Photochemical reactions initiated by and influencing or air

Tellus 26, 47 DOI: 10.3402/tellusa.v26i1-2.9736

Citation Report

#	Article	IF	CITATIONS
1	Emission of oxides of nitrogen (NO <i>x</i>) and ammonia from the earth's surface. Tellus, 1975, 27, 67-70.	0.4	14
2	OH production rates in the troposphere. Planetary and Space Science, 1975, 23, 1507-1518.	0.9	33
3	Emission of oxides of nitrogen (NO x) and ammonia from the earth's surface. Tellus, 1975, 27, 67-70.	0.4	15
4	Heterogeneous chemical reactions in the stratosphere. Journal of Geophysical Research, 1975, 80, 3381-3385.	3.3	66
5	Tropospheric odd nitrogen and the atmospheric water vapor cycle. Journal of Geophysical Research, 1975, 80, 4989-4996.	3.3	18
6	Mechanisms of aerosol formation from SO2. Journal of Aerosol Science, 1975, 6, 367-374.	1.8	30
7	Sulfur dioxide, sulfate aerosol, and urban ozone. Geophysical Research Letters, 1976, 3, 181-184.	1.5	15
8	Direct measurements of natural tropospheric levels of OH via an aircraft borne tunable dye laser. Geophysical Research Letters, 1976, 3, 331-333.	1.5	124
9	OH ―Radicals in the lower troposphere. Geophysical Research Letters, 1976, 3, 466-468.	1.5	167
10	A time-dependent photochemical model for ozone near the ground. Journal of Geophysical Research, 1976, 81, 413-420.	3.3	69
11	Global air pollution and climatic change. Reviews of Geophysics, 1976, 14, 429-474.	9.0	82
12	Rate constants for the reactions OH+H2S→H2O+SH and OH+NH3 →H2O+NH2 over the temperature range 297–427 °K. Journal of Chemical Physics, 1976, 64, 3237.	1.2	81
13	Possible variations in atmospheric methane. Journal of Geophysical Research, 1977, 82, 1795-1798.	3.3	65
14	Reactions of ozone and nitrogen oxides in power plant plumes. Atmospheric Environment, 1977, 11, 521-526.	1.1	45
15	Ozone and oxides of nitrogen production during thunderstorms. Journal of Geophysical Research, 1977, 82, 943-950.	3.3	74
16	Tropospheric ozone: Coupling transport and photochemistry. Journal of Geophysical Research, 1977, 82, 1787-1794.	3.3	55
17	Meridional distribution of ozone in the troposphere and its seasonal variations. Journal of Geophysical Research, 1977, 82, 2063-2073.	3.3	174
18	Photochemistry of tropospheric ozone. Journal of Geophysical Research, 1977, 82, 3134-3140.	3.3	30

TION RE

#	Article	IF	CITATIONS
19	A numerical study of tropospheric photochemistry using a one-dimensional model. Journal of Geophysical Research, 1977, 82, 5897-5906.	3.3	110
20	Tropospheric ozone: 2. Variations along a meridional band. Journal of Geophysical Research, 1977, 82, 5969-5976.	3.3	78
21	Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature, 1977, 267, 32-32.	13.7	102
22	Temperature dependence of the unimolecular decomposition of pernitric acid and its atmospheric implications. Chemical Physics Letters, 1977, 51, 215-220.	1.2	66
23	Kinetics of the reaction of atomic hydrogen with methyl hydroperoxide. International Journal of Chemical Kinetics, 1977, 9, 267-282.	1.0	33
24	The origin of ozone in the troposphere. Nature, 1978, 274, 855-858.	13.7	278
25	Sources and sinks of atmospheric methane. Pure and Applied Geophysics, 1978, 116, 452-464.	0.8	226
26	The effect of the HO2+NO reaction rate constant on one-dimensional model calculations of stratospheric ozone perturbations. Pure and Applied Geophysics, 1978, 116, 497-510.	0.8	68
27	The Natural and Perturbed Troposphere. , 1978, 16, 30-44.		8
28	The photochemical role of tropospheric nitrogen oxides. Geophysical Research Letters, 1978, 5, 17-20.	1.5	85
28 29	The photochemical role of tropospheric nitrogen oxides. Geophysical Research Letters, 1978, 5, 17-20. The impact of the chlorocarbon industry on the ozone layer. Journal of Geophysical Research, 1978, 83, 345-363.	1.5 3.3	85 189
	The impact of the chlorocarbon industry on the ozone layer. Journal of Geophysical Research, 1978,		
29	The impact of the chlorocarbon industry on the ozone layer. Journal of Geophysical Research, 1978, 83, 345-363. Effects of nonmethane hydrocarbons in the atmosphere. Journal of Geophysical Research, 1978, 83,	3.3	189
29 30	The impact of the chlorocarbon industry on the ozone layer. Journal of Geophysical Research, 1978, 83, 345-363. Effects of nonmethane hydrocarbons in the atmosphere. Journal of Geophysical Research, 1978, 83, 947-952. Observational and theoretical evidence in support of a significant in-situ photochemical source of	3.3 3.3	189 85
29 30 31	 The impact of the chlorocarbon industry on the ozone layer. Journal of Geophysical Research, 1978, 83, 345-363. Effects of nonmethane hydrocarbons in the atmosphere. Journal of Geophysical Research, 1978, 83, 947-952. Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus, 2022, 31, 432. Observational and theoretical evidence in support of a significant in-situ photochemical source of 	3.3 3.3 0.4	189 85 125
29 30 31 32	The impact of the chlorocarbon industry on the ozone layer. Journal of Geophysical Research, 1978, 83, 345-363. Effects of nonmethane hydrocarbons in the atmosphere. Journal of Geophysical Research, 1978, 83, 947-952. Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus, 2022, 31, 432. Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus, 1979, 31, 432-446. Evolution of particles in the plumes of coal-fired power plants—II. A numerical model and	3.3 3.3 0.4 0.4	189 85 125 260
29 30 31 32 33	The impact of the chlorocarbon industry on the ozone layer. Journal of Geophysical Research, 1978, 83, 345-363. Effects of nonmethane hydrocarbons in the atmosphere. Journal of Geophysical Research, 1978, 83, 947-952. Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus, 2022, 31, 432. Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus, 1979, 31, 432-446. Evolution of particles in the plumes of coal-fired power plants—II. A numerical model and comparisons with field measurements. Atmospheric Environment, 1979, 13, 953-975. The kinetics of oxidation of sulphur dioxide within the plume from a sulphide smelter in a remote	 3.3 3.3 0.4 0.4 1.1 	189 85 125 260 31

#	Article	IF	CITATIONS
37	Hydroxyl and peroxy radicals in polluted tropospheric air. Geophysical Research Letters, 1979, 6, 219-222.	1.5	11
38	Actinometric measurements and theoretical calculations of j(O ₃)the rate of photolysis of ozone to O(¹D). Geophysical Research Letters, 1979, 6, 833-836.	1.5	38
39	Nitric acid and aerosol nitrate measurements in the equatorial Pacific Region. Geophysical Research Letters, 1980, 7, 325-328.	1.5	52
40	Free tropospheric/boundaryâ€layer airborne measurements of H ₂ O over the latitude range of 58°S to 70°N: Comparison with simultaneous ozone and carbon monoxide measurements. Journal of Geophysical Research, 1980, 85, 7293-7306.	3.3	31
41	Free tropospheric and boundaryâ€layer airborne measurements of ozone over the latitude range of 58°S to 70°N. Journal of Geophysical Research, 1980, 85, 7307-7321.	3.3	105
42	A theoretical assessment of the O ₃ /H ₂ O interference problem in the detection of natural levels of OH via laser induced fluorescence. Geophysical Research Letters, 1981, 8, 73-76.	1.5	31
43	Tropospheric chemistry: A global perspective. Journal of Geophysical Research, 1981, 86, 7210-7254.	3.3	1,715
44	The Potential effects of increased methane on atmospheric ozone. Geophysical Research Letters, 1982, 9, 1105-1108.	1.5	29
45	The global troposphere: Biogeochemical cycles, chemistry, and remote sensing. Environmental Monitoring and Assessment, 1982, 1, 263-306.	1.3	16
46	Impact of coupled perturbations of atmospheric trace gases on Earth's climate and ozone. Pure and Applied Geophysics, 1982, 120, 626-641.	0.8	6
47	Consensus Report: Mutagenicity and Carcinogenicity of Car Exhausts and Coal Combustion Emissions. Environmental Health Perspectives, 1983, 47, 1.	2.8	41
48	On the relationship between the greenhouse effect, atmospheric photochemistry, and species distribution. Journal of Geophysical Research, 1983, 88, 1401-1426.	3.3	51
49	Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget. Journal of Geophysical Research, 1983, 88, 3662-3670.	3.3	138
50	Latitudinal variation of tropospheric ozone in a photochemical model. Journal of Geophysical Research, 1983, 88, 5153-5162.	3.3	7
51	Oxidation of Carbon Monoxide by Bacteria. International Review of Cytology, 1983, 81, 1-32.	6.2	55
52	Consensus report: mutagenicity and carcinogenicity of car exhausts and coal combustion emissions Environmental Health Perspectives, 1983, 47, 1-30.	2.8	16
53	Power plant plume NO x reactions and the reaction zone concept. Archiv Für Meteorologie Geophysik Und Bioklimatologie Serie B, 1984, 33, 301-329.	0.8	1
54	A one-dimensional photochemical model of the troposphere with planetary boundary-layer parameterization. Journal of Atmospheric Chemistry, 1984, 1, 351-376.	1.4	41

#	Article	IF	CITATIONS
55	Sulfur dioxide in remote oceanic air: Cloud transport of reactive precursors. Journal of Geophysical Research, 1984, 89, 7111-7132.	3.3	307
56	Measurements of free tropospheric ozone: An aircraft survey from 44° north to 46° south latitude. Journal of Geophysical Research, 1984, 89, 9642-9648.	3.3	26
57	A model investigation of the impact of increases in anthropogenic NO x emissions between 1967 and 1980 on tropospheric ozone. Journal of Atmospheric Chemistry, 1985, 3, 491-506.	1.4	28
58	Surface ozone measurements in the Venezuelan tropical savannah. Journal of Atmospheric Chemistry, 1985, 2, 377-385.	1.4	35
59	Stratospheric response to chemical perturbations. Journal of Atmospheric Chemistry, 1985, 3, 261-288.	1.4	26
60	Nitric acid vapour measurements in the troposphere and lower stratosphere by chemical ionisation mass spectrometry. Planetary and Space Science, 1985, 33, 983-986.	0.9	22
61	Tropospheric ozone: The role of transport. Journal of Geophysical Research, 1985, 90, 3753-3772.	3.3	263
62	Surface ozone distributions and variations from 1973–1984: Measurements at the NOAA Geophysical Monitoring for Climatic Change Baseline Observatories. Journal of Geophysical Research, 1986, 91, 5229-5236.	3.3	249
63	World-wide increase in tropospheric methane, 1978?1983. Journal of Atmospheric Chemistry, 1986, 4, 43-62.	1.4	96
64	Surface ozone at rural sites in the latrobe valley and Cape Grim, Australia. Atmospheric Environment, 1986, 20, 2403-2422.	1.1	28
65	Sulfate and nitrate chemistry in cumuliform clouds. Atmospheric Environment, 1986, 20, 901-909.	1.1	69
66	The potential impact on atmospheric ozone and temperature of increasing trace gas concentrations. Journal of Geophysical Research, 1987, 92, 10903-10920.	3.3	24
67	Long-term measurements of surface ozone in the German Democratic Republic. Journal of Atmospheric Chemistry, 1987, 5, 1.	1.4	102
68	Tropospheric Ozone: An Overview. , 1988, , 3-32.		152
70	Surface ozone variation associated with rainfall. Pure and Applied Geophysics, 1989, 130, 47-55.	0.8	8
71	Arctic hazes in summer over Greenland and the North American Arctic. I: Incidence and origins. Journal of Atmospheric Chemistry, 1989, 9, 129-148.	1.4	55
72	Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel combustion. Tellus, Series B: Chemical and Physical Meteorology, 1989, 41B, 256-271.	0.8	71
73	Concentrations and Patterns of Ozone in Western Europe,167-176. Studies in Environmental Science, 1989, 35, 167-176.	0.0	7

#	Article	IF	CITATIONS
74	Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel combustion. Tellus, Series B: Chemical and Physical Meteorology, 2022, 41, 256.	0.8	36
75	The chemistry of OH and HO2radicals in the earth's atmosphere. Russian Chemical Reviews, 1990, 59, 928-944.	2.5	8
76	The global cycle of carbon monoxide: Trends and mass balance. Chemosphere, 1990, 20, 227-242.	4.2	173
77	Aircraft measurements of NO _{<i>x</i>} over the eastern Pacific and continental United States and implications for ozone production. Journal of Geophysical Research, 1990, 95, 10205-10233.	3.3	77
78	Study of the chemical composition of atmospheric aerosol particles in Hungary: a review. Atmospheric Research, 1991, 26, 275-283.	1.8	0
79	Transport, formation and sink processes behind surface ozone variability in north european conditions. Atmospheric Environment Part A General Topics, 1991, 25, 1437-1447.	1.3	15
80	Observations of tropospheric trace gases and meteorology in rural Virginia using an unattended monitoring system: Hurricane Hugo (1989), A case study. Journal of Geophysical Research, 1991, 96, 9341-9360.	3.3	10
81	The relative impact of stratospheric photochemical production on tropospheric NO _{<i>y</i>} levels: A model study. Journal of Geophysical Research, 1991, 96, 18631-18646.	3.3	74
82	Trace gas concentrations and meteorology in rural Virginia: 1. Ozone and carbon monoxide. Journal of Geophysical Research, 1991, 96, 22461-22475.	3.3	54
83	The production of carbon monoxide by the homogeneous NO x -induced photooxidation of volatile organic compounds in the troposphere. Journal of Atmospheric Chemistry, 1991, 13, 155-182.	1.4	31
84	Measurements of nitric oxide and nitrogen dioxide during the Mauna Loa Observatory Photochemistry Experiment. Journal of Geophysical Research, 1992, 97, 10361-10374.	3.3	67
85	Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50ïį½ N and 30ïį½ S. Journal of Atmospheric Chemistry, 1992, 15, 283-298.	1.4	36
86	lce-age atmospheric concentration of nitrous oxide from an Antarctic ice core. Nature, 1992, 360, 449-451.	13.7	105
87	Global NO _{<i>x</i>} , HNO ₃ , PAN, and NO _{<i>y</i>} distributions from fossil fuel combustion emissions: A model study. Journal of Geophysical Research, 1993, 98, 7165-7180.	3.3	106
88	Reaction of N ₂ O ₅ on tropospheric aerosols: Impact on the global distributions of NO _{<i>x</i>} , O ₃ , and OH. Journal of Geophysical Research, 1993, 98, 7149-7163.	3.3	620
89	The meteorological environment of the tropospheric ozone maximum over the tropical South Atlantic Ocean. Journal of Geophysical Research, 1993, 98, 10621-10641.	3.3	79
90	Boundary layer ozone variations in the eastern United States and their association with meteorological variations: Long-term variations. Journal of Geophysical Research, 1994, 99, 16839.	3.3	50
91	Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative forcing. Journal of Geophysical Research, 1994, 99, 16617.	3.3	290

#	Article	IF	CITATIONS
92	Relationship between back trajectories and tropospheric trace gas concentrations in rural Virginia. Atmospheric Environment, 1994, 28, 2789-2800.	1.9	42
93	Ozone and carbon monoxide measurements at a remote maritime location, mace head, Ireland, from 1990 to 1992. Atmospheric Environment, 1994, 28, 2623-2637.	1.9	66
94	Trends in surface ozone concentrations at Arosa (Switzerland). Atmospheric Environment, 1994, 28, 75-87.	1.9	226
95	Stratosphereâ€troposphere ozone exchange at Athens, Greece. Toxicological and Environmental Chemistry, 1994, 44, 211-216.	0.6	8
96	The biologically active ultraviolet radiation in relation to the surface ozone and the wind field. Toxicological and Environmental Chemistry, 1994, 44, 233-242.	0.6	5
97	Effects of ozone on growth and gas exchange of Eucalyptus globulus seedlings. Tree Physiology, 1995, 15, 207-210.	1.4	13
98	Volatile Organics in Mediterranean Shrubs and Their Potential Role in a Changing Environment. Ecological Studies, 1995, , 343-370.	0.4	25
99	Introductory lecture. Overview of tropospheric chemistry: developments during the past quarter century and a look ahead. Faraday Discussions, 1995, 100, 1.	1.6	76
100	Empirical model of global soil-biogenic NOχemissions. Journal of Geophysical Research, 1995, 100, 11447.	3.3	744
101	A 3-D modelling study of the sources and sinks of atmospheric carbon monoxide. Ecological Modelling, 1996, 88, 53-71.	1.2	12
102	Atmospheric impact of NOxemissions by subsonic aircraft: A three-dimensional model study. Journal of Geophysical Research, 1996, 101, 1423-1428.	3.3	122
103	The vertical distribution of ozone measured at Brazzaville, Congo during TRACE A. Journal of Geophysical Research, 1996, 101, 24095-24103.	3.3	22
104	Three-dimensional view of the large-scale tropospheric ozone distribution over the North Atlantic Ocean during summer. Journal of Geophysical Research, 1996, 101, 29305-29316.	3.3	32
105	Photochemical production of carbon monoxide in authentic rainwater. Geophysical Research Letters, 1996, 23, 2769-2772.	1.5	11
106	Simulated global tropospheric PAN: Its transport and impact on NOx. Journal of Geophysical Research, 1996, 101, 12621-12638.	3.3	194
107	Aircraft section measurements of meteorology and ozone in northern Namibia during SAFARI-92. Journal of Geophysical Research, 1996, 101, 23713-23720.	3.3	4
108	Ground-based measurements of NOxand total reactive oxidized nitrogen (NOy) at Sable Island, Nova Scotia, during the NARE 1993 summer intensive. Journal of Geophysical Research, 1996, 101, 28991-29004.	3.3	37
109	Three-dimensional study of the relative contributions of the different nitrogen sources in the troposphere. Journal of Geophysical Research, 1996, 101, 22955-22968.	3.3	98

#	Article	IF	CITATIONS
110	A global three-dimensional time-dependent lightning source of tropospheric NOx. Journal of Geophysical Research, 1996, 101, 22911-22922.	3.3	114
111	Stickstoffverbindungen in der TroposphÄ re . Nachrichten Aus Der Chemie, 1996, 44, 477-480.	0.0	2
112	The influence of human activities on the distribution of hydroxyl radicals in the troposphere. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1996, 354, 501-531.	1.6	23
113	Mein Leben mit O ₃ , NO _x und anderen YZO _x â€Verbindungen (Nobelâ€Vortrag). Angewandte Chemie, 1996, 108, 1878-1898.	1.6	5
114	Estimation of hydroxyl radical concentrations in the marine atmospheric boundary layer using a reactive atmospheric tracer. Journal of Atmospheric Chemistry, 1996, 25, 97-113.	1.4	24
115	Actinic flux and photolysis frequency comparison computations using the model PHOTOGT. Journal of Atmospheric Chemistry, 1996, 24, 1-21.	1.4	20
116	Relative radiative forcing consequences of global emissions of hydrocarbons, carbon monoxide and NOx from human activities estimated with a zonally-averaged two-dimensional model. Climatic Change, 1996, 34, 439-462.	1.7	44
117	Application of a Gaussian Distribution Function To Describe Molecular UVâ^'Visible Absorption Continua. 2. The UV Spectra of RO2•Radicals. Journal of Physical Chemistry A, 1997, 101, 2561-2567.	1.1	15
118	Tropospheric chemical ozone tendencies in CO-CH4-NOy-H2O system: Their sensitivity to variations in environmental parameters and their application to a global chemistry transport model study. Journal of Geophysical Research, 1997, 102, 21221-21237.	3.3	57
119	The global impact of human activity on tropospheric ozone. Geophysical Research Letters, 1997, 24, 791-794.	1.5	106
120	Title is missing!. Journal of Atmospheric Chemistry, 1997, 26, 223-274.	1.4	226
121	A low latitude stratospheric intrusion associated with a cut-off low. Geophysical Research Letters, 1998, 25, 67-70.	1.5	25
122	Atmospheric Chemistry. , 1999, , 51-62.		2
123	HERBIVORE-INDUCED MONOTERPENE EMISSIONS FROM CONIFEROUS FORESTS: POTENTIAL IMPACT ON LOCAL TROPOSPHERIC CHEMISTRY. , 1999, 9, 1147-1159.		35
124	Model study of a stratospheric intrusion event at lower midlatitudes associated with the development of a cutoff low. Journal of Geophysical Research, 1999, 104, 1717-1727.	3.3	31
125	Ozone and peroxy radical budgets in the marine boundary layer: Modeling the effect of NOx. Journal of Geophysical Research, 1999, 104, 8047-8056.	3.3	15
126	Carbon monoxide in the U.S. mid-Atlantic troposphere: Evidence for a decreasing trend. Geophysical Research Letters, 1999, 26, 2861-2864.	1.5	15
127	Role of convection in determining the budget of odd hydrogen in the upper troposphere. Journal of Geophysical Research, 1999, 104, 26927-26941.	3.3	73

#	Article	IF	CITATIONS
128	Relative roles of climate and emissions changes on future tropospheric oxidant concentrations. Journal of Geophysical Research, 1999, 104, 18631-18645.	3.3	122
129	Simulated tropospheric NOx: Its evaluation, global distribution and individual source contributions. Journal of Geophysical Research, 1999, 104, 26279-26306.	3.3	107
131	Influence of stratosphere-troposphere exchange on tropospheric ozone over the tropical Indian Ocean during the winter monsoon. Journal of Geophysical Research, 2000, 105, 15403-15416.	3.3	50
132	What controls tropospheric ozone?. Journal of Geophysical Research, 2000, 105, 3531-3551.	3.3	577
133	Impacts of biomass burning on tropospheric CO, NOx, and O3. Journal of Geophysical Research, 2000, 105, 6633-6653.	3.3	237
134	Summertime NOyspeciation at the Jungfraujoch, 3580 m above sea level, Switzerland. Journal of Geophysical Research, 2000, 105, 6655-6667.	3.3	110
135	Diurnal ozone cycle in the tropical and subtropical marine boundary layer. Journal of Geophysical Research, 2000, 105, 11547-11559.	3.3	27
136	Observed distributions of nitrogen oxides in the remote free troposphere from the Nasa Global Tropospheric Experiment Programs. Reviews of Geophysics, 2000, 38, 61-116.	9.0	81
137	Biogenic nitric oxide emissions upscaling: An approach for Zimbabwe. Global Biogeochemical Cycles, 2001, 15, 1005-1020.	1.9	26
138	What does the global mean OH concentration tell us?. Atmospheric Chemistry and Physics, 2001, 1, 37-49.	1.9	204
139	Long-term tropospheric variations of ozone content caused by galactic cosmic ray influence. Advances in Space Research, 2001, 27, 2019-2024.	1.2	2
140	Title is missing!. Climatic Change, 2001, 49, 463-487.	1.7	115
141	Hydrogen peroxide, organic peroxides and organic acids in a forested area during FIELDVOC'94. Chemosphere, 2001, 3, 309-326.	1.2	31
142	Estimates of the Chemical Budget for Ozone at Waliguan Observatory. Journal of Atmospheric Chemistry, 2002, 41, 21-48.	1.4	47
143	The Oxidation of Organic Compounds in the Troposphere and their Global Warming Potentials. Climatic Change, 2002, 52, 453-479.	1.7	137
144	Free Radicals and Fast Photochemistry during BERLIOZ. Journal of Atmospheric Chemistry, 2002, 42, 359-394.	1.4	85
145	Impact of biogenic terpene emissions from Brassica napus on tropospheric ozone over saxony (Germany). Environmental Science and Pollution Research, 2003, 10, 147-153.	2.7	7
146	Determination of Atmospheric Lifetimes via the Measurement of OH Radical Kinetics. Chemical Reviews, 2003, 103, 5049-5076.	23.0	109

ARTICLE IF CITATIONS The Black Triangle Area – Fit for Europe?. , 2004, , 515-516. 1 147 Photochemistry in the Arctic Free Troposphere: Ozone Budget and Its Dependence on Nitrogen Oxides 148 1.4 and the Production Rate of Free Radicals. Journal of Atmospheric Chemistry, 2004, 47, 107-I38. 149 A study of the NOxdependence of isoprene oxidation. Journal of Geophysical Research, 2004, 109, . 3.3 31 Chemical transport model ozone simulations for spring 2001 over the western Pacific: Regional ozone production and its global impacts. Journal of Geophysical Research, 2004, 109, . One-dimensional photochemical study of H2O2, CH3OOH, and HCHO in the marine boundary layer during Pacific Exploratory Mission in the Tropics (PEM-Tropics) B. Journal of Geophysical Research, 151 3.3 8 2004, 109, n/a-n/a. O3and CO in New England: Temporal variations and relationships. Journal of Geophysical Research, 3.3 2004, 109, n/a-n/a. Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: Implications for the 153 3.3 120 study of nitrate in snow and ice cores. Journal of Geophysical Research, 2004, 109, . Influence of Biomass Burning in Southeast Asia on the Lower Tropospheric Ozone Distribution Over 154 0.2 South China. Chinese Journal of Geophysics, 2004, 47, 869-877. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative 155 forcing: CTM calculations for the period 1990-2030. Atmospheric Chemistry and Physics, 2005, 5, 1.9 243 1731-1755. Tropospheric ozone over Equatorial Africa: regional aspects from the MOZAIC data. Atmospheric Chemistry and Physics, 2005, 5, 311-335. European Abatement of Surface Ozone in a Global Perspective. Ambio, 2005, 34, 47-53. 157 2.8 34 Introductory Lecture : Chemistry–climate coupling: the importance of chemistry in climate issues. 1.6 Faraday Discussions, 2005, 130, 9. Long-range transport to Europe: Seasonal variations and implications for the European ozone budget. 159 3.3 159 Journal of Geophysical Research, 2005, 110, . Distribution of stratospheric column ozone (SCO) determined from satellite observations: Validation of solar backscattered ultraviolet (SBUV) measurements in support of the tropospheric ozone residual (TOR) method. Journal of Geophysical Research, 2005, 110, . 3.3 14 Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global 161 1.9 846 Biogeochemical Cycles, 2006, 20, n/a-n/a. Regional NOxemission strength for the Indian subcontinent and the impact of emissions from India 34 and neighboring countries on regional O3chemistry. Journal of Geophysical Research, 2006, 111, . Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of 163 3.3 743 Geophysical Research, 2006, 111, . Global tropospheric ozone modeling: Quantifying errors due to grid resolution. Journal of 164 3.3 Geophysical Research, 2006, 111, .

		Report	
#	Article	IF	CITATIONS
165	Measurements of N2O5near Fairbanks, Alaska. Journal of Geophysical Research, 2006, 111, .	3.3	31
166	Seasonal variation of the surface ozone and its precursor gases during 2001–2003, measured at Anantapur (14.62°N), a semi-arid site in India. Atmospheric Research, 2006, 80, 151-164.	1.8	78
167	Mid-latitude tropospheric ozone columns from the MOZAIC program: climatology and interannual variability. Atmospheric Chemistry and Physics, 2006, 6, 1053-1073.	1.9	72
168	The global lightning-induced nitrogen oxides source. Atmospheric Chemistry and Physics, 2007, 7, 3823-3907.	1.9	545
169	Tropospheric OH and Cl levels deduced from non-methane hydrocarbon measurements in a marine site. Atmospheric Chemistry and Physics, 2007, 7, 4661-4673.	1.9	29
170	Thunderstorms, Lightning, Sprites and Magnetospheric Whistler-Mode Radio Waves. Surveys in Geophysics, 2008, 29, 499-551.	2.1	46
171	Differential Optical Absorption Spectroscopy. , 2008, , .		154
172	Diurnal and seasonal variabilities in surface ozone and its precursor gases at a semiâ€arid site Anantapur (14.62°N, 77.65°E, 331 m asl) in India. International Journal of Environmental Studies, 2008, 65, 247-265.	0.7	9
173	Impacts of Summer Biomass Burning in Australia on Carbon Monoxide, Ozone and Aerosols in the Troposphere of Darwin. , 2008, , .		1
174	Representativeness and climatology of carbon monoxide and ozone at the global GAW station Mt. Kenya in equatorial Africa. Atmospheric Chemistry and Physics, 2008, 8, 3119-3139.	1.9	56
175	Carbon Monoxide from Composting due to Thermal Oxidation of Biomass. Journal of Environmental Quality, 2008, 37, 592-598.	1.0	28
176	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	1.9	714
177	Diurnal, seasonal and weekdays–weekends variations of ground level ozone concentrations in an urban area in greater Cairo. Environmental Monitoring and Assessment, 2009, 149, 349-362.	1.3	98
178	Parameterization of plume chemistry into largeâ€scale atmospheric models: Application to aircraft NO _x emissions. Journal of Geophysical Research, 2009, 114, .	3.3	43
179	Variation in atmospheric ozone concentration following strong earthquakes. International Journal of Remote Sensing, 2009, 30, 349-356.	1.3	31
180	Tropical tropopause layer. Reviews of Geophysics, 2009, 47, .	9.0	827
181	Impact of stratospheric intrusions and intercontinental transport on ozone at Jungfraujoch in 2005: comparison and validation of two Lagrangian approaches. Atmospheric Chemistry and Physics, 2009, 9, 3371-3383.	1.9	20
182	Modeling the regional impact of ship emissions on NO _x and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization. Atmospheric Chemistry and Physics, 2010, 10, 6645-6660.	1.9	60

#	Article	IF	CITATIONS
183	Diurnal and seasonal variability of surface ozone and NO _{<i>x</i>} at a tropical coastal site: Association with mesoscale and synoptic meteorological conditions. Journal of Geophysical Research, 2011, 116, .	3.3	111
184	Free tropospheric ozone changes over Europe as observed at Jungfraujoch (1990–2008): An analysis based on backward trajectories. Journal of Geophysical Research, 2011, 116, .	3.3	56
185	Emission sources contributing to tropospheric ozone over Equatorial Africa during the summer monsoon. Atmospheric Chemistry and Physics, 2011, 11, 13395-13419.	1.9	13
186	Marine ecosystems' responses to climatic and anthropogenic forcings in the Mediterranean. Progress in Oceanography, 2011, 91, 97-166.	1.5	385
187	Structure and Dynamics of Ionospheric Plasma. International Journal of Geophysics, 2011, 2011, 1-2.	0.4	0
188	Electrodynamical Coupling of Earth's Atmosphere and Ionosphere: An Overview. International Journal of Geophysics, 2011, 2011, 1-13.	0.4	17
189	Trends of Ambient Concentrations of Gaseous Air Pollutants in Almadinah Al Menawwarah, Central Area, Saudi Arabia. , 2012, 23, .		0
190	Influence of Stratospheric Intrusion on the Surface Ozone Levels in India. , 2012, 2012, 1-7.		4
191	Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007. Atmospheric Chemistry and Physics, 2012, 12, 8727-8750.	1.9	52
192	Surface ozone variation at Bhubaneswar and intra-corelationship study with various parameters. Journal of Earth System Science, 2012, 121, 1163-1175.	0.6	27
193	Analysis and interpretation of 25 years of ozone observations at the Mace Head Atmospheric Research Station on the Atlantic Ocean coast of Ireland from 1987 to 2012. Atmospheric Environment, 2013, 80, 361-368.	1.9	45
194	Influence of temperature to the short-term effects of various ozone metrics on daily mortality in Suzhou, China. Atmospheric Environment, 2013, 79, 119-128.	1.9	26
195	Tropospheric column O3 and NO2 over the Indian region observed by Ozone Monitoring Instrument (OMI): Seasonal changes and long-term trends. Atmospheric Environment, 2013, 65, 25-39.	1.9	58
196	Observational evidence of planetary wave influences on ozone enhancements over upper troposphere North Africa. Atmospheric Research, 2013, 129-130, 1-19.	1.8	4
197	Analysis of long-term ozone trend over Delhi and its meteorological adjustment. International Journal of Environmental Science and Technology, 2013, 10, 1325-1336.	1.8	8
198	Prediction of 8Âh-average ozone concentration using a supervised hidden Markov model combined with generalized linear models. Atmospheric Environment, 2013, 81, 199-208.	1.9	16
199	Anomalies of total column CO and O ₃ associated with great earthquakes in recent years. Natural Hazards and Earth System Sciences, 2013, 13, 2513-2519.	1.5	14
200	Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013. 13. 3063-3085.	1.9	361

#	Article	IF	CITATIONS
201	Technical Note: Temporal change in averaging kernels as a source of uncertainty in trend estimates of carbon monoxide retrieved from MOPITT. Atmospheric Chemistry and Physics, 2013, 13, 11307-11316.	1.9	18
202	Evaluation of HO _x sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem. Atmospheric Chemistry and Physics, 2013, 13, 2031-2044.	1.9	62
203	Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011. Atmospheric Chemistry and Physics, 2013, 13, 7859-7874.	1.9	55
204	Petrologic Evidence of Volatile Emissions from Major Historic and Pre-Historic Volcanic Eruptions. Geophysical Monograph Series, 0, , 31-53.	0.1	53
205	Ambient air pollution and assessment of ozone creation potential for reactive volatile organic compounds in urban atmosphere of southwestern, Nigeria. African Journal of Environmental Science and Technology, 2013, 7, 815-823.	0.2	4
206	Effects of temperature and irradiance on a benthic microalgal community: A combined twoâ€dimensional oxygen and fluorescence imaging approach. Limnology and Oceanography, 2014, 59, 1599-1611.	1.6	19
207	Tracking sinks of atmospheric methane using small world networks. Chemosphere, 2014, 117, 766-773.	4.2	4
208	Ozone in the Atmosphere. , 2014, , .		14
209	Tropospheric ozone and its regional transport over Cape Town. Atmospheric Environment, 2014, 87, 228-238.	1.9	9
210	Near-surface ozone trends over Europe in RegCM3/CAMx simulations for the time period 1996–2006. Atmospheric Environment, 2014, 97, 6-18.	1.9	9
211	Ozone in the Troposphere. , 2014, , 49-82.		2
212	Model-simulated trend of surface carbon monoxide for the 2001–2010 decade. Atmospheric Chemistry and Physics, 2014, 14, 10465-10482.	1.9	47
213	Influence of air mass downward transport on the variability of surface ozone at Xianggelila Regional Atmosphere Background Station, southwest China. Atmospheric Chemistry and Physics, 2014, 14, 5311-5325.	1.9	42
214	Prediction of surface ozone episodes using clusters based generalized linear mixed effects models in Houston–Galveston–Brazoria area, Texas. Atmospheric Pollution Research, 2015, 6, 245-253.	1.8	16
215	Characterisation of <i>J</i> (O ¹ D) at Cape Grim 2000–2005. Atmospheric Chemistry and Physics, 2015, 15, 7337-7349.	1.9	8
216	Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 2015, 15, 8889-8973.	1.9	942
217	An evaluation of ozone dry deposition in global scale chemistry climate models. Atmospheric Chemistry and Physics, 2015, 15, 6419-6436.	1.9	120
218	Short term change in relative humidity during the festival of Diwali in India. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 129, 49-54.	0.6	3

#	Article	IF	CITATIONS
219	Diurnal and seasonal variation of BTEX in the air of Monterrey, Mexico: preliminary study of sources and photochemical ozone pollution. Air Quality, Atmosphere and Health, 2015, 8, 469-482.	1.5	45
220	An overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality. Atmospheric Environment, 2015, 109, 305-322.	1.9	93
223	Seven years of IASI ozone retrievals from FORLI: validation with independent total column and vertical profile measurements. Atmospheric Measurement Techniques, 2016, 9, 4327-4353.	1.2	50
224	Geosphere coupling and hydrothermal anomalies before the 2009 <i>M</i> _w Â6.3 L'Aquila earthquake in Italy. Natural Hazards and Earth System Sciences, 2016, 16, 1859-1880.	1.5	34
226	Tropical tropospheric ozone columns from nadir retrievals of GOME-1/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A (1996–2012). Atmospheric Measurement Techniques, 2016, 9, 3407-3427.	1.2	7
227	On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East. Atmospheric Chemistry and Physics, 2016, 16, 14025-14039.	1.9	71
229	Ozone and carbon monoxide budgets over the Eastern Mediterranean. Science of the Total Environment, 2016, 563-564, 40-52.	3.9	15
230	Seasonal relationship between meteorological conditions and surface ozone in Korea based on an offline chemistry–climate model. Atmospheric Pollution Research, 2016, 7, 385-392.	1.8	9
231	Diurnal, Seasonal, and Vertical Variability in Carbon Monoxide Levels at a Semiâ€Urban Site in India. Clean - Soil, Air, Water, 2017, 45, 1600432.	0.7	10
232	Correlation analysis between regional carbon monoxide and black carbon from satellite measurements. Atmospheric Research, 2017, 196, 29-39.	1.8	7
233	Variability of tropospheric columnar NO2 and SO2 over eastern Indo-Gangetic Plain and impact of meteorology. Air Quality, Atmosphere and Health, 2017, 10, 565-574.	1.5	13
234	Spatio-temporal variation of air pollutants and the impact of anthropogenic effects on the photochemical buildup of ozone across Delhi-NCR. Sustainable Cities and Society, 2017, 35, 740-751.	5.1	24
235	Carbon nanotubes / activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone. Building and Environment, 2017, 125, 60-66.	3.0	60
236	Characterizing the seasonal cycle and vertical structure of ozone in Paris, France using four years of ground based LIDAR measurements in the lowermost troposphere. Atmospheric Environment, 2017, 167, 603-615.	1.9	18
237	High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain. Environmental Science & Technology, 2017, 51, 9588-9595.	4.6	78
238	Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness. Atmospheric Chemistry and Physics, 2017, 17, 11293-11311.	1.9	63
239	WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms. Atmospheric Chemistry and Physics, 2017, 17, 14393-14413.	1.9	65
242	Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale. Geoscientific Model Development, 2017, 10, 609-638.	1.3	41

#	Article	IF	CITATIONS
243	Kinetics in the real world: linking molecules, processes, and systems. Physical Chemistry Chemical Physics, 2018, 20, 10561-10568.	1.3	5
244	Spatio-temporal assessment and seasonal variation of tropospheric ozone in Pakistan during the last decade. Environmental Science and Pollution Research, 2018, 25, 8441-8454.	2.7	7
245	Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas. Environment International, 2018, 116, 186-196.	4.8	145
246	Decadal changes in surface ozone at the tropical station Thiruvananthapuram (8.542Ű N, 76.858Ű E), India: effects of anthropogenic activities and meteorological variability. Environmental Science and Pollution Research, 2018, 25, 14827-14843.	2.7	30
247	A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation. Atmospheric Chemistry and Physics, 2018, 18, 15515-15534.	1.9	34
248	IUPAC in the (real) clouds. Chemistry International, 2018, 40, 10-13.	0.3	1
250	Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements. Atmospheric Measurement Techniques, 2018, 11, 5125-5152.	1.2	47
251	Emissions of Volatile Organic Compounds from road marking paints. Atmospheric Environment, 2018, 193, 153-157.	1.9	30
252	A review of four decades of atmospheric trace gas measurements at Cape Point, South Africa. Transactions of the Royal Society of South Africa, 2018, 73, 113-132.	0.8	9
253	Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implications. Environmental Microbiology, 2018, 20, 3462-3483.	1.8	165
254	Revisiting the contribution of land transport and shipping emissions to tropospheric ozone. Atmospheric Chemistry and Physics, 2018, 18, 5567-5588.	1.9	26
255	The impact of NOx emissions from lightning on the production of aviation-induced ozone. Atmospheric Environment, 2018, 187, 410-416.	1.9	10
256	Theoretical study on the gas phase reaction of CH2O + NH3: the formation of CH2O⋯NH3, NH2CH2OH, or CH2NH + H2O. Physical Chemistry Chemical Physics, 2019, 21, 19242-19251.	1.3	13
257	N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Scientific Reports, 2019, 9, 10691.	1.6	42
259	The oceanic cycle of carbon monoxide and its emissions to the atmosphere. Biogeosciences, 2019, 16, 881-902.	1.3	42
260	Vertical distribution of ozone over Shanghai during late spring: A balloon-borne observation. Atmospheric Environment, 2019, 208, 48-60.	1.9	47
261	A 24-year record of high-frequency, in situ, observations of hydrogen at the Atmospheric Research Station at Mace Head, Ireland. Atmospheric Environment, 2019, 203, 28-34.	1.9	4
264	Influence of vertical mixing and nighttime transport on surface ozone variability in the morning in Paris and the surrounding region. Atmospheric Environment, 2019, 197, 92-102.	1.9	22

#	Article	IF	Citations
265	Distribution and urban–suburban differences in ground-level ozone and its precursors over Shenyang, China. Meteorology and Atmospheric Physics, 2019, 131, 669-679.	0.9	10
267	Atmospheric Lifetimes of Halogenated Hydrocarbons: Improved Estimations From an Analysis of Modeling Results. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032243.	1.2	1
268	Chemometrics modelling of temporal changes of ozone half hourly concentrations in different monitoring stations. Chemometrics and Intelligent Laboratory Systems, 2020, 201, 104015.	1.8	2
269	Durable Waterborne Horizontal Road Markings for Improvement of Air Quality. Transportation Research Procedia, 2020, 45, 530-538.	0.8	3
270	The long-term trend and production sensitivity change in the US ozone pollution from observations and model simulations. Atmospheric Chemistry and Physics, 2020, 20, 3191-3208.	1.9	24
271	ENSO and Southeast Asian biomass burning modulate subtropical trans-Pacific ozone transport. National Science Review, 2021, 8, nwaa132.	4.6	28
272	Optimising air quality co-benefits in a hydrogen economy: a case for hydrogen-specific standards for NO _{<i>x</i>} emissions. Environmental Science Atmospheres, 2021, 1, 201-207.	0.9	30
273	Anthropogenic Source Contributions to Ozone Formation in the Greater Houston Area. Journal of Environmental Protection, 2021, 12, 249-264.	0.3	0
274	Intercomparison of the representations of the atmospheric chemistry of pre-industrial methane and ozone in earth system and other global chemistry-transport models. Atmospheric Environment, 2021, 248, 118248.	1.9	5
275	Ambient ozone pollution at a coal chemical industry city in the border of Loess Plateau and Mu Us Desert: characteristics, sensitivity analysis and control strategies. PeerJ, 2021, 9, e11322.	0.9	7
276	Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa. Atmospheric Chemistry and Physics, 2021, 21, 8195-8211.	1.9	12
277	Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmospheric Chemistry and Physics, 2021, 21, 7253-7269.	1.9	93
278	Opinion: Papers that shaped tropospheric chemistry. Atmospheric Chemistry and Physics, 2021, 21, 12909-12948.	1.9	4
279	Comparison of INSAT-3D retrieved total column ozone with ground-based and AIRS observations over India. Science of the Total Environment, 2021, 793, 148518.	3.9	4
280	Distribution of reactive trace gases over South Asia: Observations and modeling. , 2022, , 147-169.		2
281	Seasonal Variations of Fine Particulate Matter and Mortality Rate in Seoul, Korea with a Focus on the Short-Term Impact of Meteorological Extremes on Human Health. Atmosphere, 2021, 12, 151.	1.0	14
282	Microbiological Aspects of Regulating the Carbon Monoxide Content in the Earth's Atmosphere. Advances in Microbial Ecology, 1978, , 203-244.	0.1	21
283	Tropospheric Ozone Budget: Formation, Depletion and Climate Change. , 2018, , 31-64.		5

~		_	
	TION	KED	ORT

#	Article	IF	CITATIONS
285	Global Problems of Atmospheric Chemistry — The Story of Man's Impact on Atmospheric Ozone. , 1999, , 3-30.		2
286	Title is missing!. , 1986, , .		3
287	Some elementary species (other than those containing carbon) involved in combustion. , 1985, , 129-260.		2
288	Stratospheric Ozone Modification by Man's Influence. , 1984, , 251-336.		2
289	The Global NoX Cycle. Studies in Environmental Science, 1982, 21, 15-29.	0.0	6
290	Air chemistry and terrestrial gas emissions: a global perspective. Philosophical Transactions of the Royal Society: Physical and Engineering Sciences, 1995, 351, 205-217.	1.0	24
291	Global distribution and trends of tropospheric ozone: An observation-based review. Elementa, 2014, 2,	1.1	365
292	Trends of Ambient Concentrations of Gaseous Air Pollutants in an Urban Area. Journal of Environmental Conservation Research, 2014, 2, 1.	0.1	16
293	Measurement of surface ozone and its precursor NOx over urban and rural locations in Kannur- a tropical coastal site in India. Indian Journal of Science and Technology, 2010, 3, 1198-1201.	0.5	1
294	Contribution of solvents from road marking paints to tropospheric ozone formation. Budownictwo I Architektura, 2019, 15, 007-018.	0.1	10
295	On the use of MOZAIC-IAGOS data to assess the ability of the MACC reanalysis to reproduce the distribution of ozone and CO in the UTLS over Europe. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 27955.	0.8	11
296	Simultaneous Observations of Nitrogen Dioxide, Formaldehyde and Ozone in the Indo-Gangetic Plain. Aerosol and Air Quality Research, 2019, 19, 1749-1764.	0.9	28
297	Global-scale distribution of ozone in the remote troposphere from the ATom and HIPPO airborne field missions. Atmospheric Chemistry and Physics, 2020, 20, 10611-10635.	1.9	31
308	Distribution of ozone and its precursors over Bay of Bengal during winter 2009: role of meteorology. Annales Geophysicae, 2011, 29, 1613-1627.	0.6	26
309	Tropospheric Ozone in Tehran, Iran, during the last 20 years. Environmental Geochemistry and Health, 2022, 44, 3615-3637.	1.8	10
310	Understanding temporal and spatial changes of O3 or NO2 concentrations combining multivariate data analysis methods and air quality transport models. Science of the Total Environment, 2022, 806, 150923.	3.9	6
313	Introduction to Atmospheric Chemistry and Constituent Transport. , 2010, , 409-430.		0
316	Evaluation of Ozone Smog Alerts on Actual Ozone Concentrations: A Case Study in North Carolina. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
318	Multiple Regression Analysis of Ground level Ozone and its Precursor Pollutants in Coastal Mega City of Mumbai, India. MOJ Ecology & Environmental Sciences, 2017, 2, .	0.1	0
319	Ozone Concentrations in Troposphere: Historical and Current Perspectives. , 2018, , 1-29.		1
320	Air Quality Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area. Open Journal of Air Pollution, 2018, 07, 263-285.	0.4	2
322	Ambient ozone over mid-Brahmaputra Valley, India: effects of local emissions and atmospheric transport on the photostationary state. Environmental Monitoring and Assessment, 2021, 193, 790.	1.3	5
323	Satellite monitoring of stratospheric ozone intrusion exceptional events- a typical case of China in 2019. Atmospheric Pollution Research, 2022, 13, 101297.	1.8	6
324	Improving the air quality with Functionalized Carbon Nanotubes: Sensing and remediation applications in the real world. Chemosphere, 2022, 299, 134468.	4.2	18
325	Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
326	Case study of deep STE event of ozone at a low latitude Indian station using simultaneous balloon borne ozonesonde and surface ozone measurements. Mausam, 2021, 64, 605-612.	0.1	0
327	Rate Coefficients for OH + NO (+N ₂) in the Fall-off Regime and the Impact of Water Vapor. Journal of Physical Chemistry A, 2022, 126, 3863-3872.	1.1	1
328	Characteristics and Causes of Ozone Pollution in 16 Cities of Yunnan Plateau. Atmosphere, 2022, 13, 1177.	1.0	2
329	Assessing the short-term effects of ozone exposure on the indicator of pharmacy visits in Nanjing based on mobile phone big data. Journal of Cleaner Production, 2022, 379, 134823.	4.6	0
330	Estimation of Lightning-Generated NOx in the Mainland of China Based on Cloud-to-Ground Lightning Location Data. Advances in Atmospheric Sciences, 2023, 40, 129-143.	1.9	0
331	The Interface Between Magma and Earth's Atmosphere. Geochemistry, Geophysics, Geosystems, 2022, 23,	1.0	5
332	An evaluation of long-term gridded datasets of total columnar ozone retrieved from MERRA-2 and AIRS over the Indian region. Environmental Science and Pollution Research, 0, , .	2.7	1
334	High-spectral-resolution Fabry-Pérot interferometers overcome fundamental limitations of present volcanic gas remote sensing techniques. Frontiers in Earth Science, 0, 11, .	0.8	0