CITATION REPORT List of articles citing

Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III)

DOI: 10.1016/0039-9140(74)80012-3 Talanta, 1974, 21, 314-8.

Source: https://exaly.com/paper-pdf/11945735/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF		Citations
787	Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at AnoxicOxic Interfaces.		
786	Artificial Cytochrome c Mimics: Graphene OxideFe(III) Complex-Coated Molecularly Imprinted Colloidosomes for Selective Photoreduction of Highly Toxic Pollutants.		
7 ⁸ 5	Activation of Persulfates Using Siderite as a Source of Ferrous Ions: Sulfate Radical Production, Stoichiometric Efficiency, and Implications.		
784	Anisotropic Morphological Changes in Goethite during Fe2+-Catalyzed Recrystallization.		
783	Susceptibility of Goethite to Fe2+-Catalyzed Recrystallization over Time.		
782	Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite Transformation into Goethite and Magnetite.		
781	The Selection of masking agents for use in analytical chemistry. 1975 , 5, 85-118		1
780	Effect of anions on the oxygenation of ferrous ion in neutral solutions. 1976 , 38, 113-117		113
779	The effect of ferric hydroxide on the oxygenation of ferrous ions in neutral solutions. 1976 , 16, 197-207		174
778	Effects of Additives on Solid State Reaction. III. Effects of Halide Additives on the Formation of MgFe2O4. 1976 , 49, 1289-1293		8
777	Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides. 1980 , 20, 963-971		97
776	Photolyse von ternEen Fe(III)-Komplexen mit Oxalat- und Phenolat-Liganden. 1981 , 323, 864-868		2
775	Electron microscope studies of iron corrosion products in water at room temperature. 1982 , 22, 147-158		46
774	Precipitation of cobalt ferrites. 1982 , 90, 100-109		110
773	Colorimetric determination of catechol siderophores in microbial cultures. 1983 , 133, 163-9		49
77²	The kinetics of the oxidation of ferrous iron in synthetic and natural waters. <i>Geochimica Et Cosmochimica Acta</i> , 1983 , 47, 67-79	5	252
771	Some Considerations on Iron Removal. <i>Journal of Environmental Engineering, ASCE</i> , 1984 , 110, 1048-106½		4

770	Extraction of iron from plant leaves by Fe (II) chelators. 1984, 7, 777-784	55
769	Catalytic decomposition of hydrogen peroxide by ferric ion in dilute sulfuric acid solutions. 1985 , 16, 181-186	18
768	THE AQUEOUS PHOTOLYSIS OF ETHYLENE GLYCOL ADSORBED ON GOETHITE. 1985 , 41, 409-416	18
767	Photoinduced reductive dissolution of .alphairon oxide (.alphaFe2O3) by bisulfite. <i>Environmental Science & Environmental </i>	110
766	Environmental factors affecting the acid neutralization capacity of Finnish glacial till deposits Presented at the 14th Annual Symposium on the Analytical Chemistry of Pollutants, Barcelona, November 21 123, 1984 1986, 11, 61-78	3
765	Marcasite precipitation from hydrothermal solutions. <i>Geochimica Et Cosmochimica Acta</i> , 1986 , 50, 2615-2639	215
764	Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. <i>Geochimica Et Cosmochimica Acta</i> , 1986 , 50, 1509-1520	407
763	Acidic rate- and flow-controlled dissolution of uraninite ores. 1986 , 17, 405-413	6
762	Mechanisms of nonbiological pyritic sulfur oxidation under alkaline conditions. 1989, 3, 65-76	5
761	Environmental management of acid water problems in mining areas. 1990 , 9, 113-131	1
760	Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. 1990 , 24, 79-89	502
759	Sulfur, iron and solid phase transformations during the biological oxidation of pyritic mine spoil. 1991 , 23, 101-107	23
758	Iron Nutrition and Interactions in Plants. 1991,	5
757	Aqueous-phase photochemical sources of peroxyl radicals and singlet molecular oxygen in clouds and fog. 1992 , 97, 12913	64
756	Migration of arsenic(III) during bacterial oxidation of arsenopyrite in chalcopyrite concentrate by Thiobacillus ferrooxidans. <i>Applied Microbiology and Biotechnology</i> , 1992 , 38, 429-431	27
755	Adsorption of protons, Fe(II) and Al(III) on lepidocrocite (FeOOH). 1992 , 63, 259-268	84
754	An ultraviolet spectrophotometric method for the determination of oxidation of iron sulphide minerals by bacteria. 1993 , 7, 573-574	11
753	Kinetics of redox cycling of iron coupled with fulvic acid. 1993 , 55, 103-111	25

752	Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions. 1993 , 73, 105-120		24
751	The role of copper and oxalate in the redox cycling of iron in atmospheric waters. 1993 , 27, 2173-2185		158
750	Examining the reactions between soluble iron, DOC, and alternative oxidants during conventional treatment. 1994 , 86, 117-127		7
749	Kinetics of arsenic(III) oxidation by iron(III) catalysed by pyrite in the presence of Thiobacillus ferrooxidans. 1994 , 16, 1199-1204		23
748	Effect of grinding on the rate of oxidation of pyrite by oxygen in acid solutions. <i>Geochimica Et Cosmochimica Acta</i> , 1994 , 58, 4649-4655	.5	34
747	Large-scale Intrusion of shallow water into a vertical fracture zone in crystalline bedrock: Initial hydrochemical perturbation during tunnel construction at the SpIHard Rock Laboratory, southeastern Sweden. 1994 , 30, 1747-1763		52
746	Reactivity of aquatic iron(III) oxyhydroxides[Implications for redox cycling of iron in natural waters. <i>Applied Geochemistry</i> , 1994 , 9, 23-36	.5	70
745	Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets. <i>Geochimica Et Cosmochimica Acta</i> , 1995 , 59, 3123-3130	.5	111
744	Effect of Temperature, Ionic Strength, Background Electrolytes, and Fe(III) on the Reduction of Hexavalent Chromium by Soil Humic Substances. <i>Environmental Science & Environmental Science & Environ</i>	⁰ 2 ³ 47	7 ¹⁷³
743	Formation and stability of iron(II) oxidation products under natural concentrations of dissolved silica. 1996 , 30, 1208-1214		60
742	Precipitation of Iron(III) Hydroxides from Homogeneous Solutions. 1996 , 432, 163		
741	Accumulation and remobilization of aqueous chromium(VI) at iron oxide surfaces: Application of a thin-film continuous flow-through reactor. 1996 , 21, 141-151		24
740	Catalytic effects of high fe(iii) concentrations on fe(ii) oxidation. 1996 , 34, 389		9
739	Effect of pH on the Reductive Dissolution Rates of Iron(III) Hydroxide by Ascorbate. 1997 , 13, 1835-1839		35
738	Formation of iron(III) hydroxides from homogeneous solutions. 1997 , 31, 1347-1354		36
737	Iron(II)-catalyzed photochemical decomposition of oxalic acid and generation of H2O2 in atmospheric liquid phases. <i>Chemosphere</i> , 1997 , 35, 2051-2058	·4	57
736	Effect of heavy metals on the ferrous iron oxidizing ability of Thiobacillus ferrooxidans. 1997 , 44, 53-63		22
735	Aqueous-phase photolysis of biacetyl (An ⊞icarbonyl compound): A sink for biacetyl, and a source of acetic acid, peroxyacetic acid, hydrogen peroxide, and the highly oxidizing acetylperoxyl radical in aqueous aerosols, fogs, and clouds. 1997 , 31, 497-510		37

734	Influence of ageing on the catalytic activity of ferric sludge for oxidation of Fe(II). 1998, 38, 129	3
733	Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. 1999 , 65, 3633-40	185
732	Photocatalytic reaction by iron(III)-humate complex and its effect on the removal of organic pollutant. 1999 , 73, 103-116	9
731	Interactions of Thiobacillus ferrooxidans with arsenite, arsenate and arsenopyrite. 1999 , 9, 521-532	1
730	Light acceleration of iron(III) reduction by humic acid in the aqueous solution. 1999 , 155, 249-258	41
729	Inhibitory effect of iron-oxidizing bacteria on ferrous-promoted chalcopyrite leaching. 1999 , 64, 478-83	26
728	Oxidizing 2,4,6-trinitrotoluene with pyrite-H2O2 suspensions. <i>Chemosphere</i> , 1999 , 39, 1629-1638	40
727	Electron flow in an iron-rich acidic sedimentBvidence for an acidity-driven iron cycle. 2000 , 45, 1077-1087	122
726	Organic Matter Diagenesis in Acidic Mine Lakes. 2000 , 28, 123-135	25
725	Simultaneous determination of ferric, ferrous and total iron by extraction differential pulse polarography: application to the speciation of iron in rocks. 2000 , 65, 199-207	17
724	The autooxidation of hydrogen sulfide in the presence of hematite. 2000 , 168, 61-69	14
723	Effect of Supplemental Electron Donors on the Microbial Reduction of Fe(III), Sulfate, and CO(2) in Coal Mining-Impacted Freshwater Lake Sediments. 2000 , 40, 238-249	48
722	An experimental study on iron removal with ferric sludge recycling. 2000 , 42, 393-397	2
721	Photocatalytic formation of hydrogen peroxide over highly porous illuminated ZnO and TiO2thin film. 2000 , 78, 233-241	7
720	Iron. 2000 , 10, 226-237	2
719	Phosphorus sorption during iron(II) oxidation in the presence of dissolved silica. 2000 , 34, 3949-3956	75
718	Iron(III) Azide. 2001 ,	
717	Hydrolysis characteristic of polyferric sulfate coagulant and its optimal condition of preparation. 2001 , 182, 57-63	25

716	Effect of pH on the anaerobic microbial cycling of sulfur in mining-impacted freshwater lake sediments. 2001 , 46, 213-223		62
715	DETERMINATION OF DISSOLVED IRON(II) AND IRON(III) IN WATER WITH 5-Br-PAN-S BY SOLID PHASE SPECTROPHOTOMETRY. 2001 , 34, 2169-2178		7
714	Magnetic photocatalysts of the core-shell type. 2002 , 1, 742-4		27
713	Theoretical and Experimental Considerations Related to Reaction-Based Modeling: A Case Study Using Iron(III) Oxide Bioreduction. 2002 , 19, 253-287		19
712	Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions. 2002, 4, 414-21		57
711	Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils. 2002, 40, 73-81		4
710	Potential Remobilization of Toxic Anions during Reduction of Arsenated and Chromated Schwertmannite by the Dissimilatory Fe(III)-Reducing Bacterium Acidiphilium cryptum JF-5. 2002 , 2, 57-67	7	19
709	Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. <i>Environmental Science & Environmental Science & Technology</i> , 2003 , 37, 3309-15	20.3	132
708	Microbial processes associated with roots of bulbous rush coated with iron plaques. 2003 , 46, 302-11		23
707	Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. <i>Environmental Science & amp; Technology</i> , 2003 , 37, 5750-6	10.3	225
706	A Novel &CDHemin Complex Photocatalyst for Efficient Degradation of Organic Pollutants at Neutral pHs under Visible Irradiation. 2003 , 107, 9409-9414		61
705	High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe3+/H(2)O(2) system. <i>Chemosphere</i> , 2003 , 51, 963-71	3.4	59
704	Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H(2)O(2) process. <i>Chemosphere</i> , 2003 , 51, 901-12	3.4	43
703	Electrochemical regeneration of Fe2+ in Fenton oxidation processes. 2003 , 37, 1308-19		205
702	Sorption kinetics of Fe(II), Zn(II), Co(II), Ni(II), Cd(II), and Fe(II)/Me(II) onto hematite. 2003, 37, 4135-42		77
701	Thermodynamics and organic matter: constraints on neutralization processes in sediments of highly acidic waters. <i>Applied Geochemistry</i> , 2003 , 18, 25-36	5.5	29
700	The effects of reaction-product formation on the reductive dissolution of MnO2 by Fe(II). Environmental Science & Damp; Technology, 2003, 37, 5589-96	20.3	24
699	Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs. 2004 , 70, 1129-34		54

698	Evidence for a hydrologically controlled iron cycle in acidic and iron rich sediments. 2004 , 66, 47-59		30
697	Application of photoactivated periodate to the decolorization of reactive dye: reaction parameters and mechanism. 2004 , 165, 35-41		59
696	Inhibition of biological reductive dissolution of hematite by ferrous iron. <i>Environmental Science & Environmental Science</i>	10.3	54
695	Efficient H2O2 Oxidation of Organic Pollutants Catalyzed by Supported Iron Sulfophenylporphyrin under Visible Light Irradiation. 2004 , 108, 7263-7270		80
694	A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2. <i>Chemosphere</i> , 2004 , 55, 715-23	8.4	313
693	Temperature dependence of hydroxyl radical formation in the hv/Fe3+/H2O2 and Fe3+/H2O2 systems. <i>Chemosphere</i> , 2004 , 56, 923-34	8.4	71
692	Determination of quantum yields for the photolysis of Fe(III)-hydroxo complexes in aqueous solution using a novel kinetic method. <i>Chemosphere</i> , 2004 , 57, 1449-58	8.4	30
691	Formation and stability of schwertmannite in acidic mining lakes. <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 1185-1197	5.5	283
690	Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II). <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 3217-3229	5.5	152
689	Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2. 2004 , 38, 2383-93		113
688	Dual roles of CO2*- for degrading synthetic organic chemicals in the photo/ferrioxalate system. 2004 , 38, 3531-40		51
687	Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water. 2005 , 39, 27-37		68
686	Groundwater Inflow Controls Acidity Fluxes in an Iron Rich and Acidic Lake. 2005, 33, 104-117		9
685	UV photolytic mechanism of N-nitrosodimethylamine in water: dual pathways to methylamine versus dimethylamine. <i>Environmental Science & Environmental </i>	10.3	103
684	UV photolytic mechanism of N-nitrosodimethylamine in water: roles of dissolved oxygen and solution pH. <i>Environmental Science & Environmental Science </i>	10.3	78
683	Heterogeneous oxidation of Fe(II) on ferric oxide at neutral pH and a low partial pressure of O2. <i>Environmental Science & amp; Technology</i> , 2005 , 39, 6494-500	10.3	82
682	Photochemical oscillation of Fe(II)/Fe(III) ratio induced by periodic flux of dissolved organic matter. <i>Environmental Science & Environmental Science</i>	10.3	53
681	Metal binding by citrus dehydrin with histidine-rich domains. 2005 , 56, 2695-703		175

680	pH effect on OH radical production in photo/ferrioxalate system. 2005 , 39, 2893-900		154
679	Experimental inflow of groundwater induces a Biogeochemical regime shiftIn iron-rich and acidic sediments. 2006 , 111, n/a-n/a		15
678	Removal of Nitrate from Water by a Combination of Metallic Iron Reduction and Clinoptilolite Ion Exchange Process. 2006 , 95-110		2
677	Experimentally altered groundwater inflow remobilizes acidity from sediments of an iron rich and acidic lake. <i>Environmental Science & Environmental S</i>	10.3	16
676	Chemical controls on iron reduction in schwertmannite-rich sediments. 2006 , 235, 366-376		29
675	Oxidative degradation of dimethylsulfoxide by locally concentrated hydroxyl radicals in streamer corona discharge process. <i>Chemosphere</i> , 2006 , 65, 1163-70	8.4	26
674	Compaction of forest soil by logging machinery favours occurrence of prokaryotes. 2006 , 58, 503-16		34
673	Effect of ferrioxalate-exchanged resin on the removal of 2,4-D by a photocatalytic process. 2006 , 255, 236-242		5
672	Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. Journal of Hazardous Materials, 2006 , 136, 859-65	12.8	97
671	Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. 2006 , 66, 137-146		185
670	Iron-catalyzed photochemical transformation of benzoic acid in atmospheric liquids: Product identification and reaction mechanisms. 2006 , 40, 3665-3676		47
669	Comparative evaluation of anaerobic bacterial communities associated with roots of submerged macrophytes growing in marine or brackish water sediments. 2006 , 337, 49-58		22
668	Ferrimonas futtsuensis sp. nov. and Ferrimonas kyonanensis sp. nov., selenate-reducing bacteria		
	belonging to the Gammaproteobacteria isolated from Tokyo Bay. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 2639-2645	2.2	24
667	belonging to the Gammaproteobacteria isolated from Tokyo Bay. International Journal of	2.2	4
666	belonging to the Gammaproteobacteria isolated from Tokyo Bay. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 2639-2645	2.2	
ĺ	belonging to the Gammaproteobacteria isolated from Tokyo Bay. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 2639-2645 Zero-Valent Iron Reactive Materials for Hazardous Waste and Inorganics Removal. 2006 , Miniaturized photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron,	2.2	4
666	belonging to the Gammaproteobacteria isolated from Tokyo Bay. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 2639-2645 Zero-Valent Iron Reactive Materials for Hazardous Waste and Inorganics Removal. 2006 , Miniaturized photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron, and sulfate in pore water of freshwater sediments. 2007 , 5, 63-71	8.4	74

662	Reactivity of ferric oxides toward H2S at low pH. <i>Environmental Science & amp; Technology</i> , 2007 , 41, 315 9 64	30
661	Transient structures and kinetics of the ferrioxalate redox reaction studied by time-resolved EXAFS, optical spectroscopy, and DFT. 2007 , 111, 9326-35	47
660	Support for an anaerobic sulfur cycle in two Canadian peatland soils. 2007 , 112,	45
659	UV-A induced photochemical formation of N-nitrosodimethylamine (NDMA) in the presence of nitrite and dimethylamine. 2007 , 189, 128-134	28
658	The role of oxygen in the degradation of p-chlorophenol by Fenton system. <i>Journal of Hazardous Materials</i> , 2007 , 139, 108-15	71
657	Dye wastewater treated by Fenton process with ferrous ions electrolytically generated from iron-containing sludge. <i>Journal of Hazardous Materials</i> , 2007 , 144, 570-6	36
656	Degradation of commercial azo dye reactive Black B in photo/ferrioxalate system. <i>Journal of Hazardous Materials</i> , 2007 , 140, 382-8	56
655	High unique diversity of sulfate-reducing prokaryotes characterized in a depth gradient in an acidic fen. 2007 , 9, 1317-28	41
654	Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. 2007 , 13, 1771-1785	126
653	Carbon source utilization and accumulation of respiration-related substances by freshwater Thioploca species. 2007 , 59, 23-31	10
652	Geminicoccus roseus gen. nov., sp. nov., an aerobic phototrophic Alphaproteobacterium isolated from a marine aquaculture biofilter. 2007 , 30, 581-6	21
651	The role of oxalate in the kinetics of 2,4-D oxidation over ferrous ion-supported catalysts. 2007 , 274, 50-57	4
650	Organic matter mineralisation in the hypolimnion of an eutrophic Maar lake. 2008, 70, 225-237	10
649	UV direct photolysis of 2,2?-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in aqueous solution: Kinetics and mechanism. 2008 , 197, 232-238	28
648	Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe(II)/H2O2 and Fe(III)/H2O2 systems. 2008 , 198, 144-149	55
647	Electro-Fenton treatment of dye solution containing Orange II: Influence of operational parameters. 2008 , 615, 165-174	151
646	Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. <i>Journal of Hazardous Materials</i> , 2008 , 154, 655-62	115
645	Study of ferrous iron oxidation in Morocco drinking water in an airlift reactor. 2008 , 47, 1877-1886	30

644	Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides. 2008 , 346, 140-148		83
643	Competition of Fe(III) reduction and methanogenesis in an acidic fen. 2008 , 65, 88-101		83
642	Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. 2008 , 2, 1134-45		49
641	Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility. <i>Science of the Total Environment</i> , 2008 , 401, 109-20	10.2	31
640	Characterization and acid-mobilization study of iron-containing mineral dust source materials. 2008 , 113, n/a-n/a		119
639	Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. <i>Environmental Science & amp; Technology</i> , 2008 , 42, 8528-33	10.3	112
638	Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. <i>Environmental Science & Environmental </i>	10.3	150
637	Photoinduced degradation of orange II on different iron (hydr)oxides in aqueous suspension: rate enhancement on addition of hydrogen peroxide, silver nitrate, and sodium fluoride. 2008 , 24, 175-81		120
636	Photochemical coupling reactions between Fe(III)/Fe(II), Cr(VI)/Cr(III), and polycarboxylates: inhibitory effect of Cr species. <i>Environmental Science & Environmental Science</i>	10.3	39
635	Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions. <i>Applied Geochemistry</i> , 2008 , 23, 121-135	3.5	69
634	Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid. 2008 , 42, 2269-77		67
633	Arsenic speciation and turnover in intact organic soil mesocosms during experimental drought and rewetting. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 3991-4007	5.5	55
632	The role of rusts in corrosion and corrosion protection of iron and steel. 2008 , 50, 1872-1883		217
631	Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. <i>Environmental Science & Escherichia coli. Environmental Escherichia coli. Escherichia </i>	10.3	557
630	Electron transfer mechanism and photochemistry of ferrioxalate induced by excitation in the charge transfer band. 2008 , 47, 2024-32		29
629	pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. 2008 , 74, 1019-29		51
628	Anaerobic consumers of monosaccharides in a moderately acidic fen. 2008 , 74, 3112-20		56
627	Joint Degradation of Atrazine/Cationic Red X-GRL with Monophenolic Compound to Reduce Fef+Input in Fenton Process. 2008 ,		

(2009-2008)

626	Plant conversion experience: ozone BAC process installation and disinfectant residual control. 2008 , 100, 117-128		5
625	Microbial reduction of iron and porewater biogeochemistry in acidic peatlands. 2008 , 5, 1537-1549		58
624	In situ hydrogen and nitrous oxide as indicators of concomitant fermentation and denitrification in the alimentary canal of the earthworm Lumbricus terrestris. 2009 , 75, 1852-9		38
623	Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. <i>Science of the Total Environment</i> , 2009 , 407, 3473-81	10.2	236
622	Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil. 2009 , 41, 1187-1198		109
621	Community structure of microorganisms associated with reddish-brown iron-rich snow. 2009 , 32, 429-37	7	17
620	Pivotal role of fluorine in tuning band structure and visible-light photocatalytic activity of nitrogen-doped TiO2. 2009 , 15, 4765-9		70
619	The role of iron on the degradation and mineralization of organic compounds using conventional Fenton and photo-Fenton processes. <i>Chemical Engineering Journal</i> , 2009 , 155, 637-646	14.7	74
618	DNA-based analysis of planktonic methanotrophs in a stratified lake. 2009 , 54, 1501-1509		26
617	Enterobacteriaceae facilitate the anaerobic degradation of glucose by a forest soil. 2009 , 68, 312-9		38
617	Enterobacteriaceae facilitate the anaerobic degradation of glucose by a forest soil. 2009 , 68, 312-9 Trophic links between fermenters and methanogens in a moderately acidic fen soil. 2009 , 11, 1395-409		38 57
616	Trophic links between fermenters and methanogens in a moderately acidic fen soil. 2009 , 11, 1395-409 Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. 2010 , 12, 845-61 Identification of produced powerful radicals involved in the mineralization of bisphenol A using a	12.8	57
616	Trophic links between fermenters and methanogens in a moderately acidic fen soil. 2009 , 11, 1395-409 Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. 2010 , 12, 845-61 Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na(2)S(2)O(8)/H(2)O(2)-Fe(II,III) two-stage oxidation process. <i>Journal of Hazardous Materials</i> , 2009 , 162, 1211-6	12.8	57
616 615 614	Trophic links between fermenters and methanogens in a moderately acidic fen soil. 2009, 11, 1395-409 Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. 2010, 12, 845-61 Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na(2)S(2)O(8)/H(2)O(2)-Fe(II,III) two-stage oxidation process. <i>Journal of Hazardous Materials</i> , 2009, 162, 1211-6 Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. <i>Journal of Hazardous Materials</i> , 2009, 166, 407-14		57 110 174
616 615 614	Trophic links between fermenters and methanogens in a moderately acidic fen soil. 2009, 11, 1395-409 Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. 2010, 12, 845-61 Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na(2)S(2)O(8)/H(2)O(2)-Fe(II,III) two-stage oxidation process. <i>Journal of Hazardous Materials</i> , 2009, 162, 1211-6 Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. <i>Journal of Hazardous Materials</i> , 2009, 166, 407-14 Regeneration and reuse of iron catalyst for Fenton-like reactions. <i>Journal of Hazardous Materials</i> ,	12.8	57 110 174 155
616 615 614 613	Trophic links between fermenters and methanogens in a moderately acidic fen soil. 2009, 11, 1395-409 Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. 2010, 12, 845-61 Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na(2)S(2)O(8)/H(2)O(2)-Fe(II,III) two-stage oxidation process. <i>Journal of Hazardous Materials</i> , 2009, 162, 1211-6 Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. <i>Journal of Hazardous Materials</i> , 2009, 166, 407-14 Regeneration and reuse of iron catalyst for Fenton-like reactions. <i>Journal of Hazardous Materials</i> , 2009, 172, 1446-9 Reductive dissolution and oxidative catalysis of an immobilized iron oxide in the presence of	12.8	57 110 174 155

608	Does iron cycling trigger generation of acidity in groundwaters of Western Australia?. <i>Environmental Science & Environmental </i>	10.3	8
607	Effect of sintering temperature on the photocatalytic activities and stabilities of hematite and silica-dispersed hematite particles for organic degradation in aqueous suspensions. 2009 , 25, 2895-9		34
606	Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. <i>Environmental Science & Environmental </i>	10.3	242
605	Influence of magnetite stoichiometry on Fe(II) uptake and nitrobenzene reduction. <i>Environmental Science & Environmental Scien</i>	10.3	121
604	Heavy metal retention and microbial activities in geochemical barriers formed in glacial sediments subjacent to a former uranium mining leaching heap. 2009 , 69, 21-34		17
603	Arsenic distribution in the dissolved, colloidal and particulate size fraction of experimental solutions rich in dissolved organic matter and ferric iron. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 529-542	5.5	111
602	Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. <i>Geoderma</i> , 2009 , 153, 379-392	6.7	80
601	Heterogeneous Fe(II) oxidation and zeta potential. 2009 , 100, 192-198		26
600	Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism. 2009 , 43, 546	5-52	65
599	A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light. 2009 , 43, 1457-63		86
598	Photocatalytic Performance of N-Doped TiO2 Adsorbed with Fe3+ Ions under Visible Light by a Redox Treatment. 2009 , 113, 12848-12853		60
597	A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. <i>Environmental Science & Technology</i> , 2009 , 43, 8930-5	10.3	271
596	Influence of the diffusive boundary layer on solute dynamics in the sediments of a seiche-driven lake: A model study. 2009 , 114,		19
595	Impact of manipulated drought and heavy rainfall events on peat mineralization processes and source-sink functions of an acidic fen. 2009 , 114, n/a-n/a		34
594	Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area. <i>Environmental Science & Environmental Science & Environ</i>	10.3	46
593	Preparation and sono-Fenton performance of 4A-zeolite supported alpha-Fe2O3). <i>Journal of Hazardous Materials</i> , 2010 , 177, 743-9	12.8	37
592	Dissolution Kinetics of Sulfate from Schwertmannite Under Variable pH Conditions. 2010 , 29, 263-269		27
591	The mechanism and kinetics for the selective oxidation of glyoxal to produce glyoxalic acid by Fenton reagent. 2010 , 99, 325		2

(2011-2010)

Photodegradation of chloroform in aqueous solution: impact of montmorillonite KSF particles. <i>Journal of Hazardous Materials</i> , 2010 , 174, 368-74	12.8	17	
Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen. 2010 , 12, 2814-25		37	
Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. 2010 , 9, 99		59	
Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. 2010 , 115,		89	
Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. <i>Environmental Science & Environmental S</i>	10.3	53	•
Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium. <i>Environmental Science & Environmental Science & Environ</i>	10.3	20	
Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil. 2011 , 77, 3773-85		47	
Effect of organic and inorganic matters on the oxidation of Fe(II) in raw water from therli Dam. 2011 , 26, 194-200		O	
Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. <i>Environmental Science & Environmental Scienc</i>	10.3	95	
Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion. 2011 , 27, 487-95		78	
Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2011 , 61, 2395-2400	2.2	36	
Removal of As(III) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway. 2011 , 283, 134-142		72	
Humic acid model substances with pronounced redox functionality for the study of environmentally relevant interaction processes of metal ions in the presence of humic acid. <i>Geoderma</i> , 2011 , 162, 132-140	6.7	25	
Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH. 2011 , 45, 3309-17		52	
Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate in water. 2011 , 45, 5654-64		63	
Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. 2011 , 34, 498-502		58	
Tantalum (oxy)nitrides: preparation, characterisation and enhancement of photo-Fenton-like degradation of atrazine under visible light. <i>Journal of Hazardous Materials</i> , 2011 , 195, 291-7	12.8	17	
Comparison of o-toluidine degradation by Fenton, electro-Fenton and photoelectro-Fenton processes. <i>Journal of Hazardous Materials</i> , 2011 , 196, 395-401	12.8	23	
	Journal of Hazardous Materials, 2010, 174, 368-74 Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen. 2010, 12, 2814-25 Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. 2010, 9, 99 Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. 2010, 115, Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. Environmental Science & amp; Technology, 2010, 44, 263-8 Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium. Environmental Science & amp; Technology, 2010, 44, 3123-9 Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil. 2011, 77, 3773-85 Effect of organic and inorganic matters on the oxidation of Fe(II) in raw water from therli Dam. 2011, 26, 194-200 Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environmental Science & amp; Technology, 2011, 45, 6978-84 Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion. 2011, 27, 487-95 Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2395-2400 Removal of As(III) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway. 2011, 283, 134-142 Humic acid model substances with pronounced redox functionality for the study of environmentally relevant interaction processes of metal ions in the presence of humic acid. Geoderma, 2011, 162, 132-140 Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH. 2011, 45, 3309-17 Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by irron(III)-nitrilotriacetate in water. 2011, 45, 5654-64 D	Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen. 2010, 12, 2814-25 Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. 2010, 9, 99 Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. 2010, 115. Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. Environmental Science & Density, 2010, 44, 263-8 Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium. Environmental Science & Density, 2010, 44, 3123-9 Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil. 2011, 77, 3773-85 Effect of organic and inorganic matters on the oxidation of Fe(II) in raw water from therli Dam. 2011, 26, 194-200 Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environmental Science & Density Technology, 2011, 45, 6978-84 Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion. 2011, 27, 487-95 Metallosphaera cuprina sp. now., an acidothermophilic, metal-mobilizing archaeon. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2395-2400 Removal of As(III) from acidic waters using schwertmanniter Surface speciation and effect of synthesis pathway. 2011, 283, 134-142 Humic acid model substances with pronounced redox functionality for the study of environmentally relevant interaction processes of metal ions in the presence of humic acid. Geoderma, 2011, 162, 132-140 Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-intrilotriacetate complexes at neutral ph. 2011, 45, 3309-17 Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate in water. 2011, 45, 5654-64 Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobac	Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen. 2010, 12, 2814-25 Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. 2010, 9, 99 Feduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. 2010, 115, Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. Environmental Science & Technology, 2010, 44, 263-8 Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium. Environmental Science & Technology, 2010, 44, 3123-9 Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil. 2011, 77, 3773-85 Effect of organic and inorganic matters on the oxidation of Fe(II) in raw water from therli Dam. 2011, 26, 194-200 Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environmental Science & Technology, 2011, 45, 6978-84 Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion. 2011, 7, 487-95 Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2395-2400 Removal of As(III) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway. 2011, 283, 134-142 Humic acid model substances with pronounced redox functionality for the study of environmentally relevant interaction processes of metal ions in the presence of humic acid. 6-7 25 ceoderma, 2011, 162, 132-140 Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-intrillotriacetate complexes at neutral pH. 2011, 45, 3309-17 Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate complexes at neutral pH. 2011, 45, 3309-17 Effect of some parameters on the r

572	The Influence of Phototrophic Biomass on Fe and S Redox Cycling in an Acid Mine Drainage-Impacted System. 2011 , 30, 38-46		16
571	Diversity of freshwater Thioploca species and their specific association with filamentous bacteria of the phylum Chloroflexi. 2011 , 62, 753-64		7
570	Degradation of propylene glycol wastewater by Fenton's reagent in a semi-continuous reactor. <i>Chemical Engineering Journal</i> , 2011 , 170, 75-81	14.7	5
569	Mechanism of the enhancement of bioleaching of copper from enargite by thermophilic iron-oxidizing archaea with the concomitant precipitation of arsenic. 2011 , 109, 90-96		29
568	Effects of initial Fe2+ concentration and pulp density on the bioleaching of Cu from enargite by Acidianus brierleyi. 2011 , 109, 153-160		17
567	Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide. <i>Journal of Hazardous Materials</i> , 2011 , 188, 357-62	12.8	18
566	Functionally redundant cellobiose-degrading soil bacteria respond differentially to oxygen. 2011 , 77, 6043-8		22
565	Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling. 2012 , 40, 1191-7		67
564	Optimization of Fenton Process for Removal Organic Substance in Landfill Leachate. 2012 , 518-523, 21	65-216	59
563	Fenton-Like Oxidation of Refractory Chemical Wastewater Using Pyrite. 2012 , 518-523, 2518-2525		6
562	Binding characteristics and dissociation kinetics for iron(II) complexes with seawater extractable organic matter and humic substances in a compost. 2012 , 28, 819-21		8
561	Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption. <i>Environmental Science & Environmental Science & </i>	10.3	67
560	Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic. <i>Chemosphere</i> , 2012 , 89, 1230-7	8.4	68
559	Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials. 2012 , 46, 6454-62		110
558	Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. 2012 , 32, 1236-43		68
557	Abiotic schwertmannite transformation kinetics and the role of sorbed As(III). <i>Applied Geochemistry</i> , 2012 , 27, 590-597	3.5	23
556	Tantalum (oxy)nitrides nanotube arrays for the degradation of atrazine in vis-Fenton-like process. Journal of Hazardous Materials, 2012 , 225-226, 21-7	12.8	1
555	Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate. <i>Journal of Hazardous Materials</i> , 2012 , 229-230, 115-21	12.8	132

554	Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology. 2012 , 89, 41-8	56
553	Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 81, 69-81	56
552	Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. <i>Environmental Science & Environmental Science </i>	772
551	Spectroscopic analysis of the bioleaching of chalcopyrite by Acidithiobacillus caldus. 2012 , 127-128, 116-120	5
550	Dissolution of Mesoporous Silica Supports in Aqueous Solutions: Implications for Mesoporous Silica-based Water Treatment Processes. 2012 , 126, 258-264	62
549	Abiotic reduction of uranium by Fe(II) in soil. <i>Applied Geochemistry</i> , 2012 , 27, 1512-1524 3.5	58
548	Influence of magnetite stoichiometry on U(VI) reduction. <i>Environmental Science & Environmental Scienc</i>	111
547	Inhibitory effect of dissolved silica on HDDecomposition by iron(III) and manganese(IV) oxides: implications for HDDased in situ chemical oxidation. <i>Environmental Science & Environmental Science & </i>	66
546	Biotic and Abiotic Schwertmannites as Scavengers for As(III): Mechanisms and Effects. 2012 , 223, 2933-2942	8
545	Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides. 2012 , 327, 60-5	9
544	As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. <i>Chemosphere</i> , 8.4 2012 , 86, 557-64	22
543	Photodecolourization of orange II with iron corrosion products and oxalic acid in aqueous solution. 2012 , 417-418, 253-258	8
542	Synergistic effects of TiO2 photocatalysis in combination with Fenton-like reactions on oxidation of organic compounds at circumneutral pH. 2012 , 115-116, 219-224	62
541	Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. 2012 , 123-124, 117-126	248
540	Photo-assisted degradation of 2,4,5-trichlorophenoxyacetic acid by Fe(II)-catalyzed activation of Oxone process: The role of UV irradiation, reaction mechanism and mineralization. 2012 , 123-124, 151-161	65
539	Origin and fate of acetate in an acidic fen. 2012 , 81, 339-54	22
538	Tidal cycling of mercury and methylmercury between sediments and water column in the Venice Lagoon (Italy). 2012 , 130-131, 1-11	28
537	Iron(III) oxidized nucleophilic coupling of catechol with o-tolidine/p-toluidine followed by 1,10-phenanthroline as new and sensitivity improved spectrophotometric methods for iron present	10

536	A high-resolution dialysis technique for rapid determination of dissolved reactive phosphate and ferrous iron in pore water of sediments. <i>Science of the Total Environment</i> , 2012 , 421-422, 245-52	10.2	114
535	Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. <i>Separation and Purification Technology</i> , 2012 , 84, 147-152	8.3	195
534	Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. 2012 , 101, 561-73		23
533	Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension. <i>Journal of Hazardous Materials</i> , 2013 , 254-255, 18-25	12.8	25
532	Photo-assisted degradation of 2,4,5-trichlorophenol by Electro-Fe(II)/Oxone ^[] process using a sacrificial iron anode: Performance optimization and reaction mechanism. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 643-650	14.7	15
531	Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 123, 385-402	5.5	53
530	Kinetic enhancement in photocatalytic oxidation of organic compounds by WO3 in the presence of Fenton-like reagent. 2013 , 138-139, 311-317		49
529	Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: roles and sources of hydroxyl and hydroperoxyl/superoxide radicals. <i>Journal of Hazardous Materials</i> , 2013 , 260, 255-62	12.8	34
528	Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3. Journal of Hazardous Materials, 2013 , 262, 114-20	12.8	23
527	Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow"). 2013 , 79, 4272-81		46
526	Novel photo-sulfite system: toward simultaneous transformations of inorganic and organic pollutants. <i>Environmental Science & Environmental Science & </i>	10.3	114
525	Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil - the first described species of Acidobacteria subdivision 4. 2013 , 36, 82-9		114
524	Oxidation of Azo Dyes by H2O2 in Presence of Natural Pyrite. 2013 , 224, 1		26
523	A new insight into Fenton and Fenton-like processes for water treatment: Part II. Influence of organic compounds on Fe(III)/Fe(II) interconversion and the course of reactions. <i>Journal of Hazardous Materials</i> , 2013 , 250-251, 76-81	12.8	38
522	Three-year survey of sulfate-reducing bacteria community structure in Carnoul acid mine drainage (France), highly contaminated by arsenic. 2013 , 83, 724-37		37
521	Nitrite reactivity with magnetite. Environmental Science & Technology, 2013, 47, 6206-13	10.3	52
520	Facile deposition of continuous gold shells on Tween-20 modified FeO superparticles. 2013 , 1, 1921-192	25	9
519	Influence of chloride and Fe(II) content on the reduction of Hg(II) by magnetite. <i>Environmental Science & Environmental Scien</i>	10.3	40

(2014-2013)

518	Diffusive gradients in thin films technique equipped with a mixed binding gel for simultaneous measurements of dissolved reactive phosphorus and dissolved iron. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 10477-84	10.3	33
517	An experimental study on manganese(II) removal with manganese dioxide recycling. 2013 , 51, 2225-223	0	4
516	Thunderbolt in biogeochemistry: galvanic effects of lightning as another source for metal remobilization. 2013 , 3, 3122		3
515	Spatial patterns of groundwater-lake exchange [Implications for acid neutralization processes in an acid mine lake. 2013, 27, n/a-n/a		7
514	Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding. 2013 , 10, 421-436		32
513	DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths Tare DOC exports mediated by iron reduction/oxidation cycles?. 2013 , 10, 891-904		114
512	Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations. <i>Frontiers in Microbiology</i> , 2013 , 4, 390	5.7	58
511	Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries. 2014 , 11, 3339-33	52	27
510	Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by <i>Geobacter bremensis</i> vs. abiotic reduction by Na-dithionite. 2014 , 11, 4953-4966		66
509	Synchrotron X-ray photoelectron spectroscopic study of the chalcopyrite leached by moderate thermophiles and mesophiles. 2014 , 69, 185-195		29
508	Separation and Speciation of Iron Ions by Using Colorimetric Hydrogels. 2014 , 51, 308-317		14
507	Degradation of aniline by plate and rod electrode fered-fenton reactors: Effects of current density, Fe2+, H2O2, and aniline concentrations. 2014 , 33, 410-418		7
506	Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion. <i>Chemical Engineering Journal</i> , 2014 , 255, 585-592	14.7	111
505	Redox stability of As(III) on schwertmannite surfaces. <i>Journal of Hazardous Materials</i> , 2014 , 265, 208-16	12.8	26
504	Does anoxic processing of dissolved organic matter affect organic interactions in paddy soils?. <i>Geoderma</i> , 2014 , 228-229, 62-66	6.7	16
503	Iron species in layered clay: efficient electron shuttles for simultaneous conversion of dyes and Cr(VI). <i>Chemosphere</i> , 2014 , 95, 643-6	8.4	16
502	The role of rainwater-borne hydrogen peroxide in the release of arsenic from arsenopyrite. <i>Chemosphere</i> , 2014 , 103, 349-53	8.4	8
501	Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study. <i>Journal of Hazardous Materials</i> , 2014 , 265, 201-7	12.8	41

500	Photo-Fenton oxidation of phenol with magnetite as iron source. 2014 , 154-155, 102-109		111
499	Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3 coreBhell nanowires. 2014 , 150-151, 1-11		31
498	Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. 2014 , 4, 5698		132
497	Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 5076-84	10.3	69
496	Fe(II)-catalyzed recrystallization of goethite revisited. <i>Environmental Science & Environmental Scien</i>	10.3	114
495	Diverse redox chemistry of photo/ferrioxalate system. 2014 , 4, 44654-44658		16
494	The role of dissolved oxygen in the Ta(O)N-driven visible Fenton-like degradation of atrazine. <i>Journal of Environmental Chemical Engineering</i> , 2014 , 2, 1691-1698	6.8	1
493	Roles of TaON and Ta(3)N(5) in the visible-Fenton-like degradation of atrazine. <i>Journal of Hazardous Materials</i> , 2014 , 267, 55-61	12.8	21
492	Biogeochemistry of Acid Drainage. 2014 , 15-51		1
491	New insight into photochemical oxidation of Fe(II): The roles of Fe(III) and reactive oxygen species. 2014 , 224, 244-250		9
490	Acridine orange coated magnetic nanoparticles for nucleus labeling and DNA adsorption. 2014 , 115, 150-6		20
489	Observations and assessment of iron oxide and green rust nanoparticles in metal-polluted mine drainage within a steep redox gradient. 2014 , 11, 377		36
488	Structural analysis and insight into metal-ion activation of the iron-dependent regulator from Thermoplasma acidophilum. 2014 , 70, 1281-8		4
487	FellaqHellloxide electron transfer and Fe exchange: effect of organic carbon. 2015 , 12, 52		19
486	Iron encrustations on filamentous algae colonized by <i>Gallionella</i>-related bacteria in a metal-polluted freshwater stream. 2015 , 12, 5277-5289		10
485	Iron-coupled inactivation of phosphorus in sediments by macrozoobenthos (chironomid larvae) bioturbation: Evidences from high-resolution dynamic measurements. 2015 , 204, 241-7		47
484	Insights into the role of humic acid on Pd-catalytic electro-Fenton transformation of toluene in groundwater. 2015 , 5, 9239		7
483	Arsenic Removal and Transformation by Pseudomonas sp. Strain GE-1-Induced Ferrihydrite: Co-precipitation Versus Adsorption. 2015 , 226, 1		14

(2015-2015)

482	Simple and Precise Quantification of Iron Catalyst Content in Carbon Nanotubes Using UV/Visible Spectroscopy. 2015 , 4, 613-9		14
481	Hydrothermal Synthesis of FeS2 as a High-Efficiency Fenton Reagent to Degrade Alachlor via Superoxide-Mediated Fe(II)/Fe(III) Cycle. 2015 , 7, 28534-44		140
480	The potential role of aluminium hydroxysulphates in the removal of contaminants in acid mine drainage. 2015 , 417, 414-423		41
479	Characterization of ⊞e2O3/⊞Al2O3 Catalysts for Catalytic Wet Peroxide Oxidation of m-Cresol. 2015 , 54, 130-136		34
478	An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal. <i>Chemical Engineering Journal</i> , 2015 , 267, 102-110	14.7	96
477	Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration. 2015 , 400, 44-55		56
476	Lepidocrocite Formation Kinetics from Schwertmannite in Fe(II)-Rich Anoxic Alkaline Medium. 2015 , 34, 213-222		8
475	Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants. 2015 , 86, 66-73		45
474	Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system. <i>Journal of Hazardous Materials</i> , 2015 , 300, 530-537	12.8	43
473	Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 17876-85	5.1	40
472	Evaluation of the diffusive gradients in thin films technique using a mixed binding gel for measuring iron, phosphorus and arsenic in the environment. 2015 , 17, 570-7		20
471	Nonequilibrium leaching behavior of metallic elements (Cu, Zn, As, Cd, and Pb) from soils collected from long-term abandoned mine sites. <i>Chemosphere</i> , 2015 , 134, 150-8	8.4	30
470	Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine. <i>Separation and Purification Technology</i> , 2015 , 147, 186-193	8.3	99
469	Mechanism of PCE oxidation by percarbonate in a chelated Fe(II)-based catalyzed system. <i>Chemical Engineering Journal</i> , 2015 , 275, 53-62	14.7	58
468	Diversity of the Sediment Microbial Community in the Aha Watershed (Southwest China) in Response to Acid Mine Drainage Pollution Gradients. 2015 , 81, 4874-84		57
467	Solid phases as important electron acceptors in freshwater organic sediments. 2015 , 123, 49-61		46
466	Ordered mesoporous hematite promoted by magnesium selective leaching as a highly efficient heterogeneous Fenton-like catalyst. 2015 , 5, 40872-40883		22
465	Oxidation of Fe(II)-EDTA by nitrite and by two nitrate-reducing Fe(II)-oxidizing Acidovorax strains. 2015 , 13, 198-207		36

464	Enhanced production of reactive oxidants by Fenton-like reactions in the presence of carbon materials. <i>Chemical Engineering Journal</i> , 2015 , 273, 502-508	14.7	45
463	Mineralization of bisphenol A by photo-Fenton-like process using a waste iron oxide catalyst in a three-phase fluidized bed reactor. 2015 , 53, 68-73		24
462	New insights into the role of organic chelating agents in Fe(II) activated persulfate processes. <i>Chemical Engineering Journal</i> , 2015 , 269, 425-433	14.7	121
461	Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions. <i>Separation and Purification Technology</i> , 2015 , 154, 60-67	8.3	29
460	Determination of iron in uranium matrix using energy dispersive X-ray fluorescence (EDXRF) technique. 2015 , 306, 543-548		5
459	Magnetic nanoparticle/polymer composites for medical implant infection control. 2015 , 3, 7538-7545		13
458	Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer. 2015 , 180, 56-68		19
457	Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 2911-22	5.7	92
456	Perchloroethylene (PCE) oxidation by percarbonate in Fe(2+)-catalyzed aqueous solution: PCE performance and its removal mechanism. <i>Chemosphere</i> , 2015 , 119, 1120-1125	8.4	49
455	Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms. 2015 , 8, 448-61		37
454	Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution. 2015 , 36, 1389-97		13
453	Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. <i>Journal of Hazardous Materials</i> , 2015 , 284, 253-60	12.8	89
452	Metallosphaera tengchongensis sp. nov., an acidothermophilic archaeon isolated from a hot spring. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2015 , 65, 537-542	2.2	7
451	High performance of nanoscaled Fe2O3 catalyzing UV-Fenton under neutral condition with a low stoichiometry of H2O2: Kinetic study and mechanism. <i>Chemical Engineering Journal</i> , 2015 , 267, 1-8	14.7	32
450	Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation. 2015 , 136 Pt B, 832-7		17
449	XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30 °C and 48 °C. 2015 , 70, 99-108		27
448	Anisotropic Morphological Changes in Goethite during Fe(2+)-Catalyzed Recrystallization. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	36
447	Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation. <i>Chemosphere</i> , 2016 , 160, 1-6	8.4	44

446	Synthesis of Fe2O3/TiO2 Nanotube and its Application in Photoelectrocatalytic/photoelectro-Fenton Decolorization of Rhodamine B. 2016 , 19,		1
445	Assessing the use of zero-valent iron microspheres to catalyze Fenton treatment processes. 2016 , 69, 54-60		9
444	Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 13298-307	5.1	26
443	Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge. 2016 , 14, 68-90		21
442	Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond. 2016 , 215, 141-153		38
441	Catalytic Properties of TiO2/Fe3O4 Nanoparticles in Plasma Chemical Treatment. 2016 , 90, 777-782		7
440	Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid. 2016 , 10, 502-512		38
439	Phytolacca acinosa Roxb. with Arthrobacter echigonensis MN1405 enhances heavy metal phytoremediation. 2016 , 18, 956-65		2
438	Determination of Fe(II), Fe(III) and Fetotal in thermal water by ion chromatography spectrophotometry (IC-Vis). 2016 , 96, 1074-1090		12
437	Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide. <i>Environmental Science & Description</i> 2016, 50, 10968-10977	10.3	18
436	Corrosion: Rust Protection. 2016 , 913-931		
435	High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments. 2016 , 219, 466-474		47
434	Regional Variation of CH4 and N2 Production Processes in the Deep Aquifers of an Accretionary Prism. 2016 , 31, 329-38		13
433	Fine-scale bioturbation effects of tubificid worm (Limnodrilus hoffmeisteri) on the lability of phosphorus in sediments. 2016 , 219, 604-611		20
432	Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments. <i>Journal of Hazardous Materials</i> , 2016 , 318, 460-467	12.8	65
431	Multi-Readout Logic Gate for the Selective Detection of Metal Ions at the Parts Per Billion Level. 2016 , 2016, 3530-3535		17
430	Importance of reagent addition order in contaminant degradation in an Fe(II)/PMS system. 2016 , 6, 7027	1-702	 27 <i>6</i> 7
429	Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction. 2016 , 167, 587-94		9

428	Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples. <i>Environmental Science & Environmental Science & En</i>	10.3	74
427	Potential effects of sediment processes on water quality of an artificial reservoir in the Asian monsoon region. 2016 , 6, 423-435		6
426	Effects of benthic bioturbation on phytoplankton in eutrophic water: A laboratory experiment. 2016 , 188, 25-39		1
425	Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 7409-24	5.1	22
424	Spatiotemporal redox dynamics in a freshwater lake sediment under alternating oxygen availabilities: combined analyses of dissolved and particulate electron acceptors. 2016 , 13, 826		13
423	Drastic enhancement on Fenton oxidation of organic contaminants by accelerating Fe(III)/Fe(II) cycle with L-cysteine. 2016 , 6, 47661-47668		39
422	Iron mineralogy across the oxycline of a lignite mine lake. 2016 , 434, 28-42		6
421	Mobility and attenuation of arsenic in sulfide-rich mining wastes from the Czech Republic. <i>Science of the Total Environment</i> , 2016 , 557-558, 192-203	10.2	21
420	Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 8523-35	5.7	32
419	Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 6758-66	5.1	12
418	A XANES and XRD study of chalcopyrite bioleaching with pyrite. 2016 , 89, 157-162		16
417	Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in Acidithiobacillus ferrooxidans?. 2016 , 167, 357-66		20
416	Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition. <i>Chemical Engineering Journal</i> , 2016 , 294, 49-57	14.7	56
415	Electrochemically induced oxidative removal of As(III) from groundwater in a dual-anode sand column. <i>Journal of Hazardous Materials</i> , 2016 , 305, 41-50	12.8	17
414	Green synthesis of a bifunctional Fethontmorillonite composite during the Fenton degradation process and its enhanced adsorption and heterogeneous photo-Fenton catalytic properties. 2016 , 6, 2537-2545		33
413	Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 172, 444-457	5.5	120
412	Kinetics of phosphorus release from sediments and its relationship with iron speciation influenced by the mussel (Corbicula fluminea) bioturbation. <i>Science of the Total Environment</i> , 2016 , 542, 833-40	10.2	50
411	One-step solvothermal synthesis of magnetic Fe3O4-graphite composite for Fenton-like degradation of levofloxacin. 2016 , 51, 52-62		17

410	Arsenic release from the abiotic oxidation of arsenopyrite under the impact of waterborne H2O2: a SEM and XPS study. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 1381-90	5.1	9
409	Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1,4-dioxane. <i>Chemical Engineering Journal</i> , 2016 , 284, 112-121	14.7	74
408	Accelerated degradation of tetrachloroethylene by Fe(II) activated persulfate process with hydroxylamine for enhancing Fe(II) regeneration. 2016 , 91, 1280-1289		16
407	Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw. 2017 , 228, 279-289		24
406	Surface area effects on the reduction of UVI in the presence of synthetic montmorillonite. 2017 , 464, 110-117		13
405	Redox controls on arsenic enrichment and release from aquifer sediments in central Yangtze River Basin. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 204, 104-119	5.5	68
404	Production of hydroxyl radicals from Fe(II) oxygenation induced by groundwater table fluctuations in a sand column. <i>Science of the Total Environment</i> , 2017 , 584-585, 41-47	10.2	18
403	Sticking together: inter-species aggregation of bacteria isolated from iron snow is controlled by chemical signaling. 2017 , 11, 1075-1086		16
402	A New Insight of Graphene oxide-Fe(III) Complex Photochemical Behaviors under Visible Light Irradiation. 2017 , 7, 40711		22
401	Oxidative degradation of benzoic acid using Fe 0 - and sulfidized Fe 0 -activated persulfate: A comparative study. <i>Chemical Engineering Journal</i> , 2017 , 315, 426-436	14.7	68
400	Distinguishing homogeneous-heterogeneous degradation of norfloxacin in a photochemical Fenton-like system (FeO/UV/oxalate) and the interfacial reaction mechanism. 2017 , 119, 47-56		94
399	Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite. 2017 , 113, 72-79		57
398	Fe(II) Electron Transfer in a Clay Mineral with Low Fe Content. 2017, 1, 197-208		31
397	Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 10421-10429	5.1	33
396	Application of ascorbic acid to enhance trichloroethene degradation by Fe(III)-activated calcium peroxide. <i>Chemical Engineering Journal</i> , 2017 , 325, 188-198	14.7	33
395	Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS. <i>Chemosphere</i> , 2017 , 168, 777-785	8.4	31
394	Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions. 2017 , 109, 347-357		44
393	Nanoparticulate zero-valent iron coupled with polyphosphate: the sequential redox treatment of organic compounds and its stability and bacterial toxicity. 2017 , 4, 396-405		9

392	Remarkable improvement of cycling Fenton process for catalytic degradation of phenol: Tuning of triggering effect. 2017 , 542, 21-27		11
391	Unveiling the mechanism of electron transfer facilitated regeneration of active Fe2+ by nano-dispersed iron/graphene catalyst for phenol removal. 2017 , 7, 26983-26991		23
390	On the Elentre of gravity Imethod for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57Fe MEsbauer spectroscopy. 2017 , 50, 265005		57
389	A millimeter-scale observation of the competitive effect of phosphate on promotion of arsenic mobilization in sediments. <i>Chemosphere</i> , 2017 , 180, 285-294	8.4	12
388	Functionalized polymer-iron oxide hybrid nanofibers: Electrospun filtration devices for metal oxyanion removal. 2017 , 117, 207-217		39
387	Catalytic effect of low concentration carboxylated multi-walled carbon nanotubes on the oxidation of disinfectants with Cl-substituted structure by a Fenton-like system. <i>Chemical Engineering Journal</i> , 2017, 321, 325-334	14.7	31
386	Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic. 2017 , 221, 244-255		51
385	The effect of electro-activation and eggshell powder on the neutralization of acid mine drainage. 2017 , 16, 73-82		
384	Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic-Oxic Interfaces. <i>Environmental Science & Environmental Science & Envir</i>	10.3	58
383	Incorporation of molybdenum(VI) in akaganIte (FFeOOH) and the microbial reduction of MoBkaganIte by Shewanella loihica PV-4. 2017 , 19, 6189-6198		3
382	Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids. <i>Geochimica Et Cosmochimica Acta</i> , 2017, 218, 153-166	5.5	57
381	Novel highly stable #cyclodextrin fullerene mixed valent Fe-metal framework for quick Fenton degradation of alizarin. 2017 , 7, 40371-40382		6
380	Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov. 2017 , 11, 2624-2636		28
379	Schwertmannite stability in anoxic Fe(II)-rich aqueous solution. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 217, 292-305	5.5	32
378	Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation: Mechanism and application to norfloxacin degradation. 2017 , 126, 274-284		43
377	Enhanced effect of HAH on citric acid-chelated Fe(II)-catalyzed percarbonate for trichloroethene degradation. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 24318-24326	5.1	9
376	Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite. <i>Chemosphere</i> , 2017 , 188, 557-566	8.4	62
375	Susceptibility of Goethite to Fe-Catalyzed Recrystallization over Time. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 11681-11691	10.3	25

374	Emerging investigator series: As(v) in magnetite: incorporation and redistribution. 2017 , 19, 1208-1219		6	
373	Fe(III):S(-II) concentration ratio controls the pathway and the kinetics of pyrite formation during sulfidation of ferric hydroxides. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 217, 334-348	5.5	49	
372	A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms. 2017 , 124, 446-453		95	
371	Magnetic Activated-ATP@FeO Nanocomposite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of Ethidium Bromide. 2017 , 7, 6070		34	
370	Fluidized-bed crystallization of iron phosphate from solution containing phosphorus. 2017 , 80, 247-254		17	
369	Sequential Combination of Electro-Fenton and Electrochemical Chlorination Processes for the Treatment of Anaerobically-Digested Food Wastewater. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 10700-10710	10.3	35	
368	Degradation of Pantoprazole in aqueous solution using magnetic nanoscaled Fe3O4/CeO2 composite: Effect of system parameters and degradation pathway. 2017 , 725, 472-483		17	
367	Enhanced degradation of trichloroethene by sodium percarbonate activated with Fe(II) in the presence of citric acid. <i>Water Science and Technology: Water Supply</i> , 2017 , 17, 665-673	1.4	5	
366	A novel magnetic nanoscaled FeO/CeO composite prepared by oxidation-precipitation process and its application for degradation of orange G in aqueous solution as Fenton-like heterogeneous catalyst. <i>Chemosphere</i> , 2017 , 168, 254-263	8.4	42	
365	Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol. <i>Chemical Engineering Journal</i> , 2017 , 311, 153-162	14.7	85	
364	Degradation of ethylbenzene in aqueous solution by sodium percarbonate activated with EDDSHe(III) complex. <i>Chemical Engineering Journal</i> , 2017 , 309, 80-88	14.7	39	
363	Magnetically separable maghemite/montmorillonite composite as an efficient heterogeneous Fenton-like catalyst for phenol degradation. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 192	ર્ફ-193	7 ²⁷	
362	Benzene oxidation by Fe(III)-catalyzed sodium percarbonate: matrix constituent effects and degradation pathways. <i>Chemical Engineering Journal</i> , 2017 , 309, 22-29	14.7	55	
361	Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions. 2017 , 109, 245-2	252	16	
360	Quantitative Determination of Iron Ions Based on a Resonance Raman (RR) Probe-Phenanthroline. 2017 , 33, 23-27		4	
359	Fe(II) reduction of pyrolusite (骨MnO) and secondary mineral evolution. 2017 , 18, 7		16	
358	Activation of sodium percarbonate with ferrous ions for degradation of chlorobenzene in aqueous solution: mechanism, pathway and comparison with hydrogen peroxide. 2017 , 14, 486		11	
357	Ferrihydrite-associated organic matter (OM) stimulates reduction by <i>Shewanella oneidensis</i> MR-1 and a complex microbial consortia. 2017 , 14, 5171-5188		26	

356	Impacts of hydrous manganese oxide on the retention and lability of dissolved organic matter. 2018 , 19, 6		23
355	The Role of Iron Competition in the Antagonistic Action of the Rice Endophyte Streptomyces sporocinereus OsiSh-2 Against the Pathogen Magnaporthe oryzae. 2018 , 76, 1021-1029		18
354	High-resolution characterization of arsenic mobility and its correlation to labile iron and manganese in sediments of a shallow eutrophic lake in China. 2018 , 18, 2093-2106		7
353	Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock): New insight into sediment phosphorus immobilization. 2018 , 134, 32-43		69
352	Improvement of zinc substitution in the reactivity of magnetite coupled with aqueous Fe(II) towards nitrobenzene reduction. 2018 , 517, 104-112		6
351	The Role of Defects in Fe(II)-Goethite Electron Transfer. <i>Environmental Science & Environmental Scien</i>	10.3	44
350	Surfactant-assisted fabrication of porous polymeric nanofibers with surface-enriched iron oxide nanoparticles: composite filtration materials for removal of metal cations. 2018 , 5, 669-681		15
349	Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water. <i>Chemosphere</i> , 2018 , 195, 847-853	8.4	34
348	High catalytic oxidation of As(III) by molecular oxygen over Fe-loaded silicon carbide with MW activation. <i>Chemosphere</i> , 2018 , 198, 537-545	8.4	9
347	Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 15733-15742	5.1	7
346	Linking Thermodynamics to Pollutant Reduction Kinetics by Fe Bound to Iron Oxides. <i>Environmental Science & Environmental Scie</i>	10.3	37
345	Bench-scale microbial remediation of the model acid mine drainage: Effects of nutrients and microbes on the source bioremediation. 2018 , 128, 117-121		4
344	Successful control of internal phosphorus loading after sediment dredging for 6years: A field assessment using high-resolution sampling techniques. <i>Science of the Total Environment</i> , 2018 , 616-617, 927-936	10.2	17
343	Performance of hematite particles as an Iron source for the degradation of ornidazole in photo-fenton process. 2018 , 85, 203-212		11
342	High-resolution characterization of labile phosphorus, iron, and manganese in sediments of different trophic waters in Lake Taihu, China. 2018 , 77, 286-295		4
341	Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II). <i>Chemical Engineering Journal</i> , 2018 , 333, 122-131	14.7	61
340	Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: Surface reaction mechanism and sulfur-mediated cycling of iron species. <i>Chemical Engineering Journal</i> , 2018 , 333, 657-664	44.7	127
339	Simultaneous removal of benzene, toluene, ethylbenzene and xylene (BTEX) by CaO2 based Fenton system: Enhanced degradation by chelating agents. <i>Chemical Engineering Journal</i> , 2018 , 331, 255-264	14.7	67

(2018-2018)

338	Paddy soil microbial communities driven by environment- and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace. <i>Science of the Total Environment</i> , 2018 , 612, 884-893	10.2	41
337	Direct evidence for the enhanced acquisition of phosphorus in the rhizosphere of aquatic plants: A case study on Vallisneria natans. <i>Science of the Total Environment</i> , 2018 , 616-617, 386-396	10.2	32
336	Activation of persulfate by irradiated laterite for removal of fluoroquinolones in multi-component systems. <i>Journal of Hazardous Materials</i> , 2018 , 346, 159-166	12.8	56
335	Mediated Electrochemical Reduction of Iron (Oxyhydr-)Oxides under Defined Thermodynamic Boundary Conditions. <i>Environmental Science & Environmental Sc</i>	10.3	19
334	Chemical Degradation of Polyacrylamide during Hydraulic Fracturing. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 327-336	10.3	46
333	Juncus effusus mono-stands in restored cutover peat bogs [Analysis of litter quality, controls of anaerobic decomposition, and the risk of secondary carbon loss. 2018 , 117, 139-152		16
332	Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/Fe(II)/formic acid system in aqueous solution. 2018 , 12, 1		10
331	Contrasting effects of inorganic and organic fertilisation regimes on shifts in Fe redox bacterial communities in red soils. 2018 , 117, 56-67		36
330	Effects of temperature on phosphorus mobilization in sediments in microcosm experiment and in the field. <i>Applied Geochemistry</i> , 2018 , 88, 158-166	3.5	18
329	Factors affecting the determination of iron species in the presence of ferric iron. 2018 , 8, 1		8
328	Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by ?. <i>Frontiers in Microbiology</i> , 2018 , 9, 3134	5.7	10
327	The Effect of Alcohol on Bead Performance of Encapsulated Iron Using Deacetylated Glucomannan. 2018 , 156, 01005		1
326	Sensing of Iron(III) Ion via Modulation of Redox Potential on Biliverdin Protected Silver Nanosurface. 2018 , 1, 6099-6111		2
325	Different Influences of Bacterial Communities on Fe (III) Reduction and Phosphorus Availability in Sediments of the Cyanobacteria- and Macrophyte-Dominated Zones. <i>Frontiers in Microbiology</i> , 2018 , 9, 2636	5.7	17
324	Fe(II)-Catalyzed Transformation of Organic Matter-Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	36
323	Reduction of PCE and TCE by magnetite revisited. 2018 , 20, 1340-1349		19
322	Enhancement of HO Decomposition by the Co-catalytic Effect of WS on the Fenton Reaction for the Synchronous Reduction of Cr(VI) and Remediation of Phenol. <i>Environmental Science & Environmental Scie</i>	10.3	177
321	Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization. 2018 , 8, 367		5

320	Energy-Efficient Electrochemical Strategy for the Oxidative Sequestration of As(III) in Synthesized Anoxic Groundwater. 2018 , 57, 8068-8077		8
319	Self-Assembled Nano-FeO(OH)/Reduced Graphene Oxide Aerogel as a Reusable Catalyst for Photo-Fenton Degradation of Phenolic Organics. <i>Environmental Science & Environmental Sc</i>	10.3	66
318	Dichloromethane biodegradation in multi-contaminated groundwater: Insights from biomolecular and compound-specific isotope analyses. 2018 , 142, 217-226		19
317	Extracellular polymeric substances (EPS) secreted by strain Y3 promote biosynthesis of jarosite 2018 , 8, 22635-22642		15
316	A full-wave rectified alternating current wireless electrocoagulation strategy for the oxidative remediation of As(III) in simulated anoxic groundwater. <i>Chemical Engineering Journal</i> , 2018 , 351, 1047-1	ds15 7	15
315	A simple flow injection spectrophotometric procedure for iron(III) determination using Phyllanthus emblica Linn. as a natural reagent. 2018 , 204, 726-734		20
314	Enhancing the Removal of Sorbed Crude Oil from Soil Through Multiple Oxidation Steps in Stepwise Fenton Processes. 2018 , 27, 369-382		3
313	Mechanisms of hydroxyl radicals production from pyrite oxidation by hydrogen peroxide: Surface versus aqueous reactions. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 238, 394-410	5.5	31
312	Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture. 2018 , 242, 738-748		11
311	Plant rhizosphere oxidation reduces methane production and emission in rewetted peatlands. 2018 , 125, 125-135		22
310	Insight on the generation of reactive oxygen species in the CaO/Fe(II) Fenton system and the hydroxyl radical advancing strategy. <i>Chemical Engineering Journal</i> , 2018 , 353, 657-665	14.7	43
309	Applicability study on the degradation of acetaminophen via an HO/PDS-based advanced oxidation process using pyrite. <i>Chemosphere</i> , 2018 , 212, 438-446	8.4	23
308	The Frequent Effects of Hydroxyl Radicals on the Oxidation of Crude Oil in Soil. 2018 , 46, 1700481		1
307	Impact of Fe(II) oxidation in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction. <i>Science of the Total Environment</i> , 2018 , 639, 1007-1014	10.2	18
306	Oxidation of acetaminophen by Green rust coupled with Cu(II) via dioxygen activation: The role of various interlayer anions (CO32[ISO42[ICl]] <i>Chemical Engineering Journal</i> , 2018 , 350, 930-938	14.7	12
305	An investigation of the effects of capping on internal phosphorus release from sediments under rooted macrophytes (Phragmites australis) revegetation. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 24682-24694	5.1	11
304	Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich fen. <i>Science of the Total Environment</i> , 2019 , 646, 972-988	10.2	30
303	A new method to overall immobilization of phosphorus in sediments through combined application of capping and oxidizing agents. <i>Science of the Total Environment</i> , 2019 , 694, 133770	10.2	9

302	Water Flow Variability Affects Adsorption and Oxidation of Ciprofloxacin onto Hematite. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	10
301	A comprehensive understanding of enhanced Pb mobilization in sediments caused by algal blooms. <i>Science of the Total Environment</i> , 2019 , 691, 969-980	10.2	4
300	Positive effect of Fe3+ ions on Bi2WO6, Bi2MoO6 and BiVO4 photocatalysis for phenol oxidation under visible light. 2019 , 9, 4413-4421		12
299	Effective removal of silica and sulfide from oil sands thermal in-situ produced water by electrocoagulation. <i>Journal of Hazardous Materials</i> , 2019 , 380, 120880	12.8	18
298	Mineral Defects Enhance Bioavailability of Goethite toward Microbial Fe(III) Reduction. <i>Environmental Science & amp; Technology</i> , 2019 , 53, 8883-8891	10.3	20
297	Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. 2019 , 55, 589-602		9
296	A Closer Look at Fe(II) Passivation of Goethite. 2019 , 3, 2717-2725		9
295	Performance and Mechanism of GO-MCM-Fe Composite Catalyst Activating Persulfate to Remove Levofloxacin Hydrochloride in Water. 2019 , 230, 1		4
294	Benzene promotes microbial Fe(III) reduction and flavins secretion. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 264, 92-104	5.5	7
293	Effects Of Short-Term Aerobic Conditions On Phosphorus Mobility In Sediments. 2019 , 34, 649-661		2
292	Attenuation of Fe(III)-reducing bacteria during table fluctuation of groundwater containing Fe. <i>Science of the Total Environment</i> , 2019 , 694, 133660	10.2	8
291	Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater. 2019 , 11, 1695		3
290	Enhanced redox degradation of chlorinated hydrocarbons by the Fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid. <i>Journal of Hazardous Materials</i> , 2019 , 368, 506-513	12.8	19
289	Impact of Divalent Cations on Dark Production of Hydroxyl Radicals from Oxygenation of Reduced Humic Acids at Anoxic©xic Interfaces. 2019 , 3, 484-494		12
288	Optimization of pretreatment procedure for MeHg determination in sediments and its applications. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 17707-17718	5.1	2
287	Reductive Immobilization of Hexavalent Chromium by Polysulfide-Reduced Lepidocrocite. 2019 , 58, 119)20-11	9 2 6
286	Decreases in Iron Oxide Reducibility during Microbial Reductive Dissolution and Transformation of Ferrihydrite. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	22
285	Sulfide drives hydroxyl radicals production in oxic ferric oxyhydroxides environments. <i>Chemosphere</i> , 2019 , 234, 450-460	8.4	12

284	Simulated solar photo-assisted decomposition of peroxymonosulfate. Radiation filtering and operational variables influence on the oxidation of aqueous bezafibrate. 2019 , 162, 383-393		15
283	Making Use of the Electrons in KMo(SO) for Visible-Light-Induced Photocatalytic Hydrogen Production. 2019 , 11, 24006-24017		2
282	Dissolution and Passivation of Chalcopyrite during Bioleaching by Acidithiobacillus ferrivorans at Low Temperature. 2019 , 9, 332		13
281	High-resolution imaging of phosphorus mobilization and iron redox cycling in sediments from Honghu Lake, China. 2019 , 19, 3856-3865		1
280	Effects of Rare Earth Elements Physicochemical Properties on Their Stabilization during the Fe(II) aq-induced Phase Transformation of Ferrihydrite. 2019 , 3, 895-904		9
279	Mobility of chromium in sediments dominated by macrophytes and cyanobacteria in different zones of Lake Taihu. <i>Science of the Total Environment</i> , 2019 , 666, 994-1002	10.2	6
278	Ferroxidase-like and antibacterial activity of PtCu alloy nanoparticles. 2019, 37, 99-115		9
277	Small-scale interaction of iron and phosphorus in flooded soils with rice growth. <i>Science of the Total Environment</i> , 2019 , 669, 911-919	10.2	13
276	Zinc pollution in zones dominated by algae and submerged macrophytes in Lake Taihu. <i>Science of the Total Environment</i> , 2019 , 670, 361-368	10.2	16
275	Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlppnerbrunnen fen-derived humic acids. 2019 , 95,		12
274	Extensive dark production of hydroxyl radicals from oxygenation of polluted river sediments. <i>Chemical Engineering Journal</i> , 2019 , 368, 700-709	14.7	35
273	Elucidating the Role of Sulfide on the Stability of Ferrihydrite Colloids under Anoxic Conditions. <i>Environmental Science & Environmental Science & En</i>	10.3	17
272	Heterogeneous Fenton Oxidation of Caffeine Using Zeolite-Supported Iron Nanoparticles. 2019 , 44, 315-328		6
271	Influence of light and Fe(III) ions on tetracycline degradation. 2019 , 216, 273-282		6
270	Comparison of Fenton and bismuth ferrite Fenton-like pretreatments of sugarcane bagasse to enhance enzymatic saccharification. 2019 , 285, 121343		9
269	Photochemical Formation Process of Schwertmannite on Montmorillonite and Corresponding Cr(VI) Adsorption Capacity. 2019 , 3, 718-727		11
268	Heterogeneous Reduction of 2-Chloronitrobenzene by Co-substituted Magnetite Coupled with Aqueous Fe2+: Performance, Factors, and Mechanism. 2019 , 3, 728-737		5
267	Modelling of iohexol degradation in a Fe(II)-activated persulfate system. <i>Chemical Engineering Journal</i> , 2019 , 367, 86-93	14.7	32

266	Characterization of iron-metabolizing communities in soils contaminated by acid mine drainage from an abandoned coal mine in Southwest China. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 9585-9598	5.1	17	
265	Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite Transformation into Goethite and Magnetite. <i>Environmental Science & Environmental </i>	3578°	24	
264	Successful control of phosphorus release from sediments using oxygen nano-bubble-modified minerals. <i>Science of the Total Environment</i> , 2019 , 663, 654-661	10.2	26	
263	In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China. <i>Science of the Total Environment</i> , 2019 , 666, 39-45	10.2	36	
262	Improved Performance of BiVO via Surface-Deposited Magnetic CuFeO for Phenol Oxidation and O Reduction and Evolution under Visible Light. 2019 , 11, 45776-45784		13	
261	Mesoporous bimetallic Fe/Co as highly active heterogeneous Fenton catalyst for the degradation of tetracycline hydrochlorides. 2019 , 9, 15820		12	
260	Characteristics of Bacterial Community and Function in Paddy Soil Profile around Antimony Mine and Its Response to Antimony and Arsenic Contamination. 2019 , 16,		10	
259	FeO/granular activated carbon as an efficient three-dimensional electrode to enhance the microbial electrosynthesis of acetate from CO 2019 , 9, 34095-34101		10	
258	Fe(III) Dixalate-mediated solar degradation of furfural in the presence of persulfate: operational parameters and artificial neural network modeling. 2019 , 16, 219-229		1	
257	Arsenate adsorption on iron-impregnated ordered mesoporous carbon: Fast kinetics and mass transfer evaluation. <i>Chemical Engineering Journal</i> , 2019 , 357, 463-472	14.7	18	
256	Fe3O4-CeO2 loaded on modified activated carbon as efficient heterogeneous catalyst. 2019 , 565, 59-69	9	10	
255	Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions. 2019 , 246, 472-481		29	
254	Influence of algal blooms decay on arsenic dynamics at the sediment-water interface of a shallow lake. <i>Chemosphere</i> , 2019 , 219, 1014-1023	8.4	12	
253	Enhanced oxidation of aniline using Fe(III)-S(IV) system: Role of different oxysulfur radicals. <i>Chemical Engineering Journal</i> , 2019 , 362, 183-189	14.7	32	
252	Seasonal antimony pollution caused by high mobility of antimony in sediments: In situ evidence and mechanical interpretation. <i>Journal of Hazardous Materials</i> , 2019 , 367, 427-436	12.8	18	
251	Effects of tide and season changes on the iron-sulfur-phosphorus biogeochemistry in sediment porewater of a mangrove coast. <i>Journal of Hydrology</i> , 2019 , 568, 686-702	6	24	
250	Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 245, 266-277	5.5	33	
249	Ofloxacin degradation by Fe3O4-CeO2/AC Fenton-like system: Optimization, kinetics, and degradation pathways. 2019 , 465, 61-67		19	

248	Seasonal changes of lead mobility in sediments in algae- and macrophyte-dominated zones of the lake. <i>Science of the Total Environment</i> , 2019 , 660, 484-492	10.2	19
247	Insight into CaO-based Fenton and Fenton-like systems: strategy for CaO-based oxidation of organic contaminants. <i>Chemical Engineering Journal</i> , 2019 , 361, 919-928	14.7	24
246	Improving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatment. <i>Chemical Engineering Journal</i> , 2019 , 362, 525-536	14.7	51
245	Assessment on the effects of aluminum-modified clay in inactivating internal phosphorus in deep eutrophic reservoirs. <i>Chemosphere</i> , 2019 , 215, 657-667	8.4	20
244	Heterogeneous Fenton catalyst derived from hydroxide sludge as an efficient and reusable catalyst for anthraquinone dye degradation. 2019 , 54, 1338-1352		7
243	Mineralization of pentachlorophenol by ferrioxalate-assisted solar photo-Fenton process at mild pH. <i>Chemosphere</i> , 2019 , 217, 475-482	8.4	25
242	Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. 2019 , 244, 228-237		30
241	Hydroxylamine-assisted catalytic degradation of ciprofloxacin in ferrate/persulfate system. <i>Chemical Engineering Journal</i> , 2019 , 360, 612-620	14.7	30
240	High resolution spatiotemporal sampling as a tool for comprehensive assessment of zinc mobility and pollution in sediments of a eutrophic lake. <i>Journal of Hazardous Materials</i> , 2019 , 364, 182-191	12.8	50
239	Heterogeneous Fenton degradation of bisphenol A using FeO@冊CD/rGO composite: Synergistic effect, principle and way of degradation. 2019 , 244, 93-101		46
238	Three-dimensional heterogeneous Electro-Fenton system with a novel catalytic particle electrode for Bisphenol A removal. <i>Journal of Hazardous Materials</i> , 2020 , 393, 120448	12.8	54
237	Coupled dynamics of As-containing ferrihydrite transformation and As desorption/re-adsorption in presence of sulfide. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121287	12.8	8
236	Degradation of carbamazepine by singlet oxygen from sulfidized nanoscale zero-valent iron litric acid system. <i>Chemical Engineering Journal</i> , 2020 , 382, 122828	14.7	26
235	Size-controlled biosynthesis of FeS nanoparticles for efficient removal of aqueous Cr(VI). <i>Chemical Engineering Journal</i> , 2020 , 379, 122404	14.7	43
234	Utilization of formic acid in nanoscale zero valent iron-catalyzed Fenton system for carbon tetrachloride degradation. <i>Chemical Engineering Journal</i> , 2020 , 380, 122537	14.7	28
233	Denitrifying anaerobic methane oxidation in marsh sediments of Chongming eastern intertidal flat. 2020 , 150, 110681		10
232	Modification of carbon felt anode with graphene/FeO composite for enhancing the performance of microbial fuel cell. 2020 , 43, 373-381		13
231	Reduction of chlorendic acid by zero-valent iron: Kinetics, products, and pathways. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121269	12.8	5

(2020-2020)

230	Pathway for the Production of Hydroxyl Radicals during the Microbially Mediated Redox Transformation of Iron (Oxyhydr)oxides. <i>Environmental Science & Environmental Science &</i>	10.3	25
229	Kinetics of As(V) and carbon sequestration during Fe(II)-induced transformation of ferrihydrite-As(V)-fulvic acid coprecipitates. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 272, 160-176	5.5	20
228	Enhanced carbon tetrachloride degradation by hydroxylamine in ferrous ion activated calcium peroxide in the presence of formic acid. 2020 , 14, 1		2
227	Construction of electron transfer chains with methylene blue and ferric ions for direct conversion of lignocellulosic biomass to electricity in a wide pH range. 2020 , 265, 118578		14
226	Oxygenation of acid sulfate soils stimulates CO2 emission: Roles of acidic dissolution and hydroxyl radical oxidation. 2020 , 533, 119437		7
225	Application of glutamate to enhance carbon tetrachloride (CT) degradation by Fe(II) activated calcium peroxide in the presence of methanol: CT removal performance and mechanism. <i>Separation and Purification Technology</i> , 2020 , 236, 116259	8.3	2
224	Degradation of the #blocker propranolol by sulfite activation using FeS. <i>Chemical Engineering Journal</i> , 2020 , 385, 123884	14.7	26
223	Experimental study of shale-fluids interaction during oxidative dissolution with hydrogen peroxide, sodium hypochlorite and sodium persulfate. <i>Applied Geochemistry</i> , 2020 , 113, 104503	3.5	10
222	Fe(II) Removal from Aqueous Solution by Layered Double Hydroxide/Graphene Composites: Adsorption Coupled with Surface Oxidation. 2020 , 37, 43-52		4
221	Treatment of semi-aerobic aged-refuse biofilter effluent from treating landfill leachate with the Fenton method. 2020 , 133, 32-40		16
220	Evaluating biogeochemical indicators of methanogenic conditions and thermodynamic constraints in peat. <i>Applied Geochemistry</i> , 2020 , 114, 104471	3.5	1
219	Mechanism of phosphorus mobility in sediments with larval (Propsilocerus akamusi) bioturbation. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 7538-7548	5.1	2
218	Erradiation generated ferrous ions affect the formation of magnetite and feroxyhyte. 2020 , 170, 10864	8	1
217	Fine-scale remobilization of phosphorus by rooted macrophytes (Phragmites australis) growth in lake sediments: evidence from a holistic growth period simulation study. 2020 , 20, 1782-1792		4
216	Comparison of the reaction kinetics and mechanisms of Sb(III) oxidation by reactive oxygen species from pristine and surface-oxidized pyrite. 2020 , 552, 119790		8
215	Ferrihydrite Reduction Increases Arsenic and Uranium Bioavailability in Unsaturated Soil. <i>Environmental Science & Environmental Science & Environment</i>	10.3	9
214	Enhanced Photochemical Volatile Organic Compounds Release from Fatty Acids by Surface-Enriched Fe(III). <i>Environmental Science & Enp. Technology</i> , 2020 , 54, 13448-13457	10.3	7
213	Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms. 2020 , 14, 2675-2690		2

212	Role of Carbonate in Thermodynamic Relationships Describing Pollutant Reduction Kinetics by Iron Oxide-Bound Fe. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	7
211	Fe-Mediated Activation of BK Channels by Rapid Photolysis of CORM-S1 Releasing CO and Fe. 2020 , 15, 2098-2106		4
210	Oxalate-Induced Photoreduction Dissolution and Transformation of Schwertmannite: Change of Mineral Phase and Elemental Fate. 2020 , 4, 2031-2040		4
209	Activation of Hydrogen Peroxide by a Titanium Oxide-Supported Iron Catalyst: Evidence for Surface Fe(IV) and Its Selectivity. <i>Environmental Science & Environmental Science &</i>	10.3	20
208	Two d10 metal coordination polymers as dual functional luminescent probes for sensing of Fe3+ ions and acetylacetone with high selectivity and sensitivity. 2020 , 289, 121460		21
207	In-situ remediation of acid mine drainage from abandoned coal mine by filed pilot-scale passive treatment system: Performance and response of microbial communities to low pH and elevated Fe. 2020 , 317, 123985		15
206	Reduction of 3-Nitro-1,2,4-Triazol-5-One (NTO) by the Hematite-Aqueous Fe(II) Redox Couple. <i>Environmental Science & Environmental Science & Environme</i>	10.3	9
205	Mineralogische und chemische Charakterisierung von Wlzrohr-Schlacken: wichtige Untersuchungsergebnisse und Erarbeitung eines Charakterisierungsablaufs. 2020 , 165, 578-586		
204	Passive Detection of Phosphorus in Agricultural Tile Waters Using Reactive Hybrid Anion Exchange Resins. 2020 , 12, 2808		
203	Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments. 2020 , 181, 115923		26
203		14.7	26
	environments. 2020, 181, 115923 Mechanistic insights into the degradation of trichloroethylene by controlled release nano calcium peroxide activated by iron species coupled with nano iron sulfide. Chemical Engineering Journal,	.,	
202	environments. 2020, 181, 115923 Mechanistic insights into the degradation of trichloroethylene by controlled release nano calcium peroxide activated by iron species coupled with nano iron sulfide. <i>Chemical Engineering Journal</i> , 2020, 399, 125754	.,	20
202	environments. 2020, 181, 115923 Mechanistic insights into the degradation of trichloroethylene by controlled release nano calcium peroxide activated by iron species coupled with nano iron sulfide. <i>Chemical Engineering Journal</i> , 2020, 399, 125754 Metal Substitution-Induced Reducing Capacity of Magnetite Coupled with Aqueous Fe(II). 2020, 4, 905-Oxidative Degradation of Organic Contaminants by FeS in the Presence of O. <i>Environmental Science</i>	911	20
202 201 200	Mechanistic insights into the degradation of trichloroethylene by controlled release nano calcium peroxide activated by iron species coupled with nano iron sulfide. <i>Chemical Engineering Journal</i> , 2020, 399, 125754 Metal Substitution-Induced Reducing Capacity of Magnetite Coupled with Aqueous Fe(II). 2020, 4, 905-Oxidative Degradation of Organic Contaminants by FeS in the Presence of O. <i>Environmental Science & Magnetical Engineering Journal</i> , 2020, 4, 905-Oxidative Degradation of Organic Contaminants by FeS in the Presence of O. <i>Environmental Science & Magnetical Engineering Journal</i> , 2020, 4, 905-Oxidative Degradation of Organic Contaminants by FeS in the Presence of O. <i>Environmental Science & Magnetical Engineering Journal</i> , 2020, 54, 4091-4101	911	20
202 201 200	environments. 2020, 181, 115923 Mechanistic insights into the degradation of trichloroethylene by controlled release nano calcium peroxide activated by iron species coupled with nano iron sulfide. Chemical Engineering Journal, 2020, 399, 125754 Metal Substitution-Induced Reducing Capacity of Magnetite Coupled with Aqueous Fe(II). 2020, 4, 905-Oxidative Degradation of Organic Contaminants by FeS in the Presence of O. Environmental Science & Environmental & Environm	911 10.3	20 1 34 27
202 201 200 199	environments. 2020, 181, 115923 Mechanistic insights into the degradation of trichloroethylene by controlled release nano calcium peroxide activated by iron species coupled with nano iron sulfide. Chemical Engineering Journal, 2020, 399, 125754 Metal Substitution-Induced Reducing Capacity of Magnetite Coupled with Aqueous Fe(II). 2020, 4, 905-Oxidative Degradation of Organic Contaminants by FeS in the Presence of O. Environmental Science & Environmental Sc	911 10.3	20 1 34 27

194	Red mud-activated peroxymonosulfate process for the removal of fluoroquinolones in hospital wastewater. 2020 , 184, 116171		12
193	Accelerated oxidation of microcystin-LR by Fe(II)-tetrapolyphosphate/oxygen in the presence of magnesium and calcium ions. 2020 , 184, 116172		
192	In situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron-persulfate system: Insights from a box-type study. <i>Chemosphere</i> , 2020 , 257, 127117	8.4	15
191	Contaminant Degradation by D H during Sediment Oxygenation: Dependence on Fe(II) Species. <i>Environmental Science & Dependence on Fe(II) Species.</i>	10.3	35
190	Efficient removal of trichloroethene in oxidative environment by anchoring nano FeS on reduced graphene oxide supported nZVI catalyst: The role of FeS on oxidant decomposition and iron leakage. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122328	12.8	18
189	Photoinduced Fenton-simulated reduction system based on iron cycle and carbon dioxide radicals production for rapid removal of Cr(VI) from wastewater. 2020 , 258, 120790		10
188	Experimental study on the oxidative dissolution of carbonate-rich shale and silicate-rich shale with H2O2, Na2S2O8 and NaClO: Implication to the shale gas recovery with oxidation stimulation. 2020 , 76, 103207		5
187	Enhanced heterogeneous Fenton-like degradation of nuclear-grade cationic exchange resin by nanoscale zero-valent iron: experiments and DFT calculations. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 13773-13789	5.1	3
186	Comparative characterization of microbial communities that inhabit arsenic-rich and antimony-rich contaminated sites: Responses to two different contamination conditions. 2020 , 260, 114052		19
185	Synergistic degradation of sulfamethoxazole in an oxalate-enhanced Fered-Fenton system: The critical heterogeneous solid-liquid interfacial mechanism and an insight in practical application. Journal of Hazardous Materials, 2020 , 392, 122268	12.8	3
184	Synergetic activation of persulfate by heat and Fe(II)-complexes for hydrolyzed polyacrylamide degradation at high pH condition: Kinetics, mechanism, and application potential for filter cake removal during cementing in CO storage wells. <i>Science of the Total Environment</i> , 2020 , 713, 136561	10.2	6
183	Exploring the mechanism of the Fe(III)-activated Fenton-like reaction based on a quantitative study. 2020 , 44, 8952-8959		6
182	Exploration of potential jarosite biomineralization mechanism based on extracellular polymer substances of Purpureocillium lilacinum Y3. 2020 , 150, 104941		6
181	Application and mechanism of ferrihydrite in the EDDS improved heterogeneous photo-Fenton system: the role of different reactive species under different conditions. 2020 , 44, 7602-7610		4
180	Effect of in situ generated iron oxyhydroxide coatings on FeS oxygenation and resultant hydroxyl radical production for contaminant degradation. <i>Chemical Engineering Journal</i> , 2020 , 394, 124961	14.7	10
179	Oxygenation and synchronous control of nitrogen and phosphorus release at the sediment-water interface using oxygen nano-bubble modified material. <i>Science of the Total Environment</i> , 2020 , 725, 138	32 ¹ 28 ²	15
178	Coupling biomass pretreatment for enzymatic hydrolysis and direct biomass-to-electricity conversion with molybdovanadophosphoric heteropolyacids as anode electron transfer carriers. 2021 , 58, 133-146		5
177	Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. 2021 , 153, 108106		15

176	Mechanism of surfactant in trichloroethene degradation in aqueous solution by sodium persulfate activated with chelated-Fe(II). <i>Journal of Hazardous Materials</i> , 2021 , 407, 124814	12.8	15
175	Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals. <i>Chemical Engineering Journal</i> , 2021 , 407, 126738	14.7	17
174	Enhanced oxidation of sulfadiazine by two-stage ultrasound assisted zero-valent iron catalyzed persulfate process: Factors and pathways. <i>Chemical Engineering Journal</i> , 2021 , 417, 128152	14.7	5
173	Oxidative removal of antibiotic resistant E. coli by sulfidated zero-valent iron: Homogeneous vs heterogeneous activation. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124411	12.8	4
172	An electro-Fenton system with magnetite coated stainless steel mesh as cathode. 2021 , 359, 16-22		5
171	The environmental importance of iron speciation in soils: evaluation of classic methodologies. 2021 , 193, 63		1
170	Synergistic effects between the S-TiO2 photocatalyst and the Fenton-like reagent: Enhanced contaminant oxidation under visible light illumination. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104598	6.8	3
169	Implications for practical application of commercial reduced iron powders to activate aqueous sulfite for decontamination of organics. 2021 , 14, 1		1
168	Geochemical signatures of lignite mining products in sediments downstream a fluvial-lacustrine system. <i>Science of the Total Environment</i> , 2021 , 760, 143942	10.2	4
167	Divergent effect of silicon on greenhouse gas production from reduced and oxidized peat organic matter. <i>Geoderma</i> , 2021 , 386, 114916	6.7	4
166	Size effect of hematite particles on the Cr(VI) reduction by Shewanella oneidensis MR-1. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105096	6.8	2
165	Stable FeO submicrospheres with SiO coating for heterogeneous Fenton-like reaction at alkaline condition. <i>Science of the Total Environment</i> , 2021 , 764, 144200	10.2	9
164	Effects of nFeO capping on phosphorus release from sediments in a eutrophic lake. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 47056-47065	5.1	O
163	Fluxes and mechanisms of phosphorus release from sediments in seasonal hypoxic reservoirs: a simulation-based experimental study. 2021 , 21, 3246		O
162	Chemical kinetic modeling of organic pollutant degradation in Fenton and solar photo-Fenton processes. 2021 , 123, 175-175		6
161	The dominant effect of black carbon on the chemical degradability of PCB1: Sequestration or/and catalysis. <i>Science of the Total Environment</i> , 2021 , 770, 145265	10.2	5
160	Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes. 2021 , 11,		14
159	Mobile genetic elements mediate the mixotrophic evolution of novel Alicyclobacillus species for acid mine drainage adaptation. 2021 , 23, 3896-3912		2

158	High mobilization of phosphorus in black-odor river sediments with the increase of temperature. Science of the Total Environment, 2021 , 775, 145595	.2	2
157	Metabolic potentials of members of the class Acidobacteriia in metal-contaminated soils revealed by metagenomic analysis. 2021 ,		9
156	Influence of atmospheric surface oxidation on the formation of H2O2 and D H at pyrite-water interface: Mechanism and kinetic model. 2021 , 571, 120176		2
155	Fe activating sodium percarbonate (SPC) to enhance removal of Microcystis aeruginosa and microcystins with pre-oxidation and in situ coagulation. <i>Journal of Hazardous Materials</i> , 2021 , 412, 1252062.	8	9
154	Arsenic-rich stalactites from abandoned mines: Mineralogy and biogeochemistry. <i>Applied Geochemistry</i> , 2021 , 129, 104960		1
153	Phosphorus mobilization and availability across the freshwater to oligohaline water transition in subtropical estuarine marshes. 2021 , 201, 105195		2
152	Insights into Autotrophic Activities and Carbon Flow in Iron-Rich Pelagic Aggregates (Iron Snow). 2021 , 9,		
151	Towards a standardized protocol for studying chemolithoautotrophic denitrification with pyrite at circumneutral pH. <i>Applied Geochemistry</i> , 2021 , 130, 104995		1
150	High-resolution induced polarization imaging of biogeochemical carbon turnover hotspots in a peatland. 2021 , 18, 4039-4058		2
149	Estimating the Reducing Power of Carbon Nanotubes and Granular Activated Carbon Using Various Compounds. 2021 , 13, 1959		
148	Combined use of high-resolution dialysis, diffusive gradient in thin films (DGT) technique, and conventional methods to assess trace metals in reservoir sediments. 2021 , 193, 469		
147	Purification and Removal of Hematite from Talc by Acid Leaching Assisted by Chlorination Techniques. 2021 , 38, 2239-2247		
146	Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO nanoparticles for trichloroethylene degradation. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125935	8	6
145	The decomposition of macrozoobenthos induces large releases of phosphorus from sediments. 2021 , 283, 117104		4
144	Simultaneous oxidation and removal of arsenite by Fe(III)/CaO Fenton-like technology. 2021 , 201, 117312		13
143	Co-existing siderite alleviates the Fe(II) oxidation-induced inactivation of Fe(III)-reducing bacteria. Science of the Total Environment, 2021 , 781, 146489	.2	2
142	Simultaneous enhancement of treatment performance and energy recovery using pyrite as anodic filling material in constructed wetland coupled with microbial fuel cells. 2021 , 201, 117333		9
141	Characterization of iron reducibility of soy protein amyloid fibrils and their applications in iron fortification. 2021 , 353, 129420		10

140	Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. <i>Water Science and Technology: Water Supply</i> ,	1.4	0
139	Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation. <i>Science of the Total Environment</i> , 2021 , 781, 146411	10.2	10
138	Water table fluctuations affect dichloromethane biodegradation in lab-scale aquifers contaminated with organohalides. 2021 , 203, 117530		1
137	Active iron species driven hydroxyl radicals formation in oxygenation of different paddy soils: Implications to polycyclic aromatic hydrocarbons degradation. 2021 , 203, 117484		8
136	Effects of Fe(OH) and MnO Flocs on Iron/Manganese Removal and Fouling in Aerated Submerged Membrane Systems. 2021 , 13,		1
135	A Robust ROS Generation Strategy for Enhanced Chemodynamic/Photodynamic Therapy via H2O2/O2 Self-Supply and Ca2+ Overloading. 2106106		8
134	PH-dependent photochemical transformation of arsenic sulfide sludge catalyzed by Fe ions under visible light irradiation. 2021 , 293, 120186		1
133	Solar irradiation induced oxidation and adsorption of arsenite on natural pyrite. 2021 , 203, 117545		1
132	Feasibility of using Mg/Al-based layered double hydroxides as an inactivating agent to interrupt phosphorus release from contaminated agricultural drainage ditch sediments. 2021 , 223, 112599		O
131	O distribution and dynamics in the rhizosphere of Phragmites australis, and implications for nutrient removal in sediments. 2021 , 287, 117193		2
130	Enhancing the retention of phosphorus through bacterial oxidation of iron or sulfide in the eutrophic sediments of Lake Taihu. <i>Science of the Total Environment</i> , 2021 , 791, 148039	10.2	O
129	Supramolecular precursor derived loofah sponge-like Fe2Ox/C for effective synergistic reaction of Fenton and photocatalysis. 1		O
128	Novel step-scheme red mud based Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance and stability in photo-Fenton reaction. <i>Chemical Engineering Journal</i> , 2021 , 424, 130537	14.7	9
127	Green rust-deposited MoS2 composites for the enhanced sequestration of EDTA-chelated Cu(II) from an aqueous solution. 2021 , 341, 117300		
126	Activation of Fenton reaction by controllable oxygen incorporation in MoS2-Fe under visible light irradiation. 2021 , 566, 150674		3
125	Singlet oxygen mediated Fe2+/peroxymonosulfate photo-Fenton-like reaction driven by inverse opal WO3 with enhanced photogenerated charges. <i>Chemical Engineering Journal</i> , 2021 , 425, 128644	14.7	8
124	Effects of low-molecular-weight organic acids/thiols on hydroxyl radical production from natural siderite oxidation. 2021 , 584, 120537		1
123	Methane fluxes but not respiratory carbon dioxide fluxes altered under Si amendment during drying Irewetting cycles in fen peat mesocosms. <i>Geoderma</i> , 2021 , 404, 115338	6.7	2

122	Anoxic oxidation of As(III) during Fe(II)-induced goethite recrystallization: Evidence and importance of Fe(IV) intermediate. <i>Journal of Hazardous Materials</i> , 2022 , 421, 126806	12.8	5
121	Synergetic degradation of Methylene Blue through photocatalysis and Fenton reaction on two-dimensional molybdenite-Fe 2022 , 111, 11-23		6
120	A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism. <i>Journal of Hazardous Materials</i> , 2022 , 422, 126952	12.8	5
119	Response of soil protozoa to acid mine drainage in a contaminated terrace. <i>Journal of Hazardous Materials</i> , 2022 , 421, 126790	12.8	9
118	Abiotic reduction of nitrite by Fe(II): a comparison of rates and NO production. 2021 , 23, 1531-1541		1
117	Correction of lime-induced chlorosis in container-grown citrus trees by peat and iron sulfate application to small soil volumes. 1991 , 345-349		3
116	A novel H2O2-persulfate hybrid system supported by electrochemically induced acidic and alkaline conditions for organic pollutant removal. 2020 , 50, 791-797		1
115	Effect of coagulant on acidogenic fermentation of sludge from enhanced primary sedimentation for resource recovery: Comparison between FeCl 3 and PACl. <i>Chemical Engineering Journal</i> , 2017 , 325, 681-689	14.7	64
114	Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron. 2020 , 187, 109662		11
113	Occallatibacter riparius gen. nov., sp. nov. and Occallatibacter savannae sp. nov., acidobacteria isolated from Namibian soils, and emended description of the family Acidobacteriaceae. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2016 , 66, 219-229	2.2	30
112	gen. nov., sp. nov. and sp. nov., novel members of fam. nov. within the order, and emended descriptions of the classes and and their orders and families. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2016 , 66, 652-665	2.2	18
111	Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix. 2016 , 162, 62-71		10
110	Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate. 1984 , 48, 229-31		19
109	Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 ("Pseudomonas ferrireductans"). 1986 , 52, 281-9		87
108	The relationships of velocity, dissolved oxygen with Fe2+,S2- in black bloom region on Nanfei River estuary of Lake Chaohu. 2016 , 28, 710-717		4
107	Interactions Between Cells of and During Pyrite Bioleaching. Frontiers in Microbiology, 2020, 11, 44	5.7	11
106	Organic matter and sediment properties determine in-lake variability of sediment CO₂ and CH₄ production and emissions of a small and shallow lake. 2020 , 17, 5057-5078		9
105	Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by <i>Geobacter bremensis</i> vs. abiotic reduction by Na-dithionite.		7

104	Microbial reduction of iron and porewater biogeochemistry in acidic peatlands.		6
103	Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding.		1
102	DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths here DOC exports mediated by iron reduction/oxidation cycles?.		5
101	Ferrihydrite enrichment in the rhizosphere of unsaturated soil improves nutrient retention while limiting arsenic and uranium plant uptake. <i>Science of the Total Environment</i> , 2022 , 806, 150967	10.2	О
100	Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil. <i>Environmental Science & Environmental Science & Envir</i>	10.3	6
99	Application of Aureobasidium pullulans in iron-poor soil. Can the production of siderophores improve iron bioavailability and yeast antagonistic activity?.		2
98	Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1. <i>Chemosphere</i> , 2021 , 288, 132661	8.4	2
97	Oxidative Degradation of Phenol Using Zero-Valent Iron-Based Fenton-Like Systems. 2013 , 18, 50-57		1
96	Iron encrustations on filamentous algae colonized by <i>Gallionella</i> -related bacteria in a metal-polluted freshwater stream.		
95	. 2019 , 275-308		
95 94	. 2019 , 275-308 Efficient Degradation of Iopromide by Using Sulfite Activated with Mackinawite. 2021 , 26,		O
			0
94	Efficient Degradation of Iopromide by Using Sulfite Activated with Mackinawite. 2021 , 26, Towards a mechanistic understanding of microbial and nonmicrobial mediated topsoil organic		
94	Efficient Degradation of Iopromide by Using Sulfite Activated with Mackinawite. 2021 , 26, Towards a mechanistic understanding of microbial and nonmicrobial mediated topsoil organic carbon sequestration efficiency in a rice-wheat cropping system. 2022 , 170, 104259 Coprecipitation of humic acid and phosphate with Fe(III) enhances the sequestration of carbon and phosphorus in sediments. 2022 , 588, 120645	12.8	O
94 93 92	Efficient Degradation of Iopromide by Using Sulfite Activated with Mackinawite. 2021, 26, Towards a mechanistic understanding of microbial and nonmicrobial mediated topsoil organic carbon sequestration efficiency in a rice-wheat cropping system. 2022, 170, 104259 Coprecipitation of humic acid and phosphate with Fe(III) enhances the sequestration of carbon and phosphorus in sediments. 2022, 588, 120645 Reactive oxygen species formation driven by acidophiles mediated pyrite oxidation and its	12.8	O 2 O
94 93 92 91	Efficient Degradation of Iopromide by Using Sulfite Activated with Mackinawite. 2021, 26, Towards a mechanistic understanding of microbial and nonmicrobial mediated topsoil organic carbon sequestration efficiency in a rice-wheat cropping system. 2022, 170, 104259 Coprecipitation of humic acid and phosphate with Fe(III) enhances the sequestration of carbon and phosphorus in sediments. 2022, 588, 120645 Reactive oxygen species formation driven by acidophiles mediated pyrite oxidation and its potential role on 2,4-dichlorophenol transformation. <i>Journal of Hazardous Materials</i> , 2021, 425, 127833 Hydroxyl radicals induced mineralization of organic carbon during oxygenation of ferrous mineral-organic matter associations: Adsorption versus coprecipitation. <i>Science of the Total</i>		O 2 O
94 93 92 91 90	Efficient Degradation of Iopromide by Using Sulfite Activated with Mackinawite. 2021, 26, Towards a mechanistic understanding of microbial and nonmicrobial mediated topsoil organic carbon sequestration efficiency in a rice-wheat cropping system. 2022, 170, 104259 Coprecipitation of humic acid and phosphate with Fe(III) enhances the sequestration of carbon and phosphorus in sediments. 2022, 588, 120645 Reactive oxygen species formation driven by acidophiles mediated pyrite oxidation and its potential role on 2,4-dichlorophenol transformation. Journal of Hazardous Materials, 2021, 425, 127833 Hydroxyl radicals induced mineralization of organic carbon during oxygenation of ferrous mineral-organic matter associations: Adsorption versus coprecipitation. Science of the Total Environment, 2021, 816, 151667 Effective degradation of VOCs from wood by Fe chelate activated dual oxidant (HO-PS).	10.2	O 2 O 1

86	Hydroxylamine promoted Fe(III) reduction in HO/soil systems for phenol degradation <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	1
85	Exploring the Effects of Organic Matter Characteristics on Fe(II) Oxidation Kinetics in Coastal Seawater <i>Environmental Science & Environmental Scie</i>	10.3	1
84	Electrochemical Properties of Peat Particulate Organic Matter on a Global Scale: Relation to Peat Chemistry and Degree of Decomposition. <i>Global Biogeochemical Cycles</i> ,	5.9	О
83	Efficient catalytic degradation of trichloroethylene in persulfate system by Ca-Fe2O3 and Cu-Fe2O3 nanoparticles: Mechanistic insights. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107196	6.8	1
82	Co-response of Fe-reducing/oxidizing bacteria and Fe species to the dynamic redox cycles of natural sediment <i>Science of the Total Environment</i> , 2022 , 815, 152953	10.2	O
81	Multiple heavy metal distribution and microbial community characteristics of vanadium-titanium magnetite tailing profiles under different management modes <i>Journal of Hazardous Materials</i> , 2021 , 429, 128032	12.8	О
80	Insight into Aqueous Cr(Vi) Sequestration with Ferrous Sulfide/N-Doped Biochar Composites from Co-Pyrolysis of Coffee Husks/Mohr's Salt Mixture. <i>SSRN Electronic Journal</i> ,	1	
79	Changes in Magnetic Properties of Magnetite Nanoparticles Upon Microbial Iron Reduction. <i>Geochemistry, Geophysics, Geosystems</i> , 2022 , 23,	3.6	
78	Effective degradation of 1,2-dichloroethane in calcium peroxide activated by Fe(III): performance and mechanisms. <i>Water Science and Technology: Water Supply</i> ,	1.4	1
77	sp. nov. and sp. nov., two acidophilic bacteria isolated from acid mine drainage <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2022 , 72,	2.2	О
76	Bioleaching of Chalcopyrite Waste Rock in the Presence of the Copper Solvent Extractant LIX984N <i>Frontiers in Microbiology</i> , 2022 , 13, 820052	5.7	
75	Aboveground competition influences density-dependent effects of cordgrass on sediment biogeochemistry <i>Ecology and Evolution</i> , 2022 , 12, e8722	2.8	O
74	Arsenic fractionation and mobilization in agricultural soils of NE Punjab, India. <i>Applied Geochemistry</i> , 2022 , 139, 105255	3.5	1
73	Dithionite extractable iron responsible for the production of hydroxyl radicals in soils under fluctuating redox conditions. <i>Geoderma</i> , 2022 , 415, 115784	6.7	О
72	Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity <i>Journal of Hazardous Materials</i> , 2022 , 434, 128861	12.8	1
71	Effects of wetland types on dynamics and couplings of labile phosphorus, iron and sulfur in coastal wetlands during growing season <i>Science of the Total Environment</i> , 2022 , 154460	10.2	1
70	Carbonate accelerated transformation of ferrihydrite in the presence of phosphate. <i>Geoderma</i> , 2022 , 417, 115811	6.7	
69	Sulfite activation using FeO as a source of ferrous ions for fluoxetine degradation: A collaborated experimental and DFT study. <i>Chemical Engineering Journal</i> , 2022 , 441, 135960	14.7	1

68 Data_Sheet_1.pdf. **2018**,

67	Efficient removal of aqueous Cr(VI) with ferrous sulfide/N-doped biochar composites: Facile, in-situ preparation and Cr(VI) uptake performance and mechanism <i>Science of the Total Environment</i> , 2022 , 155791	10.2	O
66	Effect of dam on iron species distribution and transformation in riparian zones. <i>Journal of Hydrology</i> , 2022 , 610, 127869	6	1
65	Effect of Wetting-drying Cycles on the Cu Bioavailability in the Paddy Soil Amended With CuO Nanoparticles. <i>Journal of Hazardous Materials</i> , 2022 , 129119	12.8	O
64	Electron Accepting Capacities of a wide variety of peat materials from around the Globe similarly explain CO2 and CH4 production.		О
63	Synergy of oxalic acid and sunlight triggered Cr(III)-bearing Schwertmannite transformation: reaction mechanism, Cr and C spatial distribution and speciation on the nano scale. <i>Geochimica Et Cosmochimica Acta</i> , 2022 ,	5.5	O
62	Development of Sepiolite-Loaded Nano Cao2 as Multi-Target Capping Material for the Treatment of Contaminated Sediments. <i>SSRN Electronic Journal</i> ,	1	
61	Experimental and Numerical Studies on Oxidation Acidification Interactions that Dominate Shale Stimulation with Persulfate. <i>Energy & Dominate Shale Stimulation with Persulfate. Energy & Dominate Shale S</i>	4.1	О
60	Mechanistic revelation into the degradation of organic pollutants by calcium peroxide nanoparticles@polydopamine in Fe(III)-based catalytic systems. <i>Separation and Purification Technology</i> , 2022 , 121412	8.3	1
59	Characterization of two 1,2,4-trihydroxybenzene 1,2-dioxygenases from Phanerochaete chrysosporium. <i>Applied Microbiology and Biotechnology</i> ,	5.7	1
58	Inhibition of sediment internal phosphorus release in agricultural drainage ditches by ceria nanoparticle capping. <i>Environmental Science and Pollution Research</i> ,	5.1	
57	Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions. <i>Journal of Environmental Management</i> , 2022 , 317, 115425	7.9	O
56	Removal of Vocs from Wood by Introducing Activators to Form Hydroxyl Radicals In-Situ Generation Platform. SSRN Electronic Journal,	1	
55	Overlooked Self-Catalytic Mechanism in Phenolic Moiety-Mediated´Fenton-Like´System: Formation of Fe(Iii) Hydroperoxide Complex and Co-Treatment of Refractory Pollutants. <i>SSRN Electronic Journal</i> ,	1	
54	Sustainable removal of soil arsenic by naturally-formed iron oxides on plastic tubes. <i>Journal of Hazardous Materials</i> , 2022 , 129626	12.8	О
53	Autocatalytic effect of in situ formed (hydro)quinone intermediates in Fenton and photo-Fenton degradation of non-phenolic aromatic pollutants and chemical kinetic modeling. <i>Chemical Engineering Journal</i> , 2022 , 449, 137812	14.7	2
52	Ibuprofen Removal by Electrochemically Activated Peroxymonosulfate Using Iron Electrolysis: Reaction Kinetics, Optimization Using Response Surface Methodology, and Performance in Continuous Flow Mode. <i>Journal of Environmental Engineering, ASCE</i> , 2022 , 148,	2	
51	Coexisting Goethite Promotes Fe(II)-Catalyzed Transformation of Ferrihydrite to Goethite.		1

Biomolecular Insights into Extracellular Pollutant Reduction Pathways of Geobacter sulfurreducens 50 Using a Base Editor System. Iron removal and titanium dioxide support recovery from spent V2O5-WO3/TiO2 catalyst. 2022, 49 301, 121934 Two-step coal-assisted water electrolysis for energy-saving hydrogen production at cell voltage of 48 O 1.2 V with current densities larger than 150 mA/cm2. **2022**, 260, 125145 Arsenate sequestration by secondary minerals from chemodenitrification of Fe(II) and nitrite: pH Effect and mechanistic insight. 2022, 336, 62-77 Effect of lanthanum modified bentonite capping on control of sediment phosphorus and tungsten 46 O release. 2022, 185, 106788 Valorization of ball-milled waste red mud into heterogeneous catalyst as effective 45 peroxymonosulfate activator for tetracycline hydrochloride degradation. 2022, 324, 116301 Removal of VOCs from wood by introducing activators to form hydroxyl radicals in-situ generation O 44 platform. **2022**, 10, 108551 ROS Formation Driven by Pyrite-Mediated Arsenopyrite Oxidation and its Potential Role on Arsenic 43 Transformation. Could Sulfidation Enhance the Long-Term Performance of Nano-Zero Valent Iron in the \circ 42 Peroxymonosulfate Activation to Degrade Pcb1?. The Impact of Dissolved Organic Matter on Arsenic Mobilization from Goethite in the Presence of 41 Silicic Acid and Phosphate under Reducing Conditions. 2022, 14, 2975 Disentangling the size-dependent redox reactivity of iron oxides using thermodynamic 40 O relationships. 2022, 119, Secondary Mineral Formation and Carbon Dynamics during FeS Oxidation in the Presence of 39 \circ Dissolved Organic Matter. **2022**, 56, 14120-14132 Synthesis and characterization of cellulose nanocrystal-Fe composite nanoparticles and their 38 O digestion behavior in simulated gastric fluid. 2022, Vertical distribution and transformation of phosphorus and iron in paddy soils during the whole 37 growth stage of rice. 10, Anaerobic methane oxidation coupled to arsenate reduction in paddy soils: Insights from 36 \circ laboratory and field studies. 2022, 137055 A Two-Sorbent System for Fast Uptake of Arsenate from Water: Batch and Column Studies. 2022, 119290 35 Mechanistic insights into Fe(II)-citric acid complex catalyzed CaO2 Fenton-like process for enhanced Ο 34 benzo[a]pyrene removal from black-odor sediment at circumneutral pH. 2022, 226, 119233 Photo-induced reduction of vanadium in vanadium-containing iron/manganese oxide agglomerates 33 by oxalic acid. **2022**, 120590

32	Fate of typical organic halogen compounds in the coexistence of endogenic chlorine atoms and exogenic X 2022 , 309, 136761	О
31	Facet-preferential reduction of hematite nanocrystals by Shewanella oneidensis MR-1: An iron isotope tracer study. 2022 , 614, 121166	O
30	Enhanced generation of reactive oxygen species by pyrite for As(III) oxidation and immobilization: The vital role of Fe(II). 2022 , 309, 136793	0
29	Overlooked self-catalytic mechanism in phenolic moiety-mediated Fenton-like system: Formation of Fe(III) hydroperoxide complex and co-treatment of refractory pollutants. 2023 , 321, 122062	1
28	Could sulfidation enhance the long-term performance of nano-zero valent iron in the peroxymonosulfate activation to degrade 2-chlorobiphenyl?. 2023 , 316, 120631	О
27	ROS formation driven by pyrite-mediated arsenopyrite oxidation and its potential role on arsenic transformation. 2023 , 443, 130151	O
26	Redox Potentials of Magnetite Suspensions under Reducing Conditions.	1
25	Pyrite-enhanced sludge digestion via stimulation of direct interspecies electron transfer between syntrophic Propionate- and Sulfur-oxidizing bacteria and Methanogens: Genome-centric metagenomics evidence. 2023 , 456, 141089	O
24	Effects of estuarine water mixing on the mobility of trace elements in acid mine drainage leachates. 2023 , 187, 114491	0
23	Simultaneous elimination and detoxification of arsenite in the presence of micromolar hydrogen peroxide and ferrous and its environmental implications. 2023 , 249, 114435	O
22	Biogenic carbon encapsulated iron oxides mediated oxalic acid for Cr(VI) reduction in aqueous: Efficient performance, electron transfer and radical mechanisms. 2023 , 313, 137557	1
21	Synergistic enhancement of Fe3+ coupling with Cu0 activated peroxodisulfate: Performance and mechanisms. 2023 , 51, 103393	O
20	Integrated anaerobic derobic biodegradation of mixed chlorinated solvents by electrolysis coupled with groundwater circulation in a simulated aquifer.	О
19	NOM-Induced Dissolution of CrxFe1⊠(OH)3 Precipitates and Formation of Cr(III)-NOM-Fe Colloids under Oxic and Anoxic Conditions. 2022 , 6, 2995-3006	O
18	Electron Accepting Capacities of a Wide Variety of Peat Materials from Around the Globe Similarly Explain CO 2 and CH 4 Formation.	О
17	Riparian Microtopography Affects Event-Driven Stream DOC Concentrations and DOM Quality in a Forested Headwater Catchment. 2022 , 127,	O
16	Eco-Friendly Lignin-Based N/C Cocatalysts for Ultrafast Cyclic Fenton-Like Reactions in Water Purification via Graphitic N-Mediated Interfacial Electron Transfer.	0
15	Experimental insight into the dissolution behavior and interaction of key components in shale-persulfate system. 2022 , 204867	O

CITATION REPORT

14	Effects of Fe(II) on As(III) oxidation in Fe(II)-As(III) co-oxidation: limiting and driving roles. 2023, 130790	Ο
13	The role of sunlight in improving the performance of Fe3+/S(IV) process under natural reoxygenation: Optimized oxygen utilization and enhanced reactive species generation. 2023 , 51, 103446	O
12	Sustainable and reagent-free cathodic precipitation for high-efficiency removal of heavy metals from soil leachate. 2023 , 320, 121002	Ο
11	Vitamin C promoted refractory organic contaminant elimination in the zero-valent iron/peracetic acid system: Efficiency, mechanism and effects of various parameters. 2023 , 326, 138481	O
10	Exploring the impact of ultrasound on antibiotic-resistant bacteria inactivation in the sulfidated zero valent iron/persulfate system. 2023 , 11, 109702	O
9	Shewanella oneidensis MR-1 and oxalic acid mediated vanadium reduction and redistribution in vanadium-containing tailings. 2023 , 451, 131077	O
8	Insights into the mechanism of persulfate activation with carbonated waste metal adsorbed resin for the degradation of 2,4-dichlorophenol. 2023 , 226, 115639	O
7	Reduce methane emission from rice paddies by man-made aerenchymatous tissues. 2023 , 2,	O
6	Simultaneous removal of As(III) and organics in Fenton fluidized bed: The favorable co-crystallization of As(V) and Fe(III). 2023 , 311, 123263	O
5	Stability of organic matter-iron-phosphate associations during abiotic reduction of iron. 2023 , 449, 131016	Ο
4	Soy protein nanoparticles prepared by enzymatic cross-linking with enhanced emulsion stability. 2023 , 19, 2099-2109	0
3	Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications. 2023 , 34, 192001	Ο
2	Ferryl Ion in the Photo-Fenton Process at Acidic pH: Occurrence, Fate, and Implications.	0
1	Efficient reduction and adsorption of Cr(VI) using FeCl3-modified biochar: Synergistic roles of persistent free radicals and Fe(II). 2024 , 137, 626-638	Ο