Influence of insertions on packaging of host sequences Mu DNA.

Proceedings of the National Academy of Sciences of the Unite 72, 4399-4403

DOI: 10.1073/pnas.72.11.4399

Citation Report

#	Article	IF	Citations
1	Location of the "variable end―of Mu DNA within the bacteriophage particle. Virology, 1976, 72, 393-401.	1.1	16
2	Ends of bacteriophage Mu DNA. Nature, 1976, 264, 580-583.	13.7	68
3	Basis for the diversity of states of controlling elements in maize. Molecular Genetics and Genomics, 1976, 149, 5-21.	2.4	39
4	IS-Elements in Microorganisms. , 1976, 75, 111-152.		157
5	State of prophage Mu DNA upon induction Proceedings of the National Academy of Sciences of the United States of America, 1977, 74, 3143-3147.	3.3	98
6	Characterization of the new osmotic mutants (os) which originated during genetic transformation inNeurospora crassa. Genetical Research, 1977, 29, 9-19.	0.3	11
7	DNA maturation by the "headful―mode in bacteriophage T1. Journal of Molecular Biology, 1977, 110, 441-465.	2.0	38
8	Transcription of insertion elements IS1 and IS2 in vitro. Molecular Genetics and Genomics, 1977, 153, 51-60.	2.4	4
9	Preferential generalized transduction by bacteriophage Mu. Molecular Genetics and Genomics, 1978, 160, 89-94.	2.4	13
10	Involvement of phage Mu-1 early functions in Mu-mediated chromosomal rearrangements. Nature, 1978, 271, 580-582.	13.7	85
11	Chromosomal rearrangements by an IS2 insertion in phage Mu-1. Gene, 1978, 4, 51-68.	1.0	9
12	Insertion of a transposon for chloramphenicol resistance into bacteriophage Mu. Gene, 1978, 3, 303-314.	1.0	13
13	Heteroduplex electron microscopy of phage Mu Mutants containing IS1 insertions and chloramphenicol resistance transposons. Gene, 1978, 3, 333-346.	1.0	13
14	Proteus mirabilis Phage 5006M: a Physical Characterization. Journal of General Virology, 1979, 45, 389-395.	1.3	13
15	In vitro constructed plasmids containing both ends of bacteriophage Mu DNA express phage functions. Molecular Genetics and Genomics, 1979, 169, 97-105.	2.4	37
16	The isolation and characterisation of a plaque-forming derivative of bacteriophage Mu carrying a fragment of Tn3 conferring ampicillin resistance. Molecular Genetics and Genomics, 1979, 172, 179-184.	2.4	93
17	The origin of the DNA in transducing particles of bacteriophage Mu. Molecular Genetics and Genomics, 1979, 176, 293-295.	2.4	4
18	Effects of prophage Mu induction on expression of adjacent host genes. Molecular Biology Reports, 1980, 6, 229-234.	1.0	7

ITATION REDOD

#	Article	IF	CITATIONS
19	Physical characterization of mini-Mu and mini-D108. Gene, 1981, 14, 103-113.	1.0	42
20	The influence of host DNA replication on the formation of infectious and transducing Mu-particles. Molecular Genetics and Genomics, 1981, 184, 308-311.	2.4	9
21	Heterogeneous host DNA attached to the left end of mature bacteriophage Mu DNA. Nature, 1981, 292, 175-176.	13.7	33
22	DNA methyltransferase-dependent transcription of the phage Mu mom gene Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 5518-5521.	3.3	69
23	Avall and Bgll restriction maps of bacteriophage Mu. Virology, 1983, 126, 563-575.	1.1	21
24	Transduction of multi-copy plasmid pBR322 by bacteriophage Mu. Molecular Genetics and Genomics, 1984, 197, 169-174.	2.4	15
25	DNA sequences at the ends of the genome of bacteriophage Mu essential for transposition Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2087-2091.	3.3	57
26	Transposition of mini-Mu containing only one of the ends of bacteriophage Mu EMBO Journal, 1986, 5, 3687-3690.	3.5	19
27	The right end of transposable bacteriophage D108 contains a 520 base pair protein-encoding sequence not present in bacteriophage Mu. Nucleic Acids Research, 1987, 15, 6691-6704.	6.5	3
28	Cloning and characterization of nifA and ntrC genes of the stem nodulating bacterium ORS571, the nitrogen fixing symbiont of Sesbania rostrata: Regulation of nitrogen fixation (nif) genes in the free living versus symbiotic state. Molecular Genetics and Genomics, 1987, 206, 207-219.	2.4	77
29	In vivo functional characterization of a yeast nucleotide sequence: construction of a mini-Mu derivative adapted to yeast. Gene, 1988, 62, 45-54.	1.0	26
30	Replication forks of Escherichia coli are not the preferred sites for lysogenic integration of bacteriophage Mu. Journal of Bacteriology, 1988, 170, 3089-3093.	1.0	3
31	The cis-acting DNA sequences required in vivo for bacteriophage Mu helper-mediated transposition and packaging. Archives of Microbiology, 1990, 154, 67-72.	1.0	13
32	Bacteriophage Mu as a genetic tool to study Erwinia amylovora pathogenicity and hypersensitive reaction on tobacco. Journal of Bacteriology, 1990, 172, 932-941.	1.0	35
33	In vitro maturation and encapsidation of the DNA of transposable Mu-like phage D108 Proceedings of the United States of America, 1990, 87, 6092-6096.	3.3	6
34	Approaches to the identification of non-essential genes of African swine fever virus. Veterinary Microbiology, 1992, 33, 101-115.	0.8	3
35	Regulation of bacteriophage Mu transposition. Genetica, 1994, 93, 27-39.	0.5	18
36	11 Transposon Tagging II: Exploration of Gene Function and Regulatory Networks in Yeast with the Mini-Mu Transposon. Methods in Microbiology, 1998, , 181-200.	0.4	1

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	DNA gyrase requirements distinguish the alternate pathways of Mu transposition. Molecular Microbiology, 2003, 47, 397-409.	1.2	18
39	Characterization of P lys -proximal morphogenetic genes of transposable bacteriophage Mu. Archives of Virology, 2004, 149, 241-259.	0.9	1
40	Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein. Mobile DNA, 2010, 1, 8.	1.3	21
41	Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology, 2011, 421, 211-221.	1.1	39
42	Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria—mini review. Applied Microbiology and Biotechnology, 2011, 91, 857-871.	1.7	29
43	Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements. Journal of Biosciences, 2011, 36, 587-601.	0.5	17
44	Gain and Loss of Phototrophic Genes Revealed by Comparison of Two Citromicrobium Bacterial Genomes. PLoS ONE, 2012, 7, e35790.	1.1	12
45	A marine inducible prophage vB_CibM-P1 isolated from the aerobic anoxygenic phototrophic bacterium Citromicrobium bathyomarinum JL354. Scientific Reports, 2014, 4, 7118.	1.6	19
46	My life with Mu. Bacteriophage, 2015, 5, e1034336.	1.9	3
47	Transposable phages, DNA reorganization and transfer. Current Opinion in Microbiology, 2017, 38, 88-94.	2.3	33
48	Predicting genome terminus sequences of Bacillus cereus-group bacteriophage using next generation sequencing data. BMC Genomics, 2017, 18, 350.	1.2	19
49	Characteristics of two myoviruses induced from the coastal photoheterotrophic bacterium Porphyrobacter sp. YT40. FEMS Microbiology Letters, 2019, 366, .	0.7	1
50	Deep sequencing reveals new roles for MuB in transposition immunity and target-capture, and redefines the insular Ter region of E. coli. Mobile DNA, 2020, 11, 26.	1.3	4
51	Bacteriophage-Mediated Horizontal Gene Transfer: Transduction. , 2021, , 151-192.		13
52	Low Level and High Level DNA Rearrangements in Escherichia coli. , 1982, 20, 235-244.		4
53	Animal Virus-Host Genome Interactions. , 1977, , 279-399.		13
54	Phage Mu. , 1988, , 193-234.		27
55	Determining DNA Packaging Strategy by Analysis of the Termini of the Chromosomes in Tailed-Bacteriophage Virions. Methods in Molecular Biology, 2009, 502, 91-111.	0.4	263

#	Article	IF	CITATIONS
56	Bacteriophage-Mediated Horizontal Gene Transfer: Transduction. , 2017, , 1-42.		11
57	Bacteriophage Mu. , 1998, , 65-80.		3
58	THE MU PARADOX: EXCISION VERSUS REPLICATION11This work was supported by NIH Grant GM21351. R.B.H. is recipient of NIH Research Career Development Award K04-GM 00372 , 1979, , 143-154.		3
59	Phage Mu: Transposition as a Life-Style. , 1983, , 105-158.		56
60	Bacteriophage Mu DNA replication in vitro Journal of Biological Chemistry, 1983, 258, 4293-4297.	1.6	16
61	Stimulation of deletions in the Escherichia coli chromosome by partially induced Mucts62 prophages. Journal of Bacteriology, 1978, 136, 477-483.	1.0	40
62	Inversion induced by temperature bacteriophage mu-1 in the chromosome of Escherichia coli K-12. Journal of Bacteriology, 1980, 142, 391-399.	1.0	17
63	A new insertion sequence, IS121, is found on the Mu dl1 (Ap lac) bacteriophage and the Escherichia coli K-12 chromosome. Journal of Bacteriology, 1983, 156, 669-679.	1.0	49
64	Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. Journal of Bacteriology, 1984, 158, 488-495.	1.0	579
65	Genetic analysis of heterogeneous DNA circles formed after prophage Mu induction. Journal of Virology, 1976, 19, 756-759.	1.5	8
66	Mutator bacteriophage D108 and its DNA: an electron microscopic characterization. Journal of Virology, 1981, 37, 420-430.	1.5	44
67	Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages. Microbiological Reviews, 1978, 42, 529-576.	10.1	188
70	Additive recombination in bacteria. Bacteriological Reviews, 1977, 41, 872-902.	7.7	12
79	Transposition of mini-Mu containing only one of the ends of bacteriophage Mu. EMBO Journal, 1986, 5, 3687-90.	3.5	10

CITATION REPORT