Bioadhesive injectable hydrogel with phenolic carbon q atom nanozymes as a localized immunomodulation nic immunotherapy

Biomaterials 280, 121272

DOI: 10.1016/j.biomaterials.2021.121272

Citation Report

#	ARTICLE	IF	CITATIONS
1	Electrochemical Biosensors for Foodborne Pathogens Detection Based on Carbon Nanomaterials: Recent Advances and Challenges. Food and Bioprocess Technology, 2022, 15, 498-513.	2.6	35
2	Supramolecular hydrogel-loaded Prussian blue nanoparticles with photothermal and ROS scavenging ability for tumor postoperative treatments. Composites Part B: Engineering, 2022, 237, 109872.	5.9	22
3	All-in-one: Harnessing multifunctional injectable natural hydrogels for ordered therapy of bacteria-infected diabetic wounds. Chemical Engineering Journal, 2022, 439, 135691.	6.6	120
4	Classification and Medical Applications of Biomaterials–A Mini Review. BIO Integration, 2023, 4, .	0.9	5
5	Tumor-permeated ATP-based size-controllable immunogenic cell death amplifier remodel immunosuppressive microenvironment to boost cancer immunotherapy. Applied Materials Today, 2022, 28, 101518.	2.3	2
6	Adhesion mechanism and application progress of hydrogels. European Polymer Journal, 2022, 173, 111277.	2.6	28
7	Inosineâ€Based Supramolecular Hydrogel for Highly Efficient PD‣1 Blockade Therapy via Mediating CD8 ⁺ T Cells. Advanced Functional Materials, 2022, 32, .	7.8	11
8	Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View. Small Science, 2022, 2, .	5.8	10
9	Natural polymerâ€based adhesive hydrogel for biomedical applications. Biosurface and Biotribology, 2022, 8, 69-94.	0.6	4
10	Delivery process and effective design of vectors for cancer therapy. Journal of Materials Chemistry B, 2022, 10, 6896-6921.	2.9	8
11	Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial. Molecules, 2022, 27, 5426.	1.7	15
12	Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective. Chemical Record, 2022, 22, .	2.9	8
13	Recent progress in single-atom nanozymes research. Nano Research, 2023, 16, 1878-1889.	5.8	31
14	Biomineralization-Inspired Intermediate Precursor for the Controllable Gelation of Polyphenol–Macromolecule Hydrogels. ACS Applied Materials & Interfaces, 2022, 14, 44890-44901.	4.0	6
15	Medical Nanozymes for Therapeutics. Micro/Nano Technologies, 2022, , 1-46.	0.1	0
16	Immunomodulating Hydrogels as Stealth Platform for Drug Delivery Applications. Pharmaceutics, 2022, 14, 2244.	2.0	4
17	MnO ₂ Nanozyme-Mediated CRISPR-Cas12a System for the Detection of SARS-CoV-2. ACS Applied Materials & amp; Interfaces, 2022, 14, 50534-50542.	4.0	18
18	Medical Devices Based on Nanozymes. ACS Symposium Series, 0, , 211-229.	0.5	0

CITATION REPORT

#	Article	IF	CITATIONS
19	Carbon-based nanozymes: Design, catalytic mechanism, and bioapplication. Coordination Chemistry Reviews, 2023, 475, 214896.	9.5	55
20	Nanomaterials: small particles show huge possibilities for cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	14
21	Enzyme-like nanomaterials-integrated microfluidic technology for bioanalysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116833.	5.8	4
22	Breakthroughs in nanozyme-inspired application diversity. Materials Chemistry Frontiers, 2022, 7, 44-64.	3.2	14
23	Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type I/II photodynamic therapy. Biomaterials, 2023, 293, 121953.	5.7	30
24	Protocatechuic acid-mediated injectable antioxidant hydrogels facilitate wound healing. Composites Part B: Engineering, 2023, 250, 110451.	5.9	14
25	Multifaceted nanozymes for synergistic antitumor therapy: A review. Materials and Design, 2022, 224, 111430.	3.3	12
26	Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. Pharmaceutics, 2022, 14, 2752.	2.0	1
27	Metalâ€Based Nanozymes with Multienzymeâ€Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. Small, 2023, 19, .	5.2	18
28	Medical Nanozymes for Therapeutics. Micro/Nano Technologies, 2023, , 285-329.	0.1	0
29	Mussel-inspired adhesive hydrogels for local immunomodulation. Materials Chemistry Frontiers, 2023, 7, 846-872.	3.2	7
30	Design of carbon dots as nanozymes to mediate redox biological processes. Journal of Materials Chemistry B, 2023, 11, 5071-5082.	2.9	6
31	Nanozyme-like single-atom catalyst combined with artesunate achieves photothermal-enhanced nanocatalytic therapy in the near-infrared biowindow. Acta Biomaterialia, 2023, 158, 686-697.	4.1	4
32	Mitochondrial-mimicking nanozyme-catalyzed cascade reactions for aging attenuation. Nano Today, 2023, 48, 101757.	6.2	5
33	Machineâ€Learningâ€Assisted Nanozyme Design: Lessons from Materials and Engineered Enzymes. Advanced Materials, 2024, 36, .	11.1	14
34	Carbon Dotâ \in Based Hydrogels: Preparations, Properties, and Applications. Small, 2023, 19, .	5.2	18
35	High-loading Cu single-atom nanozymes supported by carbon nitride with peroxidase-like activity for the colorimetric detection of tannic acid. Talanta, 2023, 257, 124387.	2.9	19
36	Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for cancer therapy. Biochemical Engineering Journal, 2023, 192, 108828.	1.8	14

#	Article	IF	CITATIONS
37	The application of carbon dots in tumor immunotherapy: Researches and prospects. , 2023, 2, .		3
38	<i>In Situ</i> Fabrication of Robust Polyphenolic Hydrogels for Skin Protection and Repair. Chemistry of Materials, 2023, 35, 2191-2201.	3.2	6
39	Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Research, 2023, 16, 9752-9759.	5.8	8
40	Recyclable and Reusable Fe ₃ O ₄ @Polydopamine for Valuable Metal Recovery from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 5045-5054.	3.2	2
41	Single-atom nanozymes as promising catalysts for biosensing and biomedical applications. Inorganic Chemistry Frontiers, 2023, 10, 4289-4312.	3.0	4
44	Development of nanozymes for promising alleviation of COVID-19-associated arthritis. Biomaterials Science, 2023, 11, 5781-5796.	2.6	1
51	The role of ion channels in the relationship between the immune system and cancer. Current Topics in Membranes, 2023, , .	0.5	0
62	Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chemical Society Reviews, 2024, 53, 2643-2692.	18.7	0
63	Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. Nano-Micro Letters, 2024, 16, .	14.4	1

CITATION REPORT