Establishment of a cell line (XTC-2) from the South Afric

Experientia 29, 466-467 DOI: 10.1007/bf01926785

Citation Report

#	Article	IF	CITATIONS
1	Effect of temperature on the longevity of human fibroblasts in culture. Experimental Cell Research, 1973, 80, 354-360.	2.6	43
2	Establishment and characterization of a cell line (BTC-32) from the triatomine bug, <i>Triatoma infestans</i> (Klug) (Hemiptera: Reduviidae). Annals of Tropical Medicine and Parasitology, 1977, 71, 109-118.	1.6	14
3	Arbovirus isolations from mosquitoes: Kano Plain, Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1977, 71, 518-521.	1.8	10
4	Transcription of Superhelical DNA from Cell Nuclei. FEBS Journal, 1977, 76, 63-78.	0.2	31
5	Cross-Neutralization Study of Seven California Group (Bunyaviridae) Strains in Homoiothermous (PS) and Poikilothermous (XTC-2) Vertebrate Cells. Journal of General Virology, 1979, 42, 357-362.	2.9	26
6	Comparative susceptibility of PS cells, XTC-2 cells, and suckling mice to infection with California group arboviruses (Bunyaviridae). Transactions of the Royal Society of Tropical Medicine and Hygiene, 1979, 73, 586-588.	1.8	2
7	A cell-free assay system for the analysis of changes in RNA synthesis during the development of Xenopus laevis. Developmental Biology, 1979, 70, 453-466.	2.0	19
8	Induction of a nonoccluded baculovirus persistently infecting Heliothis zea cells by Heliothis armigera and Trichoplusia ni nuclear polyhedrosis viruses. Virology, 1981, 112, 174-189.	2.4	28
9	The infectivity of nuclear polyhedrosis virus DNA. Annales De L'Institut Pasteur Virology, 1981, 132, 247-259.	0.5	12
10	Characterization of a new cell line, XL2, obtained fromXenopus laevis and determination of optimal culture conditions. In Vitro, 1981, 17, 267-274.	1.2	35
11	Follow-up studies in human infections by rift valley fever virus. Annales De L'Institut Pasteur Virology, 1982, 133, 145-150.	0.5	0
12	First record of a reptile trypanosome isolated fromGlossina pallidipes in Kenya. Zeitschrift Für Parasitenkunde (Berlin, Germany), 1982, 69, 17-26.	0.8	14
13	Immunofluorescence Studies on the Antigenic Interrelationships of the Hughes Virus Serogroup (Genus Nairovirus) and Identification of a New Strain. Journal of General Virology, 1983, 64, 739-742.	2.9	9
14	Specific switching on of silent egg protein genes in vitro by an S-100 fraction in isolated nuclei from male Xenopus EMBO Journal, 1985, 4, 3253-3258.	7.8	11
15	IndividualXenopushistone genes are replication-independent in oocytes and replication-dependent inXenopusor mouse somatic cells. Nucleic Acids Research, 1985, 13, 7341-7358.	14.5	17
16	Synthesis of Bunyavirus-specific Proteins in a Continuous Cell Line (XTC-2) Derived from Xenopus laevis. Journal of General Virology, 1985, 66, 473-482.	2.9	74
17	The Proteins and RNAs of St. Abb's Head Virus, a Scottish Uukuvirus. Journal of General Virology, 1985, 66, 1001-1010.	2.9	4
18	Persistent infection of Aedes albopictus C6/36 cells by Bunyamwera virus. Virology, 1986, 150, 21-32.	2.4	50

#	Article	IF	CITATIONS
19	Hughes Group Viruses (Bunyaviridae) from the Seabird Tick Ixodes (Ceratixodes) Uriae (Acari: Ixodidae). Journal of Medical Entomology, 1986, 23, 437-440.	1.8	7
20	Arthropod cell lines in the isolation and propagation of tickborne spiroplasmas. Current Microbiology, 1987, 15, 45-50.	2.2	12
21	Infection of a poikilothermic cell line (XL-2) with eastern equine encephalitis and western equine encephalitis viruses. Journal of Medical Virology, 1987, 21, 277-281.	5.0	5
22	Cytoskeletal actin gene families ofXenopus borealis andXenopus laevis. Journal of Molecular Evolution, 1988, 27, 17-28.	1.8	20
23	<i>Xenopus laevis</i> in Developmental and Molecular Biology. Science, 1988, 240, 1443-1448.	12.6	50
24	Growth of bluetongue and epizootic hemorrhagic disease of deer viruses in poikilothermic cell systems. Veterinary Microbiology, 1988, 16, 15-24.	1.9	5
26	Mesoderm induction in amphibians: the role of TGF-beta 2-like factors. Science, 1988, 239, 783-785.	12.6	451
27	A mesoderm-inducing factor from a Xenopus laevis cell line. Roux's Archives of Developmental Biology, 1989, 198, 8-13.	1.2	14
28	Growth cone interactions with a glial cell line from embryonic Xenopus retina. Developmental Biology, 1989, 134, 158-174.	2.0	46
29	Influence of Feeding and Starvation on the Persistence and Transmission of Quaranfil Virus by Argas (Persicargas) arboreus (Acari: Argasidae). Journal of Medical Entomology, 1990, 27, 651-655.	1.8	2
30	Induction by soluble factors of organized axial structures in chick epiblasts. Science, 1990, 247, 1092-1094.	12.6	58
31	9 The Role of Growth Factors in Embryonic Induction in Amphibians. Current Topics in Developmental Biology, 1990, 24, 261-288.	2.2	26
32	Effects of cell heterogeneity on production of polypeptide growth factors and mesoderm-inducing activity by Xenopus laevis XTC cells. Experimental Cell Research, 1990, 187, 203-210.	2.6	2
33	Identification of the cDNA for xlcaax-1, a membrane associated Xenopus maternal protein. Biochemical and Biophysical Research Communications, 1991, 179, 1635-1641.	2.1	1
34	Purification and partial characterization ofXenophus laevistenascin from the XTC cell line. FEBS Letters, 1991, 279, 346-350.	2.8	11
35	Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell, 1991, 67, 79-87.	28.9	944
36	Chapter 32 Xenopus Cell Lines. Methods in Cell Biology, 1991, , 635-654.	1.1	32
37	Xenopus laevisOct-1 does not bind to certain histone H2B gene promoter octamer motifs for which a novel octamer-binding factor has high affinity. Nucleic Acids Research, 1991, 19, 815-821.	14.5	11

ARTICLE IF CITATIONS # Autoinduction of thyroid hormone receptor during metamorphosis is reproduced in Xenopus XTC-2 38 3.2 43 cells. Molecular and Cellular Endocrinology, 1992, 87, 105-113. Are Î²1 integrins involved in Xenopus gastrulation?. Mechanisms of Development, 1992, 38, 109-119. 1.7 40 A new cell line (XTY) from a tumor of Xenopus laevis. Experientia, 1992, 48, 87-91. 1.2 7 Trypanosoma varani andT. grayi-like trypanosomes: Development in vitro and in insect hosts. Parasitology Research, 1993, 79, 329-333. Histone H4 acetylation and transcription in amphibian chromatin.. Journal of Cell Biology, 1993, 120, 42 5.2 65 277-290. E2F and its developmental regulation in Xenopus laevis.. Molecular and Cellular Biology, 1994, 14, 2.3 5000-5009. Cadherin Transfection of <i>Xenopus</i>XTC Cells Downregulates Expression of Substrate Adhesion 44 2.3 44 Molecules. Molecular and Cellular Biology, 1995, 15, 5082-50914. INHIBITION OF DRAS2/ROP EXPRESSION IN XENOPUS OOCYTES BY DROSOPHILA NUCLEAR EXTRACT. 3.3 International Journal of Oncology, 1995, 7, 1203-12. Contrasting patterns of expression of thyroid hormone and retinoid X receptor genes during 46 hormonal manipulation of Xenopus tadpole tail regression in culture. Molecular and Cellular 3.2 35 Endocrinology, 1995, 113, 235-243. Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 1.7 protein following down-regulation of the RNA. Mechanisms of Development, 1995, 50, 103-117. Retroviral gene transfer inXenopus cell lines and embryos. In Vitro Cellular and Developmental 17 48 1.5 Biology - Animal, 1996, 32, 78-84. Cloning and characterization of cDNAs encoding the integrin $l \pm 2$ and $l \pm 3$ subunits from Xenopus laevis. 49 Mechanisms of Development, 1997, 67, 141-155. Cloning, sequencing and expression of the two genes encoding the mitochondrial single-stranded 50 2.2 5 DNA-binding protein in Xenopus laevis. Gene, 1997, 184, 65-71. Characterization of the $5\hat{a}\in^2$ flanking region of the Xenopus laevis transforming growth factor- $\hat{l}^{2}5$ (TGF- $\hat{l}^{2}5$) gene. Gene, 1998, 208, 323-329. 2.2 Epitope Mapping of a Function-blocking Î²1 Integrin Antibody by Phage Display. Cell Adhesion and 52 3 1.7 Communication, 1998, 5, 75-82. Nuclear Accumulation of <i>>S</i>-Adenosylhomocysteine Hydrolase in Transcriptionally Active Cells during Development of <i>Xenopus laevis </i>. Molecular Biology of the Cell, 1999, 10, 4283-4298. Microtubule-based Endoplasmic Reticulum Motility in<i>Xenopus laevis</i>: Activation of 54 2.190 Membrane-associated Kinesin during Development. Molecular Biology of the Cell, 1999, 10, 1909-1922. Isolation and characterization of Xenopus ATM (X-ATM): expression, localization, and complex formation during oogenesis and early development. Oncogene, 1999, 18, 7070-7079.

CITATION REPORT

#	Article	IF	CITATIONS
56	Cell cycle analysis and synchronization of theXenopus laevis XL2 cell line: Study of the kinesin related protein XlEg5. , 1999, 45, 31-42.		16
57	Active Remodeling of Somatic Nuclei in Egg Cytoplasm by the Nucleosomal ATPase ISWI. Science, 2000, 289, 2360-2362.	12.6	211
58	Establishment of Three Cell Lines Derived from Frog Melanophores. Zoological Science, 2001, 18, 483-496.	0.7	6
59	ADAM13 Disintegrin and Cysteine-rich Domains Bind to the Second Heparin-binding Domain of Fibronectin. Journal of Biological Chemistry, 2002, 277, 23336-23344.	3.4	71
60	The Latent-TGFβ-Binding-Protein-1 (LTBP-1) Is Expressed in the Organizer and Regulates Nodal and Activin Signaling. Developmental Biology, 2002, 248, 118-127.	2.0	27
61	Multiple Cdk1 Inhibitory Kinases Regulate the Cell Cycle during Development. Developmental Biology, 2002, 249, 156-173.	2.0	47
62	Interaction of S-adenosylhomocysteine hydrolase of Xenopus laevis with mRNA(guanine-7-)methyltransferase: implication on its nuclear compartmentalisation and on cap methylation of hnRNA. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1590, 93-102.	4.1	27
63	Dissection of c-MOS degron. EMBO Journal, 2002, 21, 6061-6071.	7.8	42
64	Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Developmental Biology, 2003, 258, 432-442.	2.0	301
65	Xenopus single-minded (xSim) is a nuclear factor allowing nuclear translocation of its cytoplasmic partner xArnt. Experimental Cell Research, 2003, 287, 237-248.	2.6	4
66	Growth of Piscirickettsia salmonis to High Titers in Insect Tissue Culture Cells. Infection and Immunity, 2004, 72, 3693-3694.	2.2	32
67	Developmental and Tissue Expression of Xenopus laevis RPGR. , 2006, 47, 348.		15
68	Isolation and Identification of Rickettsia massiliae from Rhipicephalus sanguineus Ticks Collected in Arizona. Applied and Environmental Microbiology, 2006, 72, 5569-5577.	3.1	163
69	Identification, developmental expression and regulation of the Xenopus ortholog of human FANCG/XRCC9. Genes To Cells, 2007, 12, 841-851.	1.2	12
70	Distribution and corticosteroid regulation of glucocorticoid receptor in the brain of <i>Xenopus laevis</i> . Journal of Comparative Neurology, 2008, 508, 967-982.	1.6	45
71	A function for dystroglycan in pronephros development in Xenopus laevis. Developmental Biology, 2008, 317, 106-120.	2.0	18
72	A Role for Basic Transcription Element-binding Protein 1 (BTEB1) in the Autoinduction of Thyroid Hormone Receptor β. Journal of Biological Chemistry, 2008, 283, 2275-2285.	3.4	50
73	Possible Roles of ENaC and Cl-Channel in Wound Closure inXenopus laevisEmbryos. Zoological Science, 2011, 28, 703-711.	0.7	11

#	Article	IF	CITATIONS
74	Evolutionary importance of translation elongation factor eEF1A variant switching: eEF1A1 down-regulation in muscle is conserved in Xenopus but is controlled at a post-transcriptional level. Biochemical and Biophysical Research Communications, 2011, 411, 19-24.	2.1	10
75	Stage-Specific Histone Modification Profiles Reveal Global Transitions in the Xenopus Embryonic Epigenome. PLoS ONE, 2011, 6, e22548.	2.5	37
76	Two promoters with distinct activities in different tissues drive the expression of heparanase in <i>Xenopus</i> . Developmental Dynamics, 2011, 240, 2657-2672.	1.8	9
77	On the cellular and developmental lethality of a Xenopus nucleocytoplasmic hybrid. Communicative and Integrative Biology, 2012, 5, 329-333.	1.4	6
78	The genomic structure and the expression profile of the Xenopus laevis transthyretin gene. Gene, 2012, 510, 126-132.	2.2	3
79	Identification and expression analysis of GPAT family genes during early development of Xenopus laevis. Gene Expression Patterns, 2012, 12, 219-227.	0.8	18
80	Characterization of a novel <i>Xenopus tropicalis</i> cell line as a model for in vitro studies. Genesis, 2012, 50, 316-324.	1.6	28
81	Emerging trends for biobanking amphibian genetic resources: The hope, reality and challenges for the next decade. Biological Conservation, 2013, 164, 10-21.	4.1	60
82	Can filament treadmilling alone account for the Fâ€actin turnover in lamellipodia?. Cytoskeleton, 2013, 70, 179-190.	2.0	28
83	The B-Subdomain of the Xenopus laevis XFIN KRAB-AB Domain Is Responsible for Its Weaker Transcriptional Repressor Activity Compared to Human ZNF10/Kox1. PLoS ONE, 2014, 9, e87609.	2.5	10
84	Conditions that Stabilize Membrane Domains Also Antagonize n -Alcohol Anesthesia. Biophysical Journal, 2016, 111, 537-545.	0.5	35
85	Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability. Protoplasma, 2016, 253, 943-956.	2.1	6
86	Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. Developmental Biology, 2017, 421, 171-182.	2.0	28
87	<i>Xenopus</i> ADAM19 regulates Wnt signaling and neural crest specification by stabilizing ADAM13. Development (Cambridge), 2018, 145, .	2.5	18
88	Shootins mediate collective cell migration and organogenesis of the zebrafish posterior lateral line system. Scientific Reports, 2019, 9, 12156.	3.3	6
89	Screening anti-infectious molecules against Mycobacterium ulcerans: A step towards decontaminating environmental specimens. PLoS ONE, 2020, 15, e0231685.	2.5	1
90	Xela DS2 and Xela VS2: Two novel skin epithelial-like cell lines from adult African clawed frog (Xenopus laevis) and their response to an extracellular viral dsRNA analogue. Developmental and Comparative Immunology, 2020, 112, 103759.	2.3	10
91	Genetic Diversity of Bunyaviruses and Mechanisms of Genetic Variation. , 1984, , 61-76.		8

ARTICLE

IF CITATIONS

92	Arboviruses. , 1984, , 107-148.		4
93	REPLICATION OF ARBOVIRUSES IN ARTHROPOD IN VITRO SYSTEMS. , 1979, , 245-262.		7
94	A novel 110-kDa maternal CAAX box-containing protein from Xenopus is palmitoylated and isoprenylated when expressed in baculovirus. Journal of Biological Chemistry, 1991, 266, 8206-8212.	3.4	24
95	Quantitation of endogenous thyroid hormone receptors alpha and beta during embryogenesis and metamorphosis in Xenopus laevis Journal of Biological Chemistry, 1994, 269, 24459-24465.	3.4	127
96	Monoclonal immunoglobulin M antibody to Japanese encephalitis virus that can react with a nuclear antigen in mammalian cells. Infection and Immunity, 1983, 41, 774-779.	2.2	20
97	Gastrulation movements provide an early marker of mesoderm induction in <i>Xenopus laevis</i> . Development (Cambridge), 1987, 101, 339-349.	2.5	158
98	The organization of mesodermal pattern in <i>Xenopus laevis:</i> experiments using a <i>Xenopus</i> mesoderm-inducing factor. Development (Cambridge), 1987, 101, 893-908.	2.5	101
99	The development of an assay to detect mRNAs that affect early development. Development (Cambridge), 1987, 101, 925-930.	2.5	13
100	Mesoderm induction in <i>Xenopus laevis</i> . responding cells must be in contact for mesoderm formation but suppression of epidermal differentiation can occur in single cells. Development (Cambridge), 1988, 104, 609-618.	2.5	56
101	Differential cytokeratin gene expression reveals early dorsal-ventral regionalization in chick mesoderm. Development (Cambridge), 1990, 110, 417-425.	2.5	12
102	Integrin α subunit mRNAs are differentially expressed in early <i>Xenopus</i> embryos. Development (Cambridge), 1993, 117, 1239-1249.	2.5	63
103	A mesoderm-inducing factor is produced by a <i>Xenopus</i> cell line. Development (Cambridge), 1987, 99, 3-14.	2.5	258
104	Subcellular distribution of the <i>Xenopus</i> p58/lamin B receptor in oocytes and eggs. Journal of Cell Science, 1999, 112, 2583-2596.	2.0	28
105	Integrin α5β1 Function Is Regulated by XGIPC/kermit2 Mediated Endocytosis during Xenopus laevis Gastrulation. PLoS ONE, 2010, 5, e10665.	2.5	14
106	A Novel Obligate Intracellular Gamma-Proteobacterium Associated with Ixodid Ticks, Diplorickettsia massiliensis, Gen. Nov., Sp. Nov. PLoS ONE, 2010, 5, e11478.	2.5	70
107	Effect of Rickettsial Toxin VapC on Its Eukaryotic Host. PLoS ONE, 2011, 6, e26528.	2.5	51
108	The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism. ENeuro, 2019, 6, ENEURO.0086-19.2019.	1.9	8
109	A Flea-Associated Rickettsia Pathogenic for Humans. Emerging Infectious Diseases, 2001, 7, 73-81.	4.3	207

#	Article	IF	CITATIONS
110	Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2l± and arid3a. ELife, 2017, 6, .	6.0	11
111	REPLICATION OF BUNYAVIRUSES IN A XENOPUS LAEVIS CELL LINE. , 1984, , 349-354.		2
112	Cellular Interactions in Establishment of Regional Patterns of Cell Fate during Development. , 1988, 5, 79-125.		2
113	E2F and Its Developmental Regulation in <i>Xenopus laevis</i> . Molecular and Cellular Biology, 1994, 14, 5000-5009.	2.3	14
117	Genetic Diversity of Bunyaviruses and Mechanisms of Genetic Variation. , 1984, , 61-76.		0
119	Specific switching on of silent egg protein genes in vitro by an S-100 fraction in isolated nuclei from male Xenopus. EMBO Journal, 1985, 4, 3253-8.	7.8	2
120	Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration. Scientific Reports, 2022, 12, 1903.	3.3	2
121	Culture Isolate of Rickettsia felis from a Tick. International Journal of Environmental Research and Public Health, 2022, 19, 4321.	2.6	6
122	Further characterization of the antigen defined by the monoclonal antibody M27. Journal of Cell Science, 1989, 94, 725-731.	2.0	0
123	The amphibian invitrome: Past, present, and future contributions to our understanding of amphibian immunity. Developmental and Comparative Immunology, 2023, 142, 104644.	2.3	2