Antibody–drug conjugates: Smart chemotherapy deli

Ca-A Cancer Journal for Clinicians 72, 165-182

DOI: 10.3322/caac.21705

Citation Report

#	Article	IF	CITATIONS
1	Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Seminars in Cancer Biology, 2022, 86, 899-913.	4.3	30
2	Bystander effect of antibody–drug conjugates: fact or fiction?. Current Oncology Reports, 2022, 24, 809-817.	1.8	35
3	HER2 Low, Ultra-low, and Novel Complementary Biomarkers: Expanding the Spectrum of HER2 Positivity in Breast Cancer. Frontiers in Molecular Biosciences, 2022, 9, 834651.	1.6	63
4	Cetuximab–Polymersome–Mertansine Nanodrug for Potent and Targeted Therapy of EGFR-Positive Cancers. Biomacromolecules, 2022, 23, 100-111.	2.6	12
5	Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treatment Reviews, 2022, 106, 102395.	3.4	60
6	Antibody-drug conjugates: beyond current approvals and potential future strategies. Exploration of Targeted Anti-tumor Therapy, 0, , 252-277.	0.5	11
7	Overcoming Resistance to Anti–Nectin-4 Antibody-Drug Conjugate. Molecular Cancer Therapeutics, 2022, 21, 1227-1235.	1.9	13
8	Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates American Journal of Cancer Research, 2022, 12, 1671-1685.	1.4	O
9	Nectin-4-targeted immunoSPECT/CT imaging and photothermal therapy of triple-negative breast cancer. Journal of Nanobiotechnology, 2022, 20, .	4.2	14
10	Claudin $18.2\mathrm{is}$ a novel molecular biomarker for tumor-targeted immunotherapy. Biomarker Research, 2022, 10 , .	2.8	42
11	Research Progress of Antibody–Drug Conjugate Therapy for Advanced Gastric Cancer. Frontiers in Oncology, 0, 12, .	1.3	4
12	Advances in Diagnosis and Therapy for Bladder Cancer. Cancers, 2022, 14, 3181.	1.7	16
13	Structure–Activity Relationships of Antibody-Drug Conjugates: A Systematic Review of Chemistry on the Trastuzumab Scaffold. Bioconjugate Chemistry, 2022, 33, 1241-1253.	1.8	13
14	Overcoming Resistance to HER2-Directed Therapies in Breast Cancer. Cancers, 2022, 14, 3996.	1.7	24
15	Clinical applications of mass spectrometryâ€based proteomics in cancer: Where are we?. Proteomics, 2023, 23, .	1.3	20
16	Current Analytical Strategies for Antibody–Drug Conjugates in Biomatrices. Molecules, 2022, 27, 6299.	1.7	6
17	Pharmaindustrie: Zytostatika zum Patienten bringen. Nachrichten Aus Der Chemie, 2022, 70, 34-36.	0.0	0
18	Immune Checkpoint Inhibitors and Novel Immunotherapy Approaches for Breast Cancer. Current Oncology Reports, 2022, 24, 1801-1819.	1.8	7

#	ARTICLE	IF	CITATIONS
19	The Dawn of the Antibody–Drug Conjugates Era: How T-DM1 Reinvented the Future of Chemotherapy for Solid Tumors. Cancer Research, 2022, 82, 3659-3661.	0.4	5
20	Antibody-Drug Conjugates and Tissue-Agnostic Drug Development. Cancer Journal (Sudbury, Mass), 2022, 28, 462-468.	1.0	0
21	Treatmentâ€related adverse events of antibody–drug conjugates in clinical trials: A systematic review and metaâ€nalysis. Cancer, 2023, 129, 283-295.	2.0	27
22	Development of Nectin4/FAP-targeted CAR-T cells secreting IL-7, CCL19, and IL-12 for malignant solid tumors. Frontiers in Immunology, 0, 13, .	2.2	9
23	Evaluation of B7-H3 Targeted Immunotherapy in a 3D Organoid Model of Craniopharyngioma. Biomolecules, 2022, 12, 1744.	1.8	3
24	Nectins and Nectin-like Molecules in Colorectal Cancer: Role in Diagnostics, Prognostic Values, and Emerging Treatment Options: A Literature Review. Diagnostics, 2022, 12, 3076.	1.3	2
25	A mild phenoxysilyl linker for self-immolative release of antibody-drug conjugates. Chinese Chemical Letters, 2023, 34, 108091.	4.8	1
26	The role of sacituzumab govitecan in hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. Annals of Translational Medicine, 2023, 11, 27-27.	0.7	0
27	Analysis of histology-agnostic targets among soft tissue and bone sarcomas in the AACR GENIE database. Frontiers in Oncology, 0 , 12 , .	1.3	4
28	Degrader–Antibody Conjugates: Emerging New Modality. Journal of Medicinal Chemistry, 2023, 66, 140-148.	2.9	11
29	Treatment-related adverse events associated with HER2-Targeted antibody-drug conjugates in clinical trials: a systematic review and meta-analysis. EClinicalMedicine, 2023, 55, 101795.	3.2	7
30	HER2-low expression in breast oncology: treatment implications in the smart chemotherapy era. European Journal of Cancer Prevention, 2023, 32, 149-154.	0.6	2
31	Recent progress of aptamerâ€'drug conjugates in cancer therapy. Acta Pharmaceutica Sinica B, 2023, 13, 1358-1370.	5.7	18
32	Resistance to Antibody-Drug Conjugates Targeting HER2 in Breast Cancer: Molecular Landscape and Future Challenges. Cancers, 2023, 15, 1130.	1.7	7
33	Myxoid Liposarcomas: Systemic Treatment Options. Current Treatment Options in Oncology, 2023, 24, 274-291.	1.3	3
34	The evolving landscape of antibody-drug conjugates in gynecologic cancers. Cancer Treatment Reviews, 2023, 116, 102546.	3.4	13
35	Phenyldivinylsulfonamides for the construction of antibody–drug conjugates with controlled four payloads. Bioorganic Chemistry, 2023, 134, 106463.	2.0	3
36	Future potential targets of antibody-drug conjugates in breast cancer. Breast, 2023, 69, 312-322.	0.9	2

3

#	Article	IF	Citations
37	Natural peptides for immunological regulation in cancer therapy: Mechanism, facts and perspectives. Biomedicine and Pharmacotherapy, 2023, 159, 114257.	2.5	14
38	Antibody–drug conjugates: in search of partners of choice. Trends in Cancer, 2023, 9, 339-354.	3.8	44
39	Anti-GD2 immunoliposomes loaded with oxamate for neuroblastoma. Pediatric Research, 0, , .	1.1	0
40	Antiâ∈HER2 scFvâ∈nCyt <i>c</i> â∈Modified Lipidâ∈Encapsulated Oxygen Nanobubbles Prepared with Bulk Nanobubble Water for Inducing Apoptosis and Improving Photodynamic Therapy. Small, 0, , 2206091.	5.2	0
41	Prognostic and Predictive Value of LIV1 Expression in Early Breast Cancer and by Molecular Subtype. Pharmaceutics, 2023, 15, 938.	2.0	1
42	Subtyping-based platform guides precision medicine for heavily pretreated metastatic triple-negative breast cancer: The FUTURE phase II umbrella clinical trial. Cell Research, 2023, 33, 389-402.	5.7	13
43	Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Archives of Pharmacal Research, 2023, 46, 361-388.	2.7	9
44	â€~Targeting' Improved Outcomes with Antibody-Drug Conjugates in Non-Small Cell Lung Cancer—An Updated Review. Current Oncology, 2023, 30, 4329-4350.	0.9	1
45	Purified fluorescent nanohybrids based on quantum dot–HER2–antibody for breast tumor target imaging. Talanta, 2023, 260, 124560.	2.9	2
86	Current challenges and practical aspects of molecular pathology for non-small cell lung cancers. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 0, , .	1.4	3
101	The multifaceted roles of GSDME-mediated pyroptosis in cancer: the rapeutic strategies and persisting obstacles. Cell Death and Disease, 2023,14,.	2.7	1
105	Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions. Archives of Pharmacal Research, 2024, 47, 40-65.	2.7	1
107	Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduction and Targeted Therapy, 2024, 9, .	7.1	2