Edible Coating and Edible Film as Food Packaging Mater

Journal of Packaging Technology and Research 6, 1-10

DOI: 10.1007/s41783-021-00129-w

Citation Report

#	Article	IF	CITATIONS
1	Creating Robust Antimicrobial Materials with Sticky Tyrocidines. Antibiotics, 2022, 11, 174.	3.7	1
2	Production of biopolymers from food waste: Constrains and perspectives. Bioresource Technology, 2022, 361, 127650.	9.6	23
3	Food Packaging Materials with Special Reference to Biopolymers-Properties and Applications. Chemistry Africa, 2023, 6, 117-144.	2.4	35
4	Biopolymer-based functional films for packaging applications: A review. Frontiers in Nutrition, 0, 9, .	3.7	27
5	The Importance of Edible Films and Coatings for Sustainable Food Development. Foods, 2022, 11, 3221.	4.3	8
6	Antimicrobial Activity of Chitosan/Gelatin/Poly(vinyl alcohol) Ternary Blend Film Incorporated with Duchesnea indica Extract in Strawberry Applications. Foods, 2022, 11, 3963.	4.3	6
7	Insights into the Edible and Biodegradable Ulvan-Based Films and Coatings for Food Packaging. Foods, 2023, 12, 1622.	4.3	2
8	High-performance films fabricated by food protein nanofibrils loaded with vanillin: Mechanism, characterization and bacteriostatic effect. Food Packaging and Shelf Life, 2023, 37, 101080.	7.5	4
9	The development of Aloe vera-based edible film with the addition of sago starch and glycerol for food packaging. IOP Conference Series: Earth and Environmental Science, 2023, 1200, 012046.	0.3	0
10	Modernization of Food Packaging Materials with Nanotechnology-A Mini Review. , 2023, 14, .		0
11	Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings, 2023, 13, 1176.	2.6	6
12	Effect of Edible Coating Made from Arrowroot Flour and Kaffir Lime Leaf Essential Oil on the Quality Changes of Pork Sausage under Prolonged Refrigerated Storage. Foods, 2023, 12, 3691.	4.3	1
14	Film-Based Packaging for Food Safety and Preservation: Issues and Perspectives. , 2024, , 429-446.		0