Molybdenum Disulfide in Oils and Greases Under Boun

Journal of Lubrication Technology 95, 242-246 DOI: 10.1115/1.3451783

Citation Report

#	Article	IF	CITATIONS
1	The Role of Tin in the Boundary Lubrication of Bronzes. ASLE Transactions, 1975, 18, 270-278.	0.6	10
2	Dynamics of Solid Dispersions in Oil During the Lubrication of Point Contacts, Part II—Molybdenum Disulfide. ASLE Transactions, 1982, 25, 190-197.	0.6	39
3	Surface Roughness Effects with Solid Lubricants Dispersed in Mineral Oils. ASLE Transactions, 1984, 27, 227-236.	0.6	7
4	The Influence of Temperature on the Lubricating Effectiveness of MoS ₂ Dispersed in Mineral Oils. ASLE Transactions, 1985, 28, 493-502.	0.6	7
5	The Behavior of Suspended Solid Particles in Rolling and Sliding Elastohydrodynamic Contacts. Tribology Transactions, 1988, 31, 12-21.	2.0	80
6	Catalytic synthesis of a stabilizer for industrial oils. Chemistry and Technology of Fuels and Oils, 1990, 26, 349-351.	0.5	0
8	Study on the Tribological Properties of Ultradispersed Diamond Containing Soot as an Oil Additive©. Tribology Transactions, 1997, 40, 178-182.	2.0	40
9	Preparation of Ni Nanoparticles and Evaluation of Their Tribological Performance as Potential Additives in Oils. Journal of Tribology, 2001, 123, 441-443.	1.9	193
10	The Tribological Properties of Oils Added with Diamond Nano-Particles. Tribology Transactions, 2001, 44, 494-498.	2.0	88
11	Effect of MoS2 additive on electrical pitting mechanism of lubricated surface for Babbitt alloy/bearing steel pair under ac electric field. Wear, 2004, 257, 833-842.	3.1	9
12	An investigation on tribological properties of graphite nanosheets as oil additive. Wear, 2006, 261, 140-144.	3.1	298
13	The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear, 2006, 261, 256-263.	3.1	156
14	Tribochemistry and antiwear mechanism of organic–inorganic nanoparticles as lubricant additives. Tribology Letters, 2006, 22, 79-84.	2.6	150
15	Some studies on scuffing in boundary lubricated sliding contact with subsurface plastic deformation. Industrial Lubrication and Tribology, 2007, 59, 29-37.	1.3	0
16	Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear, 2007, 263, 1568-1574.	3.1	106
17	CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 2008, 265, 422-428.	3.1	575
18	Modification of sheet metal forming fluids with dispersed nanoparticles for improved lubrication. Wear, 2009, 267, 1220-1225.	3.1	129
19	Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. Wear, 2010, 268, 325-328.	3.1	159

ATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
20	Tribological Characteristics of Combined Layered Phosphate and Silicate Additives in Mineral Oil. Tribology Letters, 2011, 43, 197-203.	2.6	9
21	Sliding Wear Behavior of Cast Iron: Influence of MoS2 and Graphite Addition to the Oil Lubricant. Journal of Materials Engineering and Performance, 2011, 20, 445-455.	2.5	18
22	Effect of Nano Hexagonal Boron Nitride Lubricant Additives on the Friction and Wear Properties of AISI 4140 Steel. Particulate Science and Technology, 2013, 31, 501-506.	2.1	119
23	Effect of Shear Rate, Temperature, and Particle Concentration on the Rheological Properties of ZnO and ZrO ₂ Nanofluids. Tribology Transactions, 2014, 57, 489-495.	2.0	20
24	Insights into sliding wear and friction behavior of copper in ethanol containing alkylphosphonic acid molecules. Tribology International, 2016, 96, 141-148.	5.9	5
25	Experimental study on the efficacy of MoS ₂ microfluids for improved tribological performance. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 107-124.	1.8	7
26	Effect of surface texture on the frictional properties of grease lubricated spherical plain bearings under reciprocating swing conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 125-135.	1.8	23
27	Tribological properties of graphene nanosheets as an additive in calcium grease. Journal of Dispersion Science and Technology, 2017, 38, 1495-1500.	2.4	73
28	A Taguchi Approach on Influence of Graphite as an Anti-Wear Additive on the Performance of Lithium Grease. Procedia Manufacturing, 2018, 20, 487-492.	1.9	5
29	The importance of spectrum loading in 2% milled MoS2 powder greases using four ball wear test. Industrial Lubrication and Tribology, 2018, 70, 1670-1675.	1.3	3
31	Influence of MoS ₂ and PTFE in oil film characteristics and tribological performance in EHL point contacts. Tribology - Materials, Surfaces and Interfaces, 2019, 13, 131-149.	1.4	0
32	Tribological properties of sulfur- and phosphorus-free organic molybdenum compound as additive in oil. Tribology International, 2020, 141, 105944.	5.9	20
33	Synthesis of multiwalled carbon nanotubes from polyethylene waste to enhance the rheological behavior of lubricating grease. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 46-57.	2.1	9
34	Numerical and Experimental Studies on Performance Enhancement of Journal Bearings Using Nanoparticles Based Lubricants. Archives of Computational Methods in Engineering, 2021, 28, 3887-3915.	10.2	10
35	Nanostructured Layered Materials as Novel Lubricant AdditivesÂfor Tribological Applications. Materials Forming, Machining and Tribology, 2020, , 157-178.	1.1	3
36	Advancements and Future of Tribology from IFToMM. Mechanisms and Machine Science, 2011, , 203-219.	0.5	0