Some Investigations on the Influence of Particle Size or Molybdenum Disulfide

ASLE Transactions 15, 207-215 DOI: 10.1080/05698197208981418

Citation Report

#	Article	IF	CITATIONS
1	Frictional properties of solid lubricants modified by polymer grafting. Wear, 1977, 43, 127-140.	3.1	4
2	Dynamics of Solid Dispersions in Oil During the Lubrication of Point Contacts, Part Il—Molybdenum Disulfide. ASLE Transactions, 1982, 25, 190-197.	0.6	39
3	Lubrication Mechanism of Solid Lubricants in Oils. Journal of Lubrication Technology, 1983, 105, 245-252.	0.1	66
4	Surface Roughness Effects with Solid Lubricants Dispersed in Mineral Oils. ASLE Transactions, 1984, 27, 227-236.	0.6	7
5	Chapter 19 Lubrication by Solids. Tribology Series, 1985, 9, 549-614.	0.1	1
6	The Influence of Temperature on the Lubricating Effectiveness of MoS ₂ Dispersed in Mineral Oils. ASLE Transactions, 1985, 28, 493-502.	0.6	7
7	Effect of MoS2 Films on Scoring Resistance of Gears. Journal of Mechanisms, Transmissions, and Automation in Design, 1986, 108, 127-134.	0.2	2
8	The Behavior of Suspended Solid Particles in Rolling and Sliding Elastohydrodynamic Contacts. Tribology Transactions, 1988, 31, 12-21.	2.0	80
10	The ball-bearing effect of diamond nanoparticles as an oil additive. Journal Physics D: Applied Physics, 1996, 29, 2932-2937.	2.8	269
11	Study on the Tribological Properties of Ultradispersed Diamond Containing Soot as an Oil Additive©. Tribology Transactions, 1997, 40, 178-182.	2.0	40
12	Evaluation of the wear life of MoS2-bonded-films in tribo-testers with different contact configuration. Wear, 1998, 215, 25-33.	3.1	6
13	A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils. Lubrication Science, 1999, 11, 217-226.	2.1	48
14	Wear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oils. Lubrication Science, 2000, 12, 205-212.	2.1	62
15	The effect of particle size on the lubricating properties of colloidal polystyrene used as water based lubrication additive. Wear, 2001, 249, 528-532.	3.1	13
16	The Tribological Properties of Oils Added with Diamond Nano-Particles. Tribology Transactions, 2001, 44, 494-498.	2.0	88
17	Effect of MoS2 additive on electrical pitting mechanism of lubricated surface for Babbitt alloy/bearing steel pair under ac electric field. Wear, 2004, 257, 833-842.	3.1	9
18	An investigation on tribological properties of graphite nanosheets as oil additive. Wear, 2006, 261, 140-144.	3.1	298
19	Study of solid lubrication with MoS2 coating in the presence of additives using reciprocating ball-on-flat scratch tester. Sadhana - Academy Proceedings in Engineering Sciences, 2008, 33, 207-220.	1.3	59

TATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
20	Technology Developments: the Role of Mechanism and Machine Science and IFToMM. Mechanisms and Machine Science, 2011, , .	0.5	4
21	Synthesis and effect of nanogrease on tribological properties. International Journal of Precision Engineering and Manufacturing, 2015, 16, 1311-1316.	2.2	9
22	Mathematical Modeling and Computer Simulations of Nanofluid Flow with Applications to Cooling and Lubrication. Fluids, 2016, 1, 16.	1.7	39
23	Stable dispersion of nanodiamonds in oil and their tribological properties as lubricant additives. Applied Surface Science, 2017, 415, 24-27.	6.1	43
24	Phosphonium-based ionic liquids mixed with stabilized oxide nanoparticles as highly promising lubricating oil additives. Proceedings of the Estonian Academy of Sciences, 2017, 66, 174.	1.5	4
25	Synthesis and tribological testing of poly(methyl methacrylate) particles containing encapsulated organic friction modifier. Tribology International, 2018, 124, 124-133.	5.9	10
26	Bismuth (III) sulfide as additive: towards better lubricity without toxicity. Industrial Lubrication and Tribology, 2018, 70, 347-352.	1.3	9
27	Rapid selection of environmentally friendly layered alkaline-earth metal phosphates as solid lubricants using crystallographic data. Scientific Reports, 2018, 8, 16210.	3.3	5
29	Friction capabilities of graphite-based lubricants at room and over 1400ÂK temperatures. International Journal of Advanced Manufacturing Technology, 2019, 102, 1623-1633.	3.0	14
30	Investigations on machinability aspects of AISI 52100 with minimum quantity solid lubrication. Procedia Manufacturing, 2020, 48, 11-17.	1.9	1
31	Improvement in friction and wear characteristics using CaF2 as a solid lubricant at different conditions. Metal Powder Report, 2020, , .	0.1	1
32	Study of tribological properties and lubrication mechanism of surfactant-coated anthracite sheets used as lubricant additives. Friction, 2021, 9, 524-537.	6.4	7
33	Improvement in machining process performance using solid lubricant assisted minimum quantity lubrication. Advances in Materials and Processing Technologies, 2022, 8, 2102-2127.	1.4	4
34	Experimental investigation on bending strength of compacted plastic-concrete. Resources, Conservation and Recycling, 2021, 169, 105521.	10.8	12
35	The Effect of Graphite Particles as Lubricant Additive on the Friction and Wear Behaviour of AISI H11 Steel. Journal of Polytechnic, 2022, 25, 1495-1503.	0.7	1
36	High-efficient and environmental-friendly PTFE@SiO2 core-shell additive with excellent AW/EP properties in PAO6. Tribology International, 2021, 158, 106930.	5.9	15
37	Lubrication Property of Carbon Onions on Silicon Surface with Fine Patterns. Journal of the Japan Society for Precision Engineering, 2010, 76, 59-63.	0.1	0
38	Advancements and Future of Tribology from IFToMM. Mechanisms and Machine Science, 2011, , 203-219.	0.5	Ο

#	Article	IF	CITATIONS
40	Experimental and modelling studies of the transient tribological behaviour of a two-phase lubricant under complex loading conditions. Friction, 2022, 10, 911-926.	6.4	5
41	Effect of Tooling Temperature on the Transient Lubricant Behavior in Hot Metal Forming Processes. Steel Research International, 2023, 94, .	1.8	1
42	Effect of heat treatment on mechanical behavior and scaling resistance of slag impregnated low strength recycled compacted concrete. Journal of Building Engineering, 2023, 68, 106084.	3.4	2