	7.0	0
160	An all-two-dimensional Fe-FET retinomorphic sensor based on the novel gate dielectric In ₂ Se _{3â^'<i>x</i>} O _{<i>x</i>} . Nanoscale, 2023, 15, 10705-10714.	5.6	3
161	Enhanced Layer-Breathing Modes in van der Waals Heterostructures Based on Twisted Bilayer Graphene. ACS Nano, 2023, 17, 10142-10151. Unraveling the interlayer and intralayer coupling in two-dimensional layered MoSymplimath	14.6	1
162	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si13.svg" display="inline" id="d1e653"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> by X-ray absorption spectroscopy and ab initio molecular dynamics simulations. Materials Today Communications. 2023. 35.	1.9	0
163	106359. Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration. Advanced Materials, 2023, 35, .	21.0	5
164	On the Working Mechanisms of Moleculesâ€Based Van der Waals Dielectrics. Small, 2023, 19, .	10.0	1

		CITATION REPORT		
#	Article		IF	CITATIONS
165	Emerging Memtransistors for Neuromorphic System Applications: A Review. Sensors, 2023	3, 23, 5413.	3.8	1
167	Materials Quest for Advanced Interconnect Metallization in Integrated Circuits. Advanced 2023, 10, .	Science,	11.2	5
168	Enhancing Memory Window Efficiency of Ferroelectric Transistor for Neuromorphic Comp Twoâ€Dimensional Materials Integration. Advanced Functional Materials, 2023, 33, .	uting via	14.9	8
169	High Electric Field Transport Characteristics in Field-Effect Transistors Based on Monolayer/Few-Layer MoS\$_{ext{2}}\$. IEEE Transactions on Electron Devices, 2023, , 1-9.		3.0	1
170	Hysteresis and Photoconductivity of Few‣ayer ReSe ₂ Field Effect Transisto Air Pressure. Advanced Electronic Materials, 2023, 9, .	rs Enhanced by	5.1	15
171	A family of two-dimensional semiconductors with transition metal Kagome lattice, large po factor and ultralow lattice thermal conductivity. Applied Surface Science, 2023, 636, 1578	ower 17.	6.1	0
172	Superior High Transistor's Effective Mobility of 325 cm2/V-s by 5 nm Quasi-Two-Dimen Nanomaterials, 2023, 13, 1892.	isional SnON nFET.	4.1	1
173	Cascaded Logic Gates Based on High-Performance Ambipolar Dual-Gate WSe _{2Transistors. ACS Nano, 2023, 17, 12798-12808.}	> Thin Film	14.6	2
174	Engineering inorganic interfaces using molecular nanolayers. Applied Physics Letters, 2023	s, 122, .	3.3	2
175	A perspective on the doping of transition metal dichalcogenides for ultra-scaled transistors Challenges and opportunities. Applied Physics Letters, 2023, 122, .); ;	3.3	1
176	Direct Spectroscopic Observation of Cross-Plane Heat Transfer in a Two-Dimensional Van c Heterostructure. Journal of Physical Chemistry C, 2023, 127, 9121-9128.	ler Waals	3.1	3
177	Full two-dimensional ambipolar CFET-like architecture for switchable logic circuits. Journal D: Applied Physics, 2023, 56, 355106.	Physics	2.8	2
178	Aptamerâ€functionalized fieldâ€effect transistor biosensors for disease diagnosis and envi monitoring. Exploration, 2023, 3, .	ironmental	11.0	6
179	Inkjet-printed WS2 and MoSe2 transistors with edge-FET architecture and near-vertical ele transport. , 2022, , .	ctronic		0
180	Radiation Resilient Two-Dimensional Electronics. ACS Applied Materials & Interfaces, 2 26946-26959.	2023, 15,	8.0	2
181	Super low contact resistance in monolayer MoS2 transistors. Science China: Physics, Mech Astronomy, 2023, 66, .	nanics and	5.1	0
182	Wafer-scale engineering of two-dimensional transition metal dichalcogenides. , 2023, 2, 10	00057.		2
183	Modeling 2D Material-Based Nanoelectronic Devices in the Presence of Defects. IEEE Nano Magazine, 2023, 17, 15-25.	technology	1.3	0

#	Article	IF	CITATIONS
184	Strain-engineered thermophysical properties ranging from band-insulating to topological insulating phases in l²-antimonene. Nanoscale, 0, , .	5.6	0
185	Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Science Bulletin, 2023, 68, 1514-1521.	9.0	11
186	Controlled Synthesis and Accurate Doping of Waferâ€ 5 cale 2D Semiconducting Transition Metal Dichalcogenides. Advanced Materials, 0, , .	21.0	3
187	Exceptionally high hole mobilities in monolayer group-IV monochalcogenides GeTe and SnTe. Applied Physics Letters, 2023, 123, .	3.3	1
188	Pieces of 2D materials: The next step to crystallize the polycrystalline domains. Matter, 2023, 6, 2136-2152.	10.0	0
189	Ab-initio simulation of dissipative transport in tunnel devices based on heterostructures of 2D materials. Journal of Computational Electronics, 2023, 22, 1257-1263.	2.5	0
190	Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. Small Methods, 2023, 7, .	8.6	1
191	Effect of the spinâ \in "orbit interaction in nanotubes. Journal of Applied Physics, 2023, 134, .	2.5	1
192	Wafer‣cale Epitaxial Growth of Twoâ€dimensional Organic Semiconductor Single Crystals toward Highâ€Performance Transistors. Advanced Materials, 2023, 35, .	21.0	3
193	Progress in the Synthesis and Application of Tellurium Nanomaterials. Nanomaterials, 2023, 13, 2057.	4.1	2
194	A Purcell-enabled monolayer semiconductor free-space optical modulator. Nature Photonics, 2023, 17, 897-903.	31.4	2
196	Mechanistic Understanding of the Interfacial Properties of Metal-PtSe2 Contacts. Nanoscale, 0, , .	5.6	1
197	Vertically grown ultrathin Bi2SiO5 as high- $\hat{l}^{\rm e}$ single-crystalline gate dielectric. Nature Communications, 2023, 14, .	12.8	5
198	Quantum Transport Simulations of a Proposed Logic-In-Memory Device Based on a Bipolar Magnetic Semiconductor. Physical Review Applied, 2023, 20, .	3.8	1
199	2D Ferroic Materials for Nonvolatile Memory Applications. Advanced Materials, 0, , .	21.0	3
200	FinFETs based on layered 2D semiconductors. Science China Materials, 0, , .	6.3	0
201	Observation of Rich Defect Dynamics in Monolayer MoS ₂ . ACS Nano, 2023, 17, 14449-14460.	14.6	2
202	Application of Graphene-Combined Rare-Earth Oxide (Sm ₂ O ₃) in Solar-Blind Ultraviolet Photodetection. ACS Applied Materials & Interfaces, 2023, 15, 37649-37657.	8.0	1

#	Article	IF	CITATIONS
203	Atomicâ€scale interface engineering for twoâ€dimensional materials based fieldâ€effect transistors. SmartMat, 0, , .	10.7	4
204	Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nature Nanotechnology, 2023, 18, 1439-1447.	31.5	10
205	Guest Editorial: Dimensional Scaling of Material Functional Properties to Meet Back-End-of-Line (BEOL) Challenges. Applied Physics Letters, 2023, 123, .	3.3	1
206	Entropic Trust Region for Densest Crystallographic Symmetry Group Packings. SIAM Journal of Scientific Computing, 2023, 45, B493-B522.	2.8	1
207	on-State Current Paths and off-State Leakage in Nanoscale Silicene Field-Effect Transistors. Physical Review Applied, 2023, 20, .	3.8	1
208	Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nature Materials, 2023, 22, 1078-1084.	27.5	23
209	Nanomechanoelectrical approach to highly sensitive and specific label-free DNA detection. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
210	Length dependent thermal conductivity of silicon and copper nanowire: a molecular dynamics study. Molecular Crystals and Liquid Crystals, 0, , 1-11.	0.9	0
211	Performance limits of all-wrapped monolayer MoS2 transistors. Science Bulletin, 2023, , .	9.0	0
212	Tuning the magnetic properties of nonmagnetic monolayer Mo2C by doping and adsorption. Physica B: Condensed Matter, 2023, 667, 415219.	2.7	0
213	Recent advances on liquid intercalation and exfoliation of transition metal dichalcogenides: From fundamentals to applications. Nano Research, 2024, 17, 2088-2110.	10.4	2
214	Realization of Fermi level unpinning and high-quality p-type contacts for 2D β-TeO2 by a built-in intercalation. Materials Today Nano, 2023, 24, 100392.	4.6	1
215	Low-Energy He ⁺ Ions Induced Functionalization of the MoS ₂ Surface for ALD HfO ₂ Growth Enhancement. Journal of Physical Chemistry C, 2023, 127, 17014-17020.	3.1	0
216	åæœ‰äºš2-nm沟éťé•į度的二维åž,ç›´p-n结二æžç®¡. Science China Materials, 2023, 66, 3637-3643.	6.3	3
217	Effect of Twist Angle on Interfacial Thermal Transport in Two-Dimensional Bilayers. Nano Letters, 2023, 23, 7790-7796.	9.1	1
218	Electron holographic mapping of structural reconstruction at mono- and bilayer steps of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi><mml:mtext>â^'</mml:mtext><mm Physical Review Research, 2023, 5, .</mm </mml:math 	l:n3i.6BN </td <td>mīai:mi></td>	m īai: mi>
219	Bridging Borophene and Metal Surfaces: Structural, Electronic, and Electron Transport Properties. Journal of Physical Chemistry C, 2023, 127, 17556-17566.	3.1	1
220	Optimizing 2D-metal contact in layered Tin-selenide via native oxide modulation. Nano Research, 0, , .	10.4	0

#	Article	IF	CITATIONS
221	Toward Edge Engineering of Two-Dimensional Layered Transition-Metal Dichalcogenides by Chemical Vapor Deposition. ACS Nano, 2023, 17, 16348-16368.	14.6	1
222	2D-materials-based optoelectronic synapses for neuromorphic applications. EScience, 2023, 3, 100178.	41.6	1
223	Two-Step Thermal Transformation of Multilayer Graphene Using Polymeric Carbon Source Assisted by Physical Vapor Deposited Copper. Materials, 2023, 16, 5603.	2.9	0
224	Small twist, big miracle—recent progress in the fabrication of twisted 2D materials. Journal of Materials Chemistry C, 0, , .	5.5	0
225	Twoâ€Dimensional Semiconductors: From Device Processing to Circuit Integration. Advanced Functional Materials, 2023, 33, .	14.9	2
226	Large-Scale Complementary Logic Circuit Enabled by Al ₂ O ₃ Passivation-Induced Carrier Polarity Modulation in Tungsten Diselenide. ACS Applied Materials & Interfaces, 2023, 15, 45116-45127.	8.0	2
227	A bio-inspired visuotactile neuron for multisensory integration. Nature Communications, 2023, 14, .	12.8	7
228	Exfoliation of 2D Metalâ€Organic Frameworks: toward Advanced Scalable Materials for Optical Sensing. Small Methods, 2023, 7, .	8.6	5
229	Optimization of dielectric phenomenon in 0.8[(1-x)SrCoO2.29 + xCr2FeO4] + 0.2PZT tri-phase composites. Ceramics International, 2023, 49, 30999-31005.	4.8	0
230	Complete logic operations in an ambipolar tellurium homojunction via non-invasive scanning probe lithography. , 2023, 1, 100069.		1
231	Landauerâ€QFLPS Model for Mixed Schottkyâ€Ohmic Contact Twoâ€Dimensional Transistors. Advanced Science, 2023, 10, .	11.2	0
232	Twist-Dependent Anisotropic Thermal Conductivity in Homogeneous MoS2 Stacks. International Journal of Heat and Mass Transfer, 2023, 217, 124662.	4.8	1
233	Ferroelectric-Gated All 2D Field-Effect Transistors with Sub-60 mV/dec Subthreshold Swing. Journal of Physical Chemistry Letters, 2023, 14, 6784-6791.	4.6	1
234	Process integration and future outlook of 2D transistors. Nature Communications, 2023, 14, .	12.8	3
235	Thinâ€Film Transistors for Integrated Circuits: Fundamentals and Recent Progress. Advanced Functional Materials, 2024, 34, .	14.9	3
236	Prediction of nonlayered oxide monolayers as flexible high-l̂º dielectrics with negative Poisson's ratios. Nature Communications, 2023, 14, .	12.8	0
237	Strong correlations in two-dimensional transition metal dichalcogenides. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	5.1	1
238	Deciphering Vacancy Defect Evolution of 2D MoS ₂ for Reliable Transistors. ACS Applied Materials & Materials & Moterials & Materials & Mater	8.0	4

	CITATION	CITATION REPORT	
#	Article	IF	Citations
239	Toward High-Performance p-Type Two-Dimensional Field Effect Transistors: Contact Engineering, Scaling, and Doping. ACS Nano, 2023, 17, 19709-19723.	14.6	2
240	Plasma-induced energy band evolution for two-dimensional heterogeneous anti-ambipolar transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2023, 41, .	1.2	0
241	The Role of Interface Trap States in MoS ₂ -FET Performance: A Full Quantum Mechanical Simulation Study. IEEE Transactions on Electron Devices, 2023, 70, 4913-4920.	3.0	0
242	Detecting, Distinguishing, and Spatiotemporally Tracking Photogenerated Charge and Heat at the Nanoscale. ACS Nano, 2023, 17, 19011-19021.	14.6	1
243	Polarity tunable complementary logic circuits. Science China Information Sciences, 2023, 66, .	4.3	0
245	Two-dimensional α-In2Se3 field effect transistor for wide-band photodetection and non-volatile memory. Journal of Physics and Chemistry of Solids, 2023, 183, 111653.	4.0	1
246	Enhancing the Carrier Transport in Monolayer MoS ₂ through Interlayer Coupling with 2D Covalent Organic Frameworks. Advanced Materials, 2024, 36, .	21.0	2
247	Asymmetric Schottky contacts induced via localized ultrafast laser irradiation for ultrasensitive, self-powered, 2D photodetectors. Nano Energy, 2023, 117, 108891.	16.0	1
248	Boron and Nitrogen Isotope Effects on Hexagonal Boron Nitride Properties. Advanced Materials, 2024, 36, .	21.0	2
249	Emerging Hardware Technologies and 3D System Integration for Ubiquitous Machine Intelligence. , 2023, , .		0
250	Impact of CVD chemistry on band alignment at the MoS2/SiO2 interface. Solid-State Electronics, 2023, 209, 108782.	1.4	2
251	Sub-9 nm high-performance and low-power transistors based on an in-plane NbSe ₂ /MoSe ₂ /NbSe ₂ heterojunction. Nanoscale, 0, , .	5.6	0
252	Significant Suppression of Dark Current in a Surface Acoustic Wave Assisted MoS ₂ Photodetector. Advanced Electronic Materials, 2023, 9, .	5.1	0
253	Type-III Van Der Waals Stacking Induced Ohmic Contacts: A Contact Strategy for 2-D Complementary Electronics. IEEE Transactions on Electron Devices, 2023, 70, 6072-6077.	3.0	0
254	Sublimation-based wafer-scale monolayer WS ₂ formation <i>via</i> self-limited thinning of few-layer WS ₂ . Nanoscale Horizons, 2023, 9, 132-142.	8.0	1
255	Two-dimensional semiconductors integrated with hybrid dielectrics for post-moore electronics. National Science Review, 0, , .	9.5	0
256	Multi-channel Ka-band Receiver using LTCC-based Multichip Module Package. , 2023, , .		0

257	Anisotropic infrared absorption in monolayer black phosphorus metasurface with/without local oxidative effect. Optical Materials, 2023, 145, 114457.	3.6	1
-----	--	-----	---

#	Article	IF	CITATIONS
258	Highly Reconfigurable Logicâ€Inâ€Memory Operations in Tunable Gaussian Transistors for Multifunctional Image Processing. Advanced Functional Materials, 0, , .	14.9	0
259	Uniform, Strainâ€Free, Largeâ€Scale Graphene and hâ€BN Monolayers Enabled by Hydrogel Substrates. Small, 2024, 20, .	10.0	Ο
260	Vertical 1T'â€WTe ₂ /WS ₂ Schottkyâ€Barrier Phototransistor with Polarityâ€&witching Behavior. Advanced Electronic Materials, 2024, 10, .	5.1	1
261	Toward Sustainable Ultrawide Bandgap van der Waals Materials: An ab initio Screening Effort. Advanced Functional Materials, 0, , .	14.9	2
262	Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nature Electronics, 2023, 6, 879-887.	26.0	5
263	Silicon-processes-compatible contact engineering for two-dimensional materials integrated circuits. Nano Research, 2023, 16, 12471-12490.	10.4	1
264	SRC-led materials research: 40 years ago, and now. MRS Advances, 2023, 8, 751-762.	0.9	0
265	Regulating the conductance of tungsten diselenide by oxygen plasma and improving its electrical stability by encapsulation. Nano Research, 0, , .	10.4	0
266	Biodegradable albumen dielectrics for high-mobility MoS2 phototransistors. Npj 2D Materials and Applications, 2023, 7, .	7.9	0
267	Two-dimensional semiconductors based field-effect transistors: review of major milestones and challenges. Frontiers in Electronics, 0, 4, .	3.2	0
268	The Structure and Optoelectronic Properties of Few-layer Phosphorus-implanted MoS ₂ ., 2023,,.		0
269	A work-function-tunable 2D alloy for electrical contacts. Nature Electronics, 2023, 6, 795-796.	26.0	0
270	Phase decomposition in the Ni–InGaAs system at high annealing temperature. Journal of Materials Science, 2023, 58, 15738-15747.	3.7	0
271	Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nature Materials, 2023, 22, 1470-1477.	27.5	2
272	Controllable Carrier Doping in Two-Dimensional Materials Using Electron-Beam Irradiation and Scalable Oxide Dielectrics. Micromachines, 2023, 14, 2125.	2.9	1
273	High-Performance WSe ₂ Top-Gate Devices with Strong Spacer Doping. Nano Letters, 2023, 23, 10236-10242.	9.1	1
274	Low-Thermal-Budget Ferroelectric Field-Effect Transistors Based on CuInP ₂ S ₆ and InZnO. ACS Applied Materials & Interfaces, 2023, 15, 53671-53677.	8.0	0
275	Reconfigurable heterojunction transistors for off-grid medical devices. Nature Electronics, 2023, 6, 799-800.	26.0	0

#	Article	IF	CITATIONS
276	2D Material-Based MVS Model and Circuit Performance Analysis for GeH Field-Effect Transistors. IEEE Nanotechnology Magazine, 2023, 22, 792-799.	2.0	0
277	Charge doping and electric field tunable ferromagnetism and Curie temperature of the MnS ₂ monolayer. Physical Chemistry Chemical Physics, 0, , .	2.8	Ο
278	High-Performance Complementary Circuits from Two-Dimensional MoTe ₂ . Nano Letters, 2023, 23, 10939-10945.	9.1	1
279	Tunable all-optical microwave logic gates based on nonreciprocal topologically protected edge modes. Optics Express, 2023, 31, 42388.	3.4	0
280	Characterization of Molybdenum (IV) Sulfide Prepared by Chemical Vapor Deposition Using Differential Reflectance Spectroscopy. Analytical Letters, 0, , 1-11.	1.8	0
281	Designing CMOS compatible efficient ohmic contacts to WSi ₂ N ₄ <i>via</i> surface-engineered Mo ₂ B monolayer electrodes. Journal of Materials Chemistry C, 2024, 12, 648-654.	5.5	1
282	Ultrathin Van der Waals Lanthanum Oxychloride Dielectric for 2D Fieldâ€Effect Transistors. Advanced Materials, 0, , .	21.0	0
283	Ceramic-Packaged Multichip Front-End Module for 5G Millimeter Wave Applications. , 2023, , .		0
284	Recent Advances on Pulsed Laser Deposition of Largeâ \in Scale Thin Films. Small Methods, O, , .	8.6	1
285	Unified Charge Control Model for Back-Gated 2-D Field Effect Transistors. IEEE Transactions on Electron Devices, 2024, 71, 884-889.	3.0	0
286	Optoelectronic properties of two-dimensional α-In ₂ Se ₃ Field Effect Transistor. , 2023, , .		0
287	Lowâ€Temperature Vaporâ€Phase Growth of 2D Metal Chalcogenides. Small, 0, , .	10.0	0
288	What Are 2D Materials Good For?. , 2023, , .		0
289	Mechanisms of temperature-dependent thermal transport in amorphous silica from machine-learning molecular dynamics. Physical Review B, 2023, 108, .	3.2	2
290	Recent progress in plasma modification of 2D Metal chalcogenides for electronic devices and optoelectronic devices. Nanoscale, 0, , .	5.6	0
291	SnS ₂ /MoS ₂ van der Waals Heterostructure Photodetector with Ultrahigh Responsivity Realized by a Photogating Effect. ACS Applied Materials & Interfaces, 0, , .	8.0	1
292	Efficiency limit of transition metal dichalcogenide solar cells. Communications Physics, 2023, 6, .	5.3	0
293	Heteronanostructured Field-Effect Transistors for Enhancing Entropy and Parameter Space in Electrical Unclonable Primitives. ACS Nano, 0, , .	14.6	1

r

#	ARTICLE Manalayar (mml;math ymlag;mml-"http://www.u.2.org/1008/Math/Math/MI" display="iplina"	IF	CITATIONS
294	overflow="scroll"> <mml:msub><mml:mi>WSi</mml:mi><ml:mi>22</ml:mi></mml:msub> <mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub>	:mrow>< 1>3.8	mml:mrow> 1
295	Layer-Controlled Growth of Single-Crystalline 2D Bi ₂ O ₂ Se Film Driven by Interfacial Reconstruction. ACS Nano, 2024, 18, 819-828.	14.6	0
296	Three-dimensional integration of two-dimensional field-effect transistors. Nature, 2024, 625, 276-281.	27.8	4
297	Epitaxial Growth of 2D Binary Phosphides. Small Methods, 0, , .	8.6	0
298	Active-Matrix Array Based on Thin-Film Transistors Using Emerging Materials for Application: From Lab to Industry. Electronics (Switzerland), 2024, 13, 241.	3.1	0
299	The Integration of Two-Dimensional Materials and Ferroelectrics for Device Applications. ACS Nano, 2024, 18, 1778-1819.	14.6	1
300	High photoresponse detectors based on Yb-doped monolayer WS2 nanosheets. Applied Surface Science, 2024, 652, 159287.	6.1	0
301	Two-dimensional semiconductor transistors and integrated circuits for advanced technology nodes. National Science Review, 2024, 11, .	9.5	1
302	High- <i>T</i> _{<i>c</i>} Ferromagnetic Semiconductor in Thinned 3D Ising Ferromagnetic Metal Fe ₃ GaTe ₂ . Nano Letters, 2024, 24, 993-1000.	9.1	0
303	Surface sulfurization of liner and ruthenium metallization to reduce interface scattering for Low-Resistance interconnect. Applied Surface Science, 2024, 652, 159318.	6.1	0
304	The coexistence of high piezoelectricity and superior optical absorption in Janus Bi ₂ X ₂ Y (X = Te, Se; Y = Te, Se, S) monolayers. Physical Chemistry Chemical Physics, 2024, 26, 4629-4642.	2.8	0
305	Two-Dimensional Ferroelectrics: A Review on Applications and Devices. Solids, 2024, 5, 45-65.	2.4	0
306	Low-temperature synthesis of uniform monolayer molybdenum disulfide films. Applied Physics Letters, 2024, 124, .	3.3	0
307	Interfacial Properties of Anisotropic Monolayer SiAs Transistors. Nanomaterials, 2024, 14, 238.	4.1	0
308	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>N</mml:mi></mml:mrow> - and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>P</mml:mi></mml:mrow>-type symmetric scaling behavior of monolayer hydrogenated boron arsenide transistors. Physical</mml:math 	nath> 2.4 nath>	0
309	Review Materials, 2024, 8, . Nonconventional Strain Engineering for Uniform Biaxial Tensile Strain in MoS ₂ Thin Film Transistors. ACS Nano, 2024, 18, 4414-4423.	14.6	0
310	Drain-Induced Multifunctional Ambipolar Electronics Based on Junctionless MoS ₂ . ACS Nano, 2024, 18, 4320-4328.	14.6	0
311	Enhancing Metallicity and Basal Plane Reactivity of 2D Materials via Self-Intercalation. ACS Nano, 2024, 18, 4746-4755.	14.6	1

#	ARTICLE	IF	Citations
312	Melting-free integrated photonic memory with layered polymorphs. Nanophotonics, 2024, .	6.0	0
313	Van der Waals Heterostructure Engineering for Ultralow-Resistance Contact in 2D Semiconductor P-Type Transistors. Journal of Electronic Materials, 2024, 53, 2150-2161.	2.2	0
314	Process implications on the stability and reliability of 300 mm FAB MoS2 field-effect transistors. Npj 2D Materials and Applications, 2024, 8, .	7.9	0
315	Effect of growth temperature on the microstructure and properties of epitaxial MoS2 monolayers grown by metalorganic chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2024, 42, .	2.1	0
316	Molecularly Reconfigurable Neuroplasticity of Layered Artificial Synapse Electronics. Advanced Functional Materials, 0, , .	14.9	0
317	Perspectives on interfacial thermal resistance of 2D materials: Raman characterization and underlying physics. , 2024, 2, .		0
318	Low-power MoS2 metal–semiconductor field effect transistors (MESFETs) based on standard metal–semiconductor contact. Applied Physics Letters, 2024, 124, .	3.3	0
319	Direct Transfer of Monolayer MoS ₂ Device Arrays for Potential Applications in Flexible Electronics. ACS Applied Nano Materials, 2024, 7, 4796-4804.	5.0	0
320	Intrinsic Defectâ€Driven Synergistic Synaptic Heterostructures for Gateâ€Free Neuromorphic Phototransistors. Advanced Materials, 2024, 36, .	21.0	0
321	Wide-field Fourier magnetic imaging with electron spins in diamond. Npj Quantum Information, 2024, 10, .	6.7	0
322	Plasma and Gasâ€based Semiconductor Technologies for 2D Materials with Computational Simulation & Electronic Applications. Advanced Electronic Materials, 0, , .	5.1	0
323	Dual-Limit Growth of Large-Area Monolayer Transition Metal Dichalcogenides. ACS Nano, 2024, 18, 7391-7401.	14.6	0
324	WS2 lateral p–n homojunction toward a sensitive self-driven photodetector by water treatment. Applied Physics Letters, 2024, 124, .	3.3	0
325	Two-dimensional perovskite oxide as a photoactive high- \hat{I}^{2} gate dielectric. Nature Electronics, 0, , .	26.0	0
326	Ultralow Contact Resistance and Efficient Ohmic Contacts in MoGe ₂ P ₄ –Metal Contacts. ACS Applied Electronic Materials, 2024, 6, 2019-2025.	4.3	0
327	Carbon-based synergistic catalysis with transition metal dichalcogenides for electrocatalytic oxygen evolution/reduction. Materials Chemistry and Physics, 2024, 317, 129163.	4.0	0
328	Investigating the impact of growth temperature on the direct integration of pure phase 2H-MoTe2 with Si(1 1 1) using molecular beam epitaxy. Applied Surface Science, 2024, 659, 159832.	6.1	0
329	Unraveling High Thermal Conductivity with In-Plane Anisotropy Observed in Suspended SiP ₂ . ACS Applied Materials & Interfaces, 2024, 16, 13980-13988.	8.0	0

#	Article	IF	CITATIONS
331	Sm and Gd Contacts in 2D Semiconductors for High-Performance Electronics and Spintronics. ACS Applied Materials & amp; Interfaces, 2024, 16, 14064-14071.	8.0	0
332	Spaceâ€Confined Growth of Ultrathin Pâ€Type GeTe Nanosheets for Broadband Photodetectors. Small, 0, ,	10.0	0
333	Two-Dimensional Semiconductors and Transistors for Future Integrated Circuits. ACS Nano, 2024, 18, 7739-7768.	14.6	0
334	Straddling SnSe ₂ /SnS ₂ van der Waals tunneling heterostructures for high performance broadband photodetectors. Journal of Materials Chemistry C, 2024, 12, 5411-5419.	5.5	Ο