A guest-assisted molecular-organization approach for & cells using environmentally friendly solvents

Nature Energy 6, 1045-1053 DOI: 10.1038/s41560-021-00923-5

Citation Report

#	Article	IF	CITATIONS
1	Going green at large. Nature Energy, 0, , .	19.8	0
2	Inhibiting excessive molecular aggregation to achieve highly efficient and stabilized organic solar cells by introducing a star-shaped nitrogen heterocyclic-ring acceptor. Energy and Environmental Science, 2022, 15, 384-394.	15.6	62
3	<scp>Selfâ€assembled</scp> monolayers for interface engineering in polymer solar cells. Journal of Polymer Science, 2022, 60, 2175-2190.	2.0	15
4	Origin of the Additiveâ€Induced <i>V</i> _{OC} Change in Nonâ€Fullerene Organic Solar Cells. Small, 2022, 18, e2107106.	5.2	15
5	Synergistic enhancement in open-circuit voltage and photovoltaic performance via linear naphthyldithiophene building block. Polymer, 2022, 246, 124639.	1.8	2
6	Balancing the Molecular Aggregation and Vertical Phase Separation in the Polymer: Nonfullerene Blend Films Enables 13.09% Efficiency of Organic Solar Cells with Inkjetâ€Printed Active Layer. Advanced Energy Materials, 2022, 12, .	10.2	17
7	Mechanical strain, thermal and pressure effects on the absorption edge of an organic charge-transfer polymer for flexible photovoltaics and sensors. Materials Advances, 2022, 3, 2697-2705.	2.6	5
8	Trifluoro alkyl side chains in the non-fullerene acceptors to optimize the phase miscibility and vertical distribution of organic solar cells. Journal of Materials Chemistry A, 2022, 10, 8837-8845.	5.2	12
9	Oligomerâ€Assisted Photoactive Layers Enable >18 % Efficiency of Organic Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	12
10	Oligomerâ€Assisted Photoactive Layers Enable >18 % Efficiency of Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
11	Highâ€Efficiency ITOâ€Free Organic Photovoltaics with Superior Flexibility and Upscalability. Advanced Materials, 2022, 34, e2200044.	11.1	41
12	Processâ€Aid Solid Engineering Triggers Delicately Modulation of Yâ€Series Nonâ€Fullerene Acceptor for Efficient Organic Solar Cells. Advanced Materials, 2022, 34, e2200907.	11.1	94
13	Light-Induced EPR Study of Polymorphic Acene-Stipulated Transition in P3DDT:PC ₆₁ BM Composite. Journal of Physical Chemistry C, 2022, 126, 4495-4507.	1.5	0
14	Molecular Programming of NIRâ€Ibâ€Emissive Semiconducting Small Molecules for In Vivo Highâ€Contrast Bioimaging Beyond 1500 nm. Advanced Materials, 2022, 34, e2201263.	11.1	44
15	Greenâ€Solventâ€Processed 17% Efficient Polymer Solar Cell Achieved Synergistically by Aligning Energy Levels and Improving Morphology with the Quaternary Strategy. Solar Rrl, 2022, 6, .	3.1	5
16	Domain size control in all-polymer solar cells. IScience, 2022, 25, 104090.	1.9	29
17	Ternary strategy: An analogue as third component reduces the energy loss and improves the efficiency of polymer solar cells. Journal of Energy Chemistry, 2022, 70, 67-73.	7.1	3
18	Recent Advances in Green-Solvent-Processable Organic Photovoltaics. Nanoenergy Advances, 2022, 2,	3.6	8

#	Article	IF	CITATIONS
19	Synergistic Effect of Poly(aryl ether ketone) Matrices via Rational Ternary Copolymerization Enables Efficient and Stable Organic Solar Cells. Chemistry of Materials, 2022, 34, 430-439.	3.2	6
20	Largeâ€Area Organic Solar Modules with Efficiency Over 14%. Advanced Functional Materials, 2022, 32, .	7.8	43
21	Guest-assisted assembly strategy: boosting solvent-processed organic solar cells toward commercialization. Science China Chemistry, 2022, 65, 645-646.	4.2	0
22	<i>In situ</i> and <i>ex situ</i> investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy and Environmental Science, 2022, 15, 2479-2488.	15.6	84
23	Promoting the photovoltaic performance and stability of organic solar cells by imidazole-doped PEDOT:PSS. Journal of Materials Science: Materials in Electronics, 2022, 33, 12083-12092.	1.1	2
24	Environmentally Friendly AgBiS ₂ Nanocrystal Inks for Efficient Solar Cells Employing Green Solvent Processing. Advanced Energy Materials, 2022, 12, .	10.2	13
25	Organic-semiconductor-assisted dielectric screening effect for stable and efficient perovskite solar cells. Science Bulletin, 2022, 67, 1243-1252.	4.3	23
26	Simultaneously Decreasing the Bandgap and V _{oc} Loss in Efficient Ternary Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	33
27	Highâ€Performance Organic Solar Modules via Bilayerâ€Mergedâ€Annealing Assisted Blade Coating. Advanced Materials, 2022, 34, e2110569.	11.1	38
28	Fluid Mechanics Inspired Sequential Bladeâ€Coating for Highâ€Performance Largeâ€Area Organic Solar Modules. Advanced Functional Materials, 2022, 32, .	7.8	36
29	Recent advances in small molecular design for high performance non-fullerene organic solar cells. Molecular Systems Design and Engineering, 2022, 7, 832-855.	1.7	12
30	Large-area organic solar cells. Journal of Semiconductors, 2022, 43, 060201.	2.0	5
31	Understanding the blade coated to roll-to-roll coated performance gap in organic photovoltaics. Solar Energy Materials and Solar Cells, 2022, 245, 111852.	3.0	6
32	Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable. Nature Communications, 2022, 13, .	5.8	38
33	Performance enhancement in organic solar cells and photodetectors enabled by donor phase optimization at the surface of hole transport layer. Chinese Chemical Letters, 2023, 34, 107641.	4.8	3
34	Planarized Polymer Acceptor Featuring High Electron Mobility for Efficient All-Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 968-978.	2.0	3
35	A Low Reorganization Energy and Two-dimensional Acceptor with Four End Units for Organic Solar Cells with Low Eloss. Chinese Journal of Polymer Science (English Edition), 2022, 40, 921-927.	2.0	10
36	Sequentially Fluorinated Polythiophene Donors for Highâ€Performance Organic Solar Cells with 16.4% Efficiency. Advanced Energy Materials, 2022, 12, .	10.2	22

#	Article	IF	CITATIONS
37	Multilevel peel-off patterning of a prototype semitransparent organic photovoltaic module. Joule, 2022, 6, 1581-1589.	11.7	8
38	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
39	Regioisomeric Polymer Semiconductors Based on Cyano-Functionalized Dialkoxybithiophenes: Structure–Property Relationship and Photovoltaic Performance. Transactions of Tianjin University, 0, , .	3.3	0
40	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie, 2022, 134, .	1.6	10
41	Recent Progress of Y6â€Derived Asymmetric Fused Ring Electron Acceptors. Advanced Functional Materials, 2022, 32, .	7.8	114
42	Isomerization of Noncovalently Conformational Lock in Nonfused Electron Acceptor toward Efficient Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 10224-10232.	2.5	11
43	Achieving Record-Efficiency Organic Solar Cells upon Tuning the Conformation of Solid Additives. Journal of the American Chemical Society, 2022, 144, 14731-14739.	6.6	103
44	Mechanically robust all-polymer solar cells enabled by polymerized small molecule acceptors featuring flexible siloxane-spacers. Journal of Materials Chemistry A, 2022, 10, 20312-20322.	5.2	11
45	The principles, design and applications of fused-ring electron acceptors. Nature Reviews Chemistry, 2022, 6, 614-634.	13.8	163
46	Achieving and Understanding of Highly Efficient Ternary Organic Photovoltaics: From Morphology and Energy Loss to Working Mechanism. Small Methods, 2022, 6, .	4.6	16
47	On the Stability of Nonâ€fullerene Acceptors and Their Corresponding Organic Solar Cells: Influence of Side Chains. Advanced Functional Materials, 2022, 32, .	7.8	21
48	In-Situ LID and Regeneration of Al-BSF Solar Cells from Different Positions of a B-Doped Cz-Si Ingot. Energies, 2022, 15, 5591.	1.6	1
49	Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells. Matter, 2022, 5, 4047-4059.	5.0	56
50	High-performance scalable organic photovoltaics with high thickness tolerance from 1Âcm2 to above 50Âcm2. Joule, 2022, 6, 2406-2422.	11.7	24
51	Over 18% binary organic solar cells enabled by isomerization of non-fullerene acceptors with alkylthiophene side chains. Science China Chemistry, 2022, 65, 1758-1766.	4.2	43
52	Boosts charge utilization and enables high performance organic solar cells by marco- and micro- synergistic method. Nano Energy, 2022, 102, 107742.	8.2	18
53	Solid additive tuning of polymer blend morphology enables non-halogenated-solvent all-polymer solar cells with an efficiency of over 17%. Energy and Environmental Science, 2022, 15, 4157-4166.	15.6	39
54	<i>N</i> -doping of nonfullerene bulk-heterojunction organic solar cells strengthens photogeneration and exciton dissociation. Journal of Materials Chemistry A, 2022, 10, 18845-18855.	5.2	4

#	Article	IF	CITATIONS
55	Efficient organic solar cells processed from a halogen-free solvent based on benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran terpolymers. Journal of Materials Chemistry C, 2022, 10, 12292-12299.	2.7	1
56	28nm Neck Width Graphene Geometric Diode for THz Harvesting. , 2022, , .		0
57	<scp>Hostâ€Guest</scp> Active Layer Enabling <scp>Annealingâ€Free</scp> , Nonhalogenated Green Solvent Processing for <scp>Highâ€Performance</scp> Organic Solar Cells ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2963-2972.	2.6	17
58	Intrinsically Stretchable, Highly Efficient Organic Solar Cells Enabled by Polymer Donors Featuring Hydrogenâ€Bonding Spacers. Advanced Materials, 2022, 34, .	11.1	41
59	Molecular Selfâ€Assembly Regulated Dopantâ€Free Hole Transport Materials for Efficient and Stable <i>nâ€iâ€p</i> Perovskite Solar Cells and Scalable Modules. Angewandte Chemie - International Edition, 2022, 61, .	7.2	49
60	Compositionâ€Conditioning Agent for Doped Spiroâ€OMeTAD to Realize Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	31
61	Anode interfacial modification for nonâ€fullerene polymer solar cells: Recent advances and prospects. InformaÄnÃ-Materiály, 2022, 4, .	8.5	20
62	ZnO Surface Passivation with Glucose Enables Simultaneously Improving Efficiency and Stability of Inverted Polymer: Non-fullerene Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1594-1603.	2.0	4
63	Intrinsically Stretchable and Nonâ€Halogenated Solvent Processed Polymer Solar Cells Enabled by Hydrophilic Spacerâ€Incorporated Polymers. Advanced Energy Materials, 2022, 12, .	10.2	34
64	Molecular Selfâ€Assembly Regulated Dopantâ€Free Hole Transport Materials for Efficient and Stable <i>nâ€iâ€p</i> Perovskite Solar Cells and Scalable Modules. Angewandte Chemie, 2022, 134, .	1.6	2
65	Vertical-Phase-Locking Effect in Efficient and Stable All-Polymer-Hosted Solar Cells. ACS Energy Letters, 2022, 7, 3709-3717.	8.8	9
66	Quasiâ€Homojunction Organic Nonfullerene Photovoltaics Featuring Fundamentals Distinct from Bulk Heterojunctions. Advanced Materials, 2022, 34, .	11.1	20
67	Non-fullerene acceptors with alkylthiothiophene side chains for efficient non-halogenated solvent processed indoor organic photovoltaics. Journal of Materials Chemistry C, 2022, 10, 15781-15791.	2.7	6
68	Triggering favorable energy landscape: a general approach towards highly efficient and photostable organic solar cells. Energy and Environmental Science, 2022, 15, 5261-5273.	15.6	9
69	Importance of structural hinderance in performance–stability equilibrium of organic photovoltaics. Nature Communications, 2022, 13, .	5.8	50
71	Recent progress in solution-processed flexible organic photovoltaics. Npj Flexible Electronics, 2022, 6, .	5.1	11
72	Highly efficient and stable binary all-polymer solar cells enabled by sequential deposition processing tuned microstructures. Journal of Materials Chemistry C, 2022, 10, 17899-17906.	2.7	5
73	Linear Regulating of Polymer Acceptor Aggregation with Short Alkyl Chain Units Enhances Allâ€Polymer Solar Cells' Efficiency. Macromolecular Rapid Communications, 2023, 44, .	2.0	2

#	Article	IF	CITATIONS
74	Unraveling the Stretchâ€Induced Microstructural Evolution and Morphology–Stretchability Relationships of Highâ€Performance Ternary Organic Photovoltaic Blends. Advanced Materials, 2023, 35,	11.1	27
75	Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Progress in Polymer Science, 2023, 136, 101626.	11.8	34
76	Recent progress in flexible organic solar cells. EScience, 2023, 3, 100085.	25.0	26
77	Tethered Smallâ€Molecule Acceptors Simultaneously Enhance the Efficiency and Stability of Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	36
78	A Facile Method for Thermally, Light, and Mechanically Stable Organic Solar Cells Using Ultravioletâ€Initiated Crosslinkable Additive. Advanced Optical Materials, 2023, 11, .	3.6	1
79	Advances in the device design and printing technology for eco-friendly organic photovoltaics. Energy and Environmental Science, 2023, 16, 76-88.	15.6	24
80	Calixarenes enabling well-adjusted organic-inorganic interface for inverted organic solar cells with 18.25% efficiency and multifold improved photostability under max power point tracking. Science China Chemistry, 2023, 66, 195-201.	4.2	9
81	Highâ€Performance Green Thickâ€Film Ternary Organic Solar Cells Enabled by Crystallinity Regulation. Advanced Functional Materials, 2023, 33, .	7.8	15
82	Ï€-Extension and chlorination of non-fullerene acceptors enable more readily processable and sustainable high-performance organic solar cells. Journal of Energy Chemistry, 2023, 79, 321-329.	7.1	2
83	Regulating Charge Carrier Recombination in the Interconnecting Layer to Boost the Efficiency and Stability of Monolithic Perovskite/Organic Tandem Solar Cells. Advanced Materials, 2023, 35, .	11.1	15
84	Morphology Optimization of the Photoactive Layer through Crystallinity and Miscibility Regulation for Highâ€performance Polymer Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
85	Investigating the Role of Cathode Buffer Layers Based on Zinc Oxide with Surfaceâ€Rich Graded Fullerene Isomers in Tuning the Interfacial Properties of Organic Solar Cells. Solar Rrl, 0, , 2200797.	3.1	0
86	Manipulating the Crystallization and Phase Transition for Highâ€Performance CsPbI ₂ Br Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	17
87	Morphology Optimization of the Photoactive Layer through Crystallinity and Miscibility Regulation for Highâ€performance Polymer Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	1
88	Combining dithieno[3,2-f:2',3'-h]quinoxaline-based terpolymer and ternary strategies enabling high-efficiency organic solar cells. Chemical Communications, 0, , .	2.2	1
89	19.28% Efficiency and Stable Polymer Solar Cells Enabled by Introducing an NIRâ€Absorbing Guest Acceptor. Advanced Functional Materials, 2023, 33, .	7.8	54
90	Overcoming Disordered Preaggregation in Liquid State for Highly Efficient Organic Solar Cells Printed from Nonhalogenated Solvents. Advanced Energy Materials, 2023, 13, .	10.2	10
91	Stable block copolymer single-material organic solar cells: progress and perspective. Energy and Environmental Science, 2023, 16, 723-744.	15.6	18

#	Article	IF	CITATIONS
92	Effects of the diphenyl ether additive in halogen-free processed non-fullerene acceptor organic solar cells. Journal of Materials Chemistry A, 2023, 11, 2419-2430.	5.2	14
93	18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule, 2023, 7, 221-237.	11.7	72
94	Medium Bandgap Nonfullerene Acceptor for Efficient Ternary Polymer Solar Cells with High Open-Circuit Voltage. ACS Omega, 2023, 8, 1989-2000.	1.6	0
95	Allâ€Green Solvent and Additive Combination Enables Efficient Nonfullerene Organic Solar Cells via Sequential Deposition Strategy. Solar Rrl, 2023, 7, .	3.1	2
96	Facilely full-end-capping engineering promotes high-performance organic solar cells with simultaneously improved efficiency and stability. Chemical Engineering Journal, 2023, 457, 141343.	6.6	7
97	Morphologically Controlled Efficient Airâ€Processed Organic Solar Cells from Halogenâ€Free Solvent System. Advanced Energy Materials, 2023, 13, .	10.2	8
98	Recent Developments of Polymer Solar Cells with Photovoltaic Performance over 17%. Advanced Functional Materials, 2023, 33, .	7.8	38
99	Manipulating Polymer Backbone Configuration via Halogenated Asymmetric Endâ€Groups Enables Over 18% Efficiency Allâ€Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	24
100	Controlling Morphology and Voltage Loss with Ternary Strategy Triggers Efficient All-Small-Molecule Organic Solar Cells. ACS Energy Letters, 2023, 8, 1058-1067.	8.8	43
101	<scp>Hostâ€Guest</scp> Strategy Enabling Nonhalogenated Solvent Processing for <scp>Highâ€Performance Allâ€Polymer</scp> Hosted Solar Cells ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1066-1074.	2.6	6
102	<i>In situ</i> near-ambient pressure X-ray photoelectron spectroscopy reveals the effects of water, oxygen and light on the stability of PM6:Y6 photoactive layers. Journal of Materials Chemistry C, 2023, 11, 3112-3118.	2.7	5
103	Mechanically Stable Flexible Organic Photovoltaics with Silver Nanomesh for Indoor Applications. ACS Applied Materials & Interfaces, 2023, 15, 5378-5386.	4.0	3
104	Manipulating the Macroscopic and Microscopic Morphology of Largeâ€Area Gravureâ€Printed ZnO Films for Highâ€Performance Flexible Organic Solar Cells. Energy and Environmental Materials, 2024, 7, .	7.3	7
105	A Two-Step Heating Strategy for Nonhalogen Solvent-Processed Organic Solar Cells Based on a Low-Cost Polymer Donor. Macromolecules, 2023, 56, 867-875.	2.2	5
106	Triphenylamine side chain enabled polybenzodithiophene wide-bandgap donors for efficient organic solar cells. Polymer Chemistry, 2023, 14, 2080-2087.	1.9	2
107	A Large Area Organic Solar Module with Nonâ€Halogen Solvent Treatment, High Efficiency, and Decent Stability. Solar Rrl, 2023, 7, .	3.1	10
108	Dimerized small-molecule acceptors enable efficient and stable organic solar cells. Joule, 2023, 7, 416-430.	11.7	65
109	Linker Engineering of Dimerized Small Molecule Acceptors for Highly Efficient and Stable Organic Solar Cells. ACS Energy Letters, 2023, 8, 1344-1353.	8.8	45

#	Article	IF	CITATIONS
110	Influence of Component Properties on the Photovoltaic Performance of Monolithic Perovskite/Organic Tandem Solar Cells: Subâ€Cell, Interconnecting Layer, and Photovoltaic Parameters. Small Methods, 2023, 7, .	4.6	4
111	Perovskite Grainâ€Boundary Manipulation Using Roomâ€Temperature Dynamic Selfâ€Healing "Ligamentsâ€f Developing Highly Stable Flexible Perovskite Solar Cells with 23.8% Efficiency. Advanced Materials, 2023, 35, .	or 11.1	44
112	Diffusionâ€Limited Accepter Alloy Enables Highly Efficient and Stable Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	20
113	Heteroatom conjugated-shoulder side-chains-based non-fullerene acceptors for organic solar cells. Cell Reports Physical Science, 2023, 4, 101303.	2.8	2
114	Role of Nonfullerene Acceptor Impurities and Purification on the Efficiency and Stability of Organic Photovoltaics. Solar Rrl, 2023, 7, .	3.1	0
115	Facile Approach for Efficient Non-Fullerene-Based Binary and Ternary Organic Solar Cells Using Hydrated Vanadium Pentoxide as a Hole Transport Layer. ACS Applied Energy Materials, 2023, 6, 3442-3451.	2.5	3
116	Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. Advanced Materials, 2023, 35, .	11.1	116
117	Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer. Nature Communications, 2023, 14, .	5.8	32
118	Correlation of Local Isomerization Induced Lateral and Terminal Torsions with Performance and Stability of Organic Photovoltaics. Journal of the American Chemical Society, 2023, 145, 5909-5919.	6.6	25
119	Intrinsic Role of Volatile Solid Additive in Highâ€Efficiency PM6:Y6 Series Nonfullerene Solar Cells. Advanced Materials, 2023, 35, .	11.1	17
120	Binary Organic Solar Cells with 19.2% Efficiency Enabled by Solid Additive. Advanced Materials, 2023, 35, .	11.1	116
121	Development and application of blade-coating technique in organic solar cells. Nano Research, 2023, 16, 11571-11588.	5.8	7
122	Versatile organic photovoltaics with a power density of nearly 40 W g ^{â^'1} . Energy and Environmental Science, 2023, 16, 2284-2294.	15.6	21
123	Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined <i>ex situ</i> and <i>in situ</i> observations. Energy and Environmental Science, 2023, 16, 2316-2326.	15.6	33
124	Regulating Intramolecular Charge Transfer and Resonance Effects to Realize Ultrawide Bandgap Conjugated Polymer for Highâ€Performance Allâ€Polymer Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	17
125	An Isomeric Solid Additive Enables Highâ€Efficiency Polymer Solar Cells Developed Using a Benzoâ€Difuranâ€Based Donor Polymer. Advanced Materials, 2023, 35, .	11.1	26
126	Recent Progress in Largeâ€Area Organic Solar Cells. Small Science, 2023, 3, .	5.8	11
127	Easily Available Highâ€Performance Organic Solar Cells by Regulating Phenylalkyl Side Groups of Nonâ€Fused Ring Electron Acceptors. Advanced Functional Materials, 2023, 33, .	7.8	8

#	Article	IF	CITATIONS
128	Nanocomposition of PEDOT:PSS with metal phthalocyanines as promising hole transport layers for organic photovoltaics. Synthetic Metals, 2023, 295, 117347.	2.1	3
129	Carbonâ€based electrodes for organic solar cells. ChemPlusChem, 0, , .	1.3	1
134	Side-chain engineering of nonfullerene small-molecule acceptors for organic solar cells. Energy and Environmental Science, 2023, 16, 2732-2758.	15.6	26
171	Key molecular perspectives for high stability in organic photovoltaics. Nature Reviews Materials, 2023, 8, 839-852.	23.3	3
193	Recent progress in side chain engineering of Y-series non-fullerene molecule and polymer acceptors. Science China Chemistry, 2024, 67, 788-805.	4.2	2
206	Metal oxides in organic solar cells. , 2024, , 577-606.		0
213	Recent Progress in High-Performance Organic Photovoltaic Devices. , 2024, , .		0