An ADAM9 mutation in canine cone-rod dystrophy 3 es cone-rod dystrophy 9

Molecular Vision 16, 1549-69

Citation Report

#	Article	IF	CITATIONS
1	The Domestic Cat as a Large Animal Model for Characterization of Disease and Therapeutic Intervention in Hereditary Retinal Blindness. Journal of Ophthalmology, 2011, 2011, 1-8.	0.6	25
2	Characterization of feline hereditary retinal dystrophies using clinical, functional, structural and molecular genetic studies. Veterinary Ophthalmology, 2011, 14, 30-36.	0.6	7
3	Exclusion of <i>RPGRIP1</i> ins44 from Primary Causal Association with Early-Onset Cone–Rod Dystrophy in Dogs. , 2012, 53, 5486.		18
4	Assessment of Hereditary Retinal Degeneration in the English Springer Spaniel Dog and Disease Relationship to anRPGRIP1Mutation. Stem Cells International, 2012, 2012, 1-12.	1.2	6
5	Genome-wide analysis of mitral valve disease in Cavalier King Charles Spaniels. Veterinary Journal, 2012, 193, 283-286.	0.6	23
6	Copy number variation in the genomes of domestic animals. Animal Genetics, 2012, 43, 503-517.	0.6	116
7	Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies. Mammalian Genome, 2012, 23, 40-61.	1.0	78
8	Copy number variation in the domestic dog. Mammalian Genome, 2012, 23, 144-163.	1.0	55
9	Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins. BMC Genomics, 2013, 14, 131.	1.2	87
10	Drug and gene therapy of hereditary retinal disease in dog and cat models. Drug Discovery Today: Disease Models, 2013, 10, e215-e223.	1.2	3
11	OUTER RETINA ANALYSIS BY OPTICAL COHERENCE TOMOGRAPHY IN CONE-ROD DYSTROPHY PATIENTS. Retina, 2013, 33, 1877-1880.	1.0	34
12	<i>IQCB1</i> and <i>PDE6B</i> Mutations Cause Similar Early Onset Retinal Degenerations in Two Closely Related Terrier Dog Breeds. , 2013, 54, 7005.		40
13	Increased Expression of MERTK is Associated with a Unique Form of Canine Retinopathy. PLoS ONE, 2014, 9, e114552.	1.1	7
14	Inherited retinal diseases in dogs: advances in gene/mutation discovery. Journal of Animal Genetics, 2014, 42, 79-89.	0.5	7
15	Novel <i>ADAM9</i> homozygous mutation in a consanguineous Egyptian family with severe cone-rod dystrophy and cataract. British Journal of Ophthalmology, 2014, 98, 1718-1723.	2.1	7
16	The genetics of eye disorders in the dog. Canine Genetics and Epidemiology, 2014, 1, 3.	2.9	23
17	Causes and consequences of inherited cone disorders. Progress in Retinal and Eye Research, 2014, 42, 1-26.	7.3	127
18	Dog Models for Blinding Inherited Retinal Dystrophies. Human Gene Therapy Clinical Development, 2015, 26, 15-26.	3.2	50

CITATION REPORT

#	Article	IF	CITATIONS
19	The genetics of inherited retinal disorders in dogs: implications for diagnosis and management. Veterinary Medicine: Research and Reports, 2016, 7, 41.	0.4	3
20	Anatomical and Gene Expression Changes in the Retinal Pigmented Epithelium Atrophy 1 (rpea1) Mouse: A Potential Model of Serous Retinal Detachment. , 2016, 57, 4641.		3
21	Evaluation of artificial selection in Standard Poodles using whole-genome sequencing. Mammalian Genome, 2016, 27, 599-609.	1.0	13
22	Animal modelling for inherited central vision loss. Journal of Pathology, 2016, 238, 300-310.	2.1	50
23	Novel retinopathy in related Gordon setters: a clinical, behavioral, electrophysiological, and genetic investigation. Veterinary Ophthalmology, 2016, 19, 398-408.	0.6	5
24	Mapping of Canine Models of Inherited Retinal Diseases. Advances in Experimental Medicine and Biology, 2018, 1074, 257-264.	0.8	2
26	Peripheral Cone Dystrophy: Expanded Clinical Spectrum, Multimodal and Ultrawide-Field Imaging, and Genomic Analysis. Journal of Ophthalmology, 2018, 2018, 1-13.	0.6	3
27	Phenotype Analysis of Retinal Dystrophies in Light of the Underlying Genetic Defects: Application to Cone and Cone-Rod Dystrophies. International Journal of Molecular Sciences, 2019, 20, 4854.	1.8	20
28	Encephalomyocarditis Virus Entry Unveiled. MBio, 2019, 10, .	1.8	1
29	Copy number variation study in Japanese quail associated with stress related traits using whole genome re-sequencing data. PLoS ONE, 2019, 14, e0214543.	1.1	5
30	An Overview of ADAM9: Structure, Activation, and Regulation in Human Diseases. International Journal of Molecular Sciences, 2020, 21, 7790.	1.8	41
31	Large Animal Models of Inherited Retinal Degenerations: A Review. Cells, 2020, 9, 882.	1.8	47
32	RPGRIP1 and Cone–Rod Dystrophy in Dogs. Advances in Experimental Medicine and Biology, 2012, 723, 321-328.	0.8	4
33	Genetic Control of Canine Leishmaniasis: Genome-Wide Association Study and Genomic Selection Analysis. PLoS ONE, 2012, 7, e35349.	1.1	31
34	A CNGB1 Frameshift Mutation in Papillon and Phalène Dogs with Progressive Retinal Atrophy. PLoS ONE, 2013, 8, e72122.	1.1	38
35	Glen of Imaal Terrier. , 2012, , 228-229.		0
36	Dog Models for Blinding Inherited Retinal Degenerations. Human Gene Therapy Clinical Development, 0, , 150127063140004.	3.2	0
37	Development of retinal bullae in dogs with progressive retinal atrophy. Veterinary Ophthalmology, 2022, 25, 109-117.	0.6	3

#	Article	IF	CITATIONS
38	A non-stop S-antigen gene mutation is associated with late onset hereditary retinal degeneration in dogs. Molecular Vision, 2013, 19, 1871-84.	1.1	17
39	Expression profiling of the RPE in zebrafish smarca4 mutant revealed altered signals that potentially affect RPE and retinal differentiation. Molecular Vision, 2014, 20, 56-72.	1.1	3