Cytoplasmic DNA: sources, sensing, and role in aging an

Cell 184, 5506-5526

DOI: 10.1016/j.cell.2021.09.034

Citation Report

#	Article	IF	CITATIONS
1	Chromatin basis of the senescence-associated secretory phenotype. Trends in Cell Biology, 2022, 32, 513-526.	3.6	29
3	Cellular senescence: all roads lead to mitochondria. FEBS Journal, 2023, 290, 1186-1202.	2.2	79
4	Evaluation of Ectopic Mitochondrial DNA in HeLa Cells. Current Issues in Molecular Biology, 2022, 44, 1215-1223.	1.0	0
5	Cellular Senescence and Ageing: Mechanisms and Interventions. Frontiers in Aging, 2022, 3, .	1.2	34
6	DNA-PKcs interacts with and phosphorylates Fis1 to induce mitochondrial fragmentation in tubular cells during acute kidney injury. Science Signaling, 2022, 15, eabh1121.	1.6	55
7	The Role of DNA Repair in Immunological Diversity: From Molecular Mechanisms to Clinical Ramifications. Frontiers in Immunology, 2022, 13, 834889.	2.2	6
8	Mechanisms of DNA damageâ€mediated neurotoxicity in neurodegenerative disease. EMBO Reports, 2022, 23, e54217.	2.0	43
9	Inhibition of histone methyltransferase SETD8 represses DNA virus replication., 2022, 1, 100033.		O
10	The hallmarks of aging in Ataxia-Telangiectasia. Ageing Research Reviews, 2022, 79, 101653.	5.0	10
11	The Inflamm-Aging Model Identifies Key Risk Factors in Atherosclerosis. Frontiers in Genetics, $0,13,.$	1.1	3
13	Kinase Activity of PAR1b, Which Mediates Nuclear Translocation of the BRCA1 Tumor Suppressor, Is Potentiated by Nucleic Acid-Mediated PAR1b Multimerization. International Journal of Molecular Sciences, 2022, 23, 6634.	1.8	1
14	Targeting cellular senescence to combat cancer and ageing. Molecular Oncology, 2022, 16, 3319-3332.	2.1	6
15	Pathophysiological Role of Nucleic Acid-Sensing Pattern Recognition Receptors in Inflammatory Diseases. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
16	Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nature Structural and Molecular Biology, 2022, 29, 639-652.	3.6	35
17	DNA damage and repair in age-related inflammation. Nature Reviews Immunology, 2023, 23, 75-89.	10.6	56
18	Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochemical Pharmacology, 2022, 203, 115168.	2.0	10
19	Novel Poxin Stable cGAMPâ€Derivatives Are Remarkable STING Agonists. Angewandte Chemie, 0, , .	1.6	0
20	Interplay of cGAS with micronuclei: Regulation and diseases. Mutation Research - Reviews in Mutation Research, 2022, 790, 108440.	2.4	7

#	Article	IF	CITATIONS
21	Novel Poxin Stable cGAMPâ€Derivatives Are Remarkable STING Agonists. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
22	The landscape of aging. Science China Life Sciences, 2022, 65, 2354-2454.	2.3	110
23	Upregulation of PD-L1 in Senescence and Aging. Molecular and Cellular Biology, 2022, 42, .	1.1	24
24	The structure-selective endonucleases GEN1 and MUS81 mediate complementary functions in safeguarding the genome of proliferating B lymphocytes. ELife, 0, 11 , .	2.8	0
25	COVID-19 and cellular senescence. Nature Reviews Immunology, 2023, 23, 251-263.	10.6	54
26	Detection of apoptotic cells based on in situ hybridization chain reaction using specific hairpins. Apoptosis: an International Journal on Programmed Cell Death, 0, , .	2.2	0
28	Synergistically targeting synovium STING pathway for rheumatoid arthritis treatment. Bioactive Materials, 2023, 24, 37-53.	8.6	9
29	cGAS in nucleus: The link between immune response and DNA damage repair. Frontiers in Immunology, 0, 13, .	2.2	7
30	Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	150
32	Mitochondrial cristae architecture protects against mtDNA release and inflammation. Cell Reports, 2022, 41, 111774.	2.9	21
33	METTL14 Regulates Intestine Cellular Senescence through m6A Modification of Lamin B Receptor. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	5
34	Human myeloid progenitor glucocorticoid receptor activation causes genomic instability, type $1 < \exp F < \exp $	2.5	2
35	The Immunological Conundrum of Endogenous Retroelements. Annual Review of Immunology, 2023, 41, 99-125.	9.5	11
36	Meta-hallmarks of aging and cancer. Cell Metabolism, 2023, 35, 12-35.	7.2	80
37	Hallmarks of aging: An expanding universe. Cell, 2023, 186, 243-278.	13.5	894
38	Nucleic Acid Sensing and Systemic Lupus Erythematosus: The Danger of Self. Journal of Immunology, 2022, 209, 431-433.	0.4	0
39	ls aging a "Retroâ€spective event?. Cell, 2023, 186, 233-235.	13.5	2
40	Cytosolic DNA sensing by cGAS/STING promotes TRPV2-mediated Ca2+ release to protect stressed replication forks. Molecular Cell, 2023, 83, 556-573.e7.	4.5	10

#	Article	IF	CITATIONS
41	Adopted neoplastic cells and the consequences of their existence. Oncotarget, 2023, 14, 321-341.	0.8	0
42	Mechanistic Insights on Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. Cancers, 2023, 15, 1402.	1.7	4
43	A possible mechanism of neural read-out from a molecular engram. Neurobiology of Learning and Memory, 2023, 200, 107748.	1.0	1
44	DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive Tâ€eell immunity. EMBO Journal, 2023, 42, .	3.5	3
45	Cytosolic DNA sensors and glial responses to endogenous DNA. Frontiers in Immunology, 0, 14, .	2.2	3
46	The Role of cGAS-STING in Age-Related Diseases from Mechanisms to Therapies. , 2023, .		6
47	The reverse transcriptase inhibitor <scp>3TC</scp> protects against ageâ€related cognitive dysfunction. Aging Cell, 2023, 22, .	3.0	8
48	The role of transposable elements in aging and cancer. Biogerontology, 2023, 24, 479-491.	2.0	2
49	Cytoplasmic DNAs: Sources, sensing, and roles in the development of lung inflammatory diseases and cancer. Frontiers in Immunology, 0, 14 , .	2,2	1
50	CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. Nature Aging, 2023, 3, 600-616.	5.3	4
51	Expression of retrotransposons contributes to aging in <i>Drosophila</i> . Genetics, 2023, 224, .	1.2	3
52	DNA polymerase \hat{l}^{0} suppresses inflammation and inflammation-induced mutagenesis and carcinogenic potential in the colon of mice. Genes and Environment, 2023, 45, .	0.9	0
59	Crosstalk between immune checkpoint and DNA damage response inhibitors for radiosensitization of tumors. Strahlentherapie Und Onkologie, 2023, 199, 1152-1163.	1.0	2
66	The role of cellular lipid metabolism in aging. , 2023, , 225-248.		0
84	Olovnikov, Telomeres, and Telomerase. Is It Possible to Prolong a Healthy Life?. Biochemistry (Moscow), 2023, 88, 1704-1718.	0.7	0
88	Roles and regulation of tRNA-derived small RNAs in animals. Nature Reviews Molecular Cell Biology, 0,	16.1	1