Modeling relationship between land surface temperature factors using GEE and Giovanni

Journal of Environmental Management 302, 113970

DOI: 10.1016/j.jenvman.2021.113970

Citation Report

#	Article	IF	CITATIONS
1	Using of Google Earth Engine in monitoring systems. E3S Web of Conferences, 2021, 333, 01013.	0.2	3
2	Online Wind-Atlas Databases and GIS Tool Integration for Wind Resource Assessment: A Spanish Case Study. Energies, 2022, 15, 852.	1.6	2
3	Review of satellite resources to assess environmental threats in rammed earth fortifications. Ge-Conservacion, 2022, 21, 309-328.	0.1	2
4	Spatial patterns of environmental degradation and demographic changes in the Mediterranean fringes. Geocarto International, 0, , 1-18.	1.7	4
5	Towards a Decision-Making Approach of Sustainable Water Resources Management Based on Hydrological Modeling: A Case Study in Central Morocco. Sustainability, 2022, 14, 10848.	1.6	12
6	Understanding the Linkage between Urban Growth and Land Surface Temperature—A Case Study of Bangalore City, India. Remote Sensing, 2022, 14, 4241.	1.8	19
7	Land use/land cover mapping using deep neural network and sentinel image dataset based on google earth engine in a heavily urbanized area, China. Geocarto International, 2024, 37, 16951-16972.	1.7	2
8	Assessment of spatiotemporal distribution pattern of land surface temperature with incessant urban sprawl over Khulna and Rajshahi City Corporations. Environmental Challenges, 2022, , 100644.	2.0	0
9	Kocaeli ilinde uydu verileri ve yer istasyonu ölçümlerine bağlı olarak hava kalitesinin değerlendirilmesi. Türk Coğrafya Dergisi, 2022, , 53-68.	0.2	0
10	Assessment of the impact of the different settlement patterns on the summer land surface temperature: Elazığ. Environmental Science and Pollution Research, 2023, 30, 30793-30818.	2.7	1
11	Spatiotemporal and multi-sensor analysis of surface temperature, NDVI, and precipitation using google earth engine cloud computing platform. Russian Journal of Earth Sciences, 2022, , 1-12.	0.2	4
12	Impact of rapid Arctic sea ice decline on China's crop yield under global warming. Environment, Development and Sustainability, 2024, 26, 1263-1280.	2.7	1
13	Análise do ambiente térmico urbano e áreas potencialmente expostas ao calor extremo no municÃpio do Porto (Portugal). Cuadernos De Geografia: Revista Colombiana De Geografia, 2022, 31, 281-302.	0.1	3
14	Distinguishing Dominant Drivers on LST Dynamics in the Qinling-Daba Mountains in Central China from 2000 to 2020. Remote Sensing, 2023, 15, 878.	1.8	4
15	Construction of Urban Thermal Environment Network Based on Land Surface Temperature Downscaling and Local Climate Zones. Remote Sensing, 2023, 15, 1129.	1.8	3
16	Characteristics of the Thermal Environment and its Guidance to Ecological Restoration in a Resource-Based Area in the Loess Area. International Journal of Environmental Research and Public Health, 2023, 20, 3650.	1.2	2
17	Opportunities and Challenges of Spaceborne Sensors in Delineating Land Surface Temperature Trends: A Review. IEEE Sensors Journal, 2023, 23, 6460-6472.	2.4	5
18	Detection of geothermal potential based on land surface temperature derived from remotely sensed and in-situ data. Geo-Spatial Information Science, 0, , 1-17.	2.4	4

ATION RED

#	Article	IF	CITATIONS
19	Evolution of seasonal land surface temperature trend in pond-breeding newt (Neurergus derjugini) in western Iran and eastern Iraq. Ecological Processes, 2023, 12, .	1.6	2
20	Spatiotemporal Changes and Driving Force Analysis of Land Sensitivity to Desertification in Xinjiang Based on GEE. Land, 2023, 12, 849.	1.2	1
21	Risk assessment of debris flow along the northern line of the Sichuan-Tibet highway. Geomatics, Natural Hazards and Risk, 2023, 14, .	2.0	7

CITATION REPORT