
CITATION REPORT List of articles citing

DOI: 10.1080/00337577208231169 Radiation Effects, 1972, 13, 121-129.

Source: https://exaly.com/paper-pdf/10976850/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
88	Focusing in sputtering. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1972 , 40, 231-	2 3 23	4
87	The topography of sputtered semiconductors. <i>Radiation Effects</i> , 1973 , 18, 95-103		101
86	Spatial and energy distributions of secondary ions produced by ion bombardment of single crystals. <i>Radiation Effects</i> , 1973 , 20, 89-93		20
85	Influence of temperature on the secondary ion emission of a monocrystalline aluminium target. <i>Radiation Effects</i> , 1973 , 19, 181-184		12
84	Energy distribution of secondary ions from 15 polycrystalline targets. <i>Radiation Effects</i> , 1973 , 19, 175-7	180	44
83	Dependence of the space distribution of particles sputtered from monocrystalline copper on the ion incidence angle. <i>Radiation Effects</i> , 1973 , 19, 215-218		4
82	Hyperthermal beams sputtered from alkalihalide surfaces. <i>Radiation Effects</i> , 1974 , 21, 171-179		45
81	Surface compositional analysis using low energy ion bombardment induced emission processes. <i>Vacuum</i> , 1974 , 24, 373-388	3.7	17
80	Energy density and time constant of heavy-ion-induced elastic-collision spikes in solids. <i>Applied Physics Letters</i> , 1974 , 25, 169-171	3.4	413
79	Channeling and related effects in the motion of charged particles through crystals. <i>Reviews of Modern Physics</i> , 1974 , 46, 129-227	40.5	1314
78	Sputtering review of some recent experimental and theoretical aspects. <i>Applied Physics Berlin</i> , 1975 , 8, 185-198		254
77	The behaviour of surfaces under ion bombardment. <i>Reports on Progress in Physics</i> , 1975 , 38, 241-327	14.4	182
76	Sputtering and Ion-Source Technology. <i>IEEE Transactions on Nuclear Science</i> , 1976 , 23, 959-966	1.7	16
75	Angular dependence of sputtering in close-packed directions. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1976 , 56, 58-60	2.3	2
74	The effect of surface recoils on the energy distribution of sputtered gold. <i>Nuclear Instruments & Methods</i> , 1976 , 132, 317-319		55
73	Energy distributions of neutral atoms and molecules sputtered from polycrystalline silver. <i>Nuclear Instruments & Methods</i> , 1976 , 132, 329-334		46
72	Current density effects in secondary ion emission studies. <i>Nuclear Instruments & Methods</i> , 1976 , 132, 381-385		28

71	Backscattering of neutralized noble gas ions from polycrystalline surfaces at bombarding energies below 1 keV. <i>Nuclear Instruments & Methods</i> , 1976 , 132, 687-693		29
70	Theory of thermal sputtering. <i>Radiation Effects</i> , 1977 , 32, 91-100		144
69	Energy and angular distribution of gold and copper atoms sputtered with either 15-or 30-KeV H+, He+, and Ar+ ions. <i>Journal of Nuclear Materials</i> , 1978 , 76-77, 136-142	3.3	38
68	Secondary ion energy spectra of polycrystalline transition metals and aluminium. <i>International Journal of Mass Spectrometry and Ion Physics</i> , 1978 , 28, 233-256		15
67	Dependence of the energy distribution on the emission angle for the secondary ions from polycrystalline aluminum. <i>International Journal of Mass Spectrometry and Ion Physics</i> , 1978 , 27, 379-389		13
66	A comparison of experimental secondary ion energy spectra of polycrystalline metals with theory. <i>Radiation Effects</i> , 1978 , 38, 141-149		9
65	Comments on I s the Moon really as smooth as a billiard ball? Geophysical Research Letters , 1978 , 5, 301-303	4.9	4
64	Cascade and quasi thermal processes in excited atom sputtering. <i>Radiation Effects</i> , 1978 , 35, 175-187		17
63	Sputtering of an AgAu alloy by bombardment with 6 keV Xe+ions. <i>Journal Physics D: Applied Physics</i> , 1978 , 11, 751-759	3	52
62	Energy spectrum of sputtered uranium new technique. Radiation Effects, 1978, 37, 83-92		32
61	The possibility of sputtering by point defects. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1978 , 38, 727-731		12
60	The sputtering processes of alkali halides during 6 keV Xe+ ion bombardment. <i>Radiation Effects</i> , 1978 , 37, 205-210		43
59	Solar-wind exposure effects in the lunar soil. <i>Reports on Progress in Physics</i> , 1979 , 42, 897-961	14.4	33
58	The sputtering of gallium arsenide at elevated temperatures. <i>Applied Physics Berlin</i> , 1979 , 20, 207-211		28
57	Mechanisms of sputtering. <i>Nature</i> , 1979 , 277, 326-327	50.4	3
56	No enhanced electron emission from high-density atomic collision cascades in metals. <i>Surface Science</i> , 1979 , 90, 331-338	1.8	56
55	Energy spectra of ions sputtered from elements by O+2: A comprehensive study. <i>Surface Science</i> , 1979 , 82, 549-576	1.8	68
54	Thermal effects in sputtering. <i>Surface Science</i> , 1979 , 90, 280-318	1.8	138

53	High fluence hydrogen implantation in copper: Blistering and grain boundary movement. <i>Radiation Effects</i> , 1980 , 51, 233-239		6
52	Sputtering of uranium tetrafluoride in the electronic stopping region. <i>Radiation Effects</i> , 1980 , 51, 223-2	31	93
51	Energy and mass distributions of sputtered particles. <i>Journal of Nuclear Materials</i> , 1980 , 89, 229-252	3.3	15
50	Sputtering of Cu and Zn atoms from elemental and alloy targets. <i>Applied Physics Berlin</i> , 1980 , 23, 89-92		30
49	Emission of atoms and electrons from high-density collision cascades in metals. <i>Nuclear Instruments & Methods</i> , 1980 , 170, 275-279		21
48	The effect of ion mass and target temperature on the energy distribution of sputtered atoms. <i>Nuclear Instruments & Methods</i> , 1980 , 170, 327-330		16
47	Computer studies of surface recoil ejection mechanisms from gold single crystals. <i>Nuclear Instruments & Methods</i> , 1980 , 170, 337-340		11
46	Discussion of the origin of secondary photon and secondary ion emission during energetic particle irradiation of solids. I. The collision cascade. <i>Journal of Chemical Physics</i> , 1980 , 72, 147-171	3.9	33
45	Atomic collision processes in sputtering. <i>Radiation Effects</i> , 1980 , 46, 163-165		14
44	Influence of thermal and collisional effects on the sputtering of sodium and samarium targets. <i>Radiation Effects</i> , 1980 , 45, 199-204		15
43	Some effects of ion mass on the energy spectrum of sputtered gold atoms. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1981 , 44, 1387-1394		18
42	Surface recoil atoms in the angular distribution of sputtered gold under bombardment of monocrystals with ions. <i>Radiation Effects</i> , 1981 , 58, 47-52		2
41	Sputtering by ion bombardment theoretical concepts. <i>Topics in Applied Physics</i> , 1981 , 9-71	0.5	326
40	A theory of peaks in the time-of-flight spectrum of gold atoms sputtered from a (100) surface. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1981 , 43, 1321-1344		2
39	Physical mechanisms of sputtering. <i>Physics Reports</i> , 1981 , 69, 335-371	27.7	136
38	Experimental evidence for the recoil sputtering mechanism as a source of high-energy excited sputtered particles. <i>Physical Review B</i> , 1981 , 24, 4065-4067	3.3	6
37	Direct observation of spike effects in heavy-ion sputtering. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1981 , 44, 741-762		118
36	A search for a thermal spike effect in sputtering. I. Temperature dependence of the yield at low-kev, heavy-ion bombardment. <i>Radiation Effects</i> , 1982 , 66, 35-41		64

(1991-1982)

Study of mixtures of polyethylene and polydeuteroethylene by secondary emission mass-spectrometry. *Polymer Science USSR*, **1982**, 24, 487-491

34	Sputtering mechanisms of compound solids. <i>Nuclear Instruments & Methods in Physics Research</i> , 1982 , 194, 523-531		16
33	Determination of excited sputtered atoms kinetic energy as a contribution to the understanding of the excitation phenomenon in the sputtering process. <i>Nuclear Instruments & Methods in Physics Research</i> , 1982 , 194, 549-553		7
32	A nonlinear boltzmann equation calculation of sputtering from spikes. <i>Nuclear Instruments & Methods in Physics Research</i> , 1982 , 194, 573-577		16
31	A model of sputtering from spikes. <i>Applied Physics A: Solids and Surfaces</i> , 1982 , 28, 175-178		25
30	A search for a thermal spike effect in sputtering. <i>Applied Physics A: Solids and Surfaces</i> , 1983 , 30, 83-86		39
29	Ion-beam modification of SnO2: Predictions and observations. <i>Nuclear Instruments & Methods in Physics Research</i> , 1983 , 209-210, 531-541		13
28	4.1. Compositional Studies. <i>Methods in Experimental Physics</i> , 1983 , 21, 222-274		1
27	Elastic-collision spikes in sputtering of metals at normal and oblique incidence. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1984 , 2, 583-586	1.2	7
26	The spatial configuration of collision cascades induced by 10 and 15 keV per atom molecular ions in polycrystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1984 , 2, 715-719	1.2	6
25	Temperature-dependent sputtering of metals and insulators. <i>Applied Physics A: Solids and Surfaces</i> , 1984 , 33, 141-152		84
24	The mechanisms of sputtering part I Radiation Effects, 1984 , 80, 273-317		80
23	The velocity distribution of sputtered atoms. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1986 , 18, 411-429	1.2	39
22	A critical comparison of reactive etching of materials in microelectronics, fusion and space technologies. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1987 , 23, 419-435	1.2	12
21	Low-energy sputtering of UO2. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1988 , 58, 229-242		2
20	Ejection of fast recoil atoms from solids under ion bombardment (medium-energy ion scattering by solid surfacespart III. <i>Radiation Effects and Defects in Solids</i> , 1989 , 110, 227-341	0.9	6
19	Basic Phenomena in Reactive Etching of Materials. 1990 , 201-249		
18	Angular, energy, and mass distribution of sputtered particles. <i>Topics in Applied Physics</i> , 1991 , 15-90	0.5	65

17	IonBurface interactions: from sputtering to reactive ion etching. <i>Materials Science and Technology</i> , 1992 , 8, 565-573	1.5	16
16	Surface science aspects of etching reactions. Surface Science Reports, 1992, 14, 162-269	12.9	437
15	Preparation of Aluminum Nitride Epitaxial Films by Electron Cyclotron Resonance Dual-Ion-Beam Sputtering. <i>Japanese Journal of Applied Physics</i> , 1994 , 33, 5249-5254	1.4	17
14	Energy and angular distributions of sputtered particles. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1994 , 140, 1-110		166
13	Sputter-induced pits on {100} nickel surfaces. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1996 , 27, 981-993	2.3	1
12	Fundamental aspects of SNMS for thin film characterization: experimental studies and computer simulations. <i>Thin Solid Films</i> , 1996 , 272, 289-309	2.2	20
11	The contribution of collision cascades to sputtering and radiation damage. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 5-28	3	13
10	Particle-induced erosion of materials at elevated temperature. <i>Journal of Applied Physics</i> , 2004 , 95, 447	71 <u>244</u> 7.	5 70
9	Energy and Angular Distributions of Sputtered Species. 2007 , 231-328		28
8	Feature of secondary ion emission at various temperature of irradiated copper single crystal. Journal of Surface Investigation, 2015 , 9, 1107-1115	0.5	2
7	A centre-triggered magnesium fuelled cathodic arc thruster uses sublimation to deliver a record high specific impulse. <i>Applied Physics Letters</i> , 2016 , 109, 094101	3.4	7
6	Sputtering measurements using a quartz crystal microbalance as a catcher. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2017 , 406, 533-537	1.2	7
5	Magnetron Sputtering Technique. 2015 , 2929-2957		3
4	Physical Sputtering of Elemental Metals and Semiconductors. 1986 , 1-24		3
3	Caesium flooding on metal surfaces and sputtered negative ion yields. <i>Journal De Physique (Paris)</i> , <i>Lettres</i> , 1977 , 38, 325-328		24
2	Magnetron Sputtering Technique. 2013 , 1-25		
1	MEASUREMENT AND CONTROL OF ION IMPLANTATION ACCELERATOR PARAMETERS. 1984 , 537-602		1