Investigations on the lubricating effectiveness of molyb

Wear 20, 371-379 DOI: 10.1016/0043-1648(72)90416-4

Citation Report

#	Article	IF	CITATIONS
1	How to reduce fretting corrosion-influence of lubricants. Tribology International, 1975, 8, 57-64.	5.9	11
2	Molybdenum disulphide in lubrication. A review. Wear, 1975, 35, 1-22.	3.1	93
3	Extreme pressure lubricating properties of inorganic oxides. Wear, 1980, 60, 393-399.	3.1	7
4	Dynamics of Solid Dispersions in Oil During the Lubrication of Point Contacts, Part Il—Molybdenum Disulfide. ASLE Transactions, 1982, 25, 190-197.	0.6	39
5	Effects of MoS2 concentration on friction. Wear, 1983, 86, 57-63.	3.1	3
6	Experimental study of the influence of liquid lubricants on burnished MoS2 films. Wear, 1983, 86, 213-218.	3.1	5
7	Lubrication Mechanism of Solid Lubricants in Oils. Journal of Lubrication Technology, 1983, 105, 245-252.	0.1	66
8	Title is missing!. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1983, 30, 287-292.	0.2	0
9	Surface Roughness Effects with Solid Lubricants Dispersed in Mineral Oils. ASLE Transactions, 1984, 27, 227-236.	0.6	7
10	Investigation into the lubricating effectiveness of molybdenum disulphide dispersion in a fully formulated oil. Tribology International, 1986, 19, 87-91.	5.9	6
11	The effect of a friction modifier on piston ring and cylinder bore friction and wear. Tribology International, 1990, 23, 163-171.	5.9	25
13	Anisotropy in the compressibility of molybdenum disulphide up to pressures of 90 kbar. Surface and Coatings Technology, 1992, 53, 147-151.	4.8	1
14	Behaviour of PTFE suspensions in rolling/sliding contacts. Tribology Series, 1996, , 141-152.	0.1	9
15	The effect of CrO3 on the friction and wear of MoS2 transfer film. Applied Surface Science, 1997, 108, 471-475.	6.1	4
16	A Tribological Model for Chocolate in the Mouth: General Implications for Slurry-Lubricated Hard/Soft Sliding Counterfaces. Tribology Letters, 2004, 16, 239-249.	2.6	64
17	Tribochemistry and antiwear mechanism of organic–inorganic nanoparticles as lubricant additives. Tribology Letters, 2006, 22, 79-84.	2.6	150
18	Crystal structure and hydrogen storage behaviors of Mg/MoS2 composites from ball milling. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 773-778.	1.0	3
19	Thermally fabricated MoS2-graphene hybrids as high performance anode in lithium ion battery. Materials Chemistry and Physics, 2016, 183, 383-391.	4.0	27

ATION REDO

#	Article	IF	CITATIONS
20	Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribology International, 2016, 94, 490-501.	5.9	216
21	Experimental evaluation of nano-molybdenum disulphide and nano-boric acid suspensions in vegetable oils as prospective cutting fluids during turning of AISI 1040 steel. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 493-505.	1.8	35
22	Interactions between MoS2 nanotubes and conventional additives in model oils. Tribology International, 2017, 110, 140-150.	5.9	35
23	TRIBOLOGICAL PROPERTIES OF A RUBBER SEAL UNDER OPERATION WITH OIL CONTAINING MoS2 NANOPARTICLES. Tribologia, 2019, 286, 95-103.	0.2	0
24	Experimental study of durable low-friction concrete contacts for precast segmental columns with resettable sliding joints. Construction and Building Materials, 2022, 318, 126192.	7.2	4