Formation of Bimolecular Membranes from Lipid Mono Electrical Properties

Proceedings of the National Academy of Sciences of the Unite 69, 3561-3566

DOI: 10.1073/pnas.69.12.3561

Citation Report

#	Article	IF	CITATIONS
7	Phospholipases. II. Enzymatic hydrolysis of lecithin: Effects of structure, cholesterol content, and sonication. Journal of Membrane Biology, 1973, 14, 119-134.	1.0	30
8	The interaction of anionic detergents with lipid bilayer membranes. Radiation and Environmental Biophysics, 1973, 10, 281-292.	0.6	11
9	Incorporation of Rhodopsin Proteolipid into Bilayer Membranes. Nature, 1973, 246, 219-221.	13.7	36
10	MEMBRANE PHOTOCHEMISTRY AND PHOTOBIOLOGY. Photochemistry and Photobiology, 1974, 20, 532-535.	1.3	19
11	Spontaneous conductance changes, multilevel conductance states and negative differential resistance in oxidized cholesterol black lipid membranes. Journal of Membrane Biology, 1974, 17, 201-212.	1.0	24
12	Lipids and membranes. FEBS Letters, 1974, 40, S98-S104.	1.3	37
13	Dipicrylamine transport across an ultrathin phosphatidylethanolamine membrane. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975, 62, 95-109.	0.3	47
14	The nature of the voltage-dependent conductance of the hemocyanin channel. Journal of Membrane Biology, 1975, 25, 163-181.	1.0	35
15	Voltage jump/capacitance relaxation studies of bilayer structure and dynamics. Journal of Membrane Biology, 1975, 23, 227-247.	1.0	42
16	Dependence of photosensitivity of bileaflet lipid membranes upon the chlorophyll and carotenoid content. Journal of Membrane Biology, 1975, 20, 171-180.	1.0	51
17	FUNCTIONS OF THE LIPID IN BILAYER ION PERMEABILITY. Annals of the New York Academy of Sciences, 1975, 264, 2-16.	1.8	76
18	Effect of cholesterol on the non-electrolyte permeability of planar lecithin membranes. Nature, 1975, 255, 722-723.	13.7	9
19	Techniques in the Formation and Examination of "Black―Lipid Bilayer Membranes. , 1975, , 1-75.		11
20	Antibiotics and Membrane Biology. Annual Review of Biophysics and Bioengineering, 1975, 4, 335-366.	5.3	127
22	Transmembrane Lipid Migration in Planar Asymmetric Bilayer Membranes. Biophysical Journal, 1975, 15, 417-434.	0.2	33
23	Formation of planar bilayer membranes from lipid monolayers. A critique. Biophysical Journal, 1976, 16, 481-489.	0.2	101
24	Branched bimolecular lipid membranes. Biophysical Journal, 1976, 16, 1109-1113.	0.2	35
25	Applications of Fluorescence Correlation Spectroscopy. Quarterly Reviews of Biophysics, 1976, 9, 49-68.	2.4	74

ARTICLE IF CITATIONS # PHOTOSENSITIVE BILAYER MEMBRANES AS MODEL SYSTEMS FOR PHOTOBIOLOGICAL PROCESSES. 1.3 69 26 Photochemistry and Photobiology, 1976, 24, 117-139. Ca++-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. Journal of 1.0 204 Membrane Biology, 1976, 30, 283-300. Electrochemistry of artificial ultrathin lipid membranes. Journal of Electroanalytical Chemistry and 28 0.3 23 Interfacial Electrochemistry, 1976, 69, 265-297. Effect of phloretin on the permeability of thin lipid membranes.. Journal of General Physiology, 1976, 0.9 281 67, 749-771. Phloretin-induced changes in ion transport across lipid bilayer membranes.. Journal of General 30 0.9 89 Physiology, 1977, 69, 243-257. Ion Transport in Membranes: Incorporation of Biological Ion-Translocating Proteins in Model Membrane Systems. Annual Review of Physiology, 1977, 39, 19-49. 5.6 1 Aspects of the Pharmacology of Passive Ion Transfer Across Cell Membranes. Progress in Medicinal 32 4.1 5 Chemistry, 1977, 14, 1-50. Synthesis of a 19-residue peptide with alamethicin-like activity.. Proceedings of the National Academy 3.3 of Sciences of the United States of America, 1977, 74, 115-119. 34 The use of synthetic membranes in biophysical research. Advances in Physics, 1977, 26, 79-128. 35.9 11 The effect of chlorpromazine on cell membrane resistance and capacitance. European Journal of 1.7 Pharmacology, 1977, 45, 251-256. Interaction of calcium with negative lipids in planar bilayer membranes. Influence of the solvent. 0.2 36 6 Biophysical Journal, 1977, 19, 199-202. Lateral diffusion in planar lipid bilayers. Science, 1977, 195, 305-306. 6.0 239 Exchange diffusion of dopamine induced in planar lipid bilayer membranes by the ionophore X537A. 38 0.9 7 Journal of General Physiology, 1977, 69, 633-653. Interaction of adsorbed lipid layers in aqueous solutions. Electrokinetic study. 1. Preparation and 1.0 structure of the lipid layer.. Bioelectrochemistry, 1977, 4, 231-241. Formation, structure, and spectrophotometry of air-water interface films containing rhodopsin. 40 1.0 31 Journal of Membrane Biology, 1977, 37, 235-262. Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films. Journal of Membrane Biology, 1977, 36, 115-135. Bilayers containing gangliosides develop channels when exposed to cholera toxin. Nature, 1978, 275, 42 13.7 71 142-144. 237 - Deformational instability of biomembranes induced by chemical reactions and electrical interactions. Bioelectrochemistry, 1978, 5, 401-410.

#	Article	IF	CITATIONS
44	Present status and future potential of monomolecular and multimolecular built-up films. Thin Solid Films, 1978, 50, 3-12.	0.8	13
45	Analysis of the multi-pore system of alamethicin in a lipid membrane. Journal of Membrane Biology, 1978, 38, 99-150.	1.0	139
46	Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties. Journal of Membrane Biology, 1978, 40, 1-23.	1.0	222
47	Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures. Journal of Membrane Biology, 1978, 44, 353-376.	1.0	168
48	Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophysical Journal, 1978, 21, 1-17.	0.2	240
49	Solvent-depleted bilayer membranes from concentrated lipid solutions. Nature, 1978, 272, 839-840.	13.7	10
50	Formation of "solvent-free" black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophysical Journal, 1978, 23, 337-347.	0.2	184
51	Effects of DDT on electrical properties of lecithin-decane bilayer membranes. Pesticide Biochemistry and Physiology, 1978, 8, 129-136.	1.6	7
52	Gating currents and charge movements in excitable membranes. , 1978, 82, 96-190.		359
53	Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry, 1978, 17, 3046-3053.	1.2	175
54	Bilayer Lipid Membranes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1978, 82, 890-891.	0.9	12
55	Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 3751-3755.	3.3	339
56	The Carrier Mechanism. Current Topics in Membranes and Transport, 1979, 12, 53-164.	0.6	38
57	Tributyltin-mediated exchange diffusion of halides in lipid bilayers Journal of General Physiology, 1979, 73, 789-800.	0.9	48
58	Inactivation of the alamethicin-induced conductance caused by quaternary ammonium ions and local anesthetics Journal of General Physiology, 1979, 73, 425-451.	0.9	12
59	A candidate for the permeability pathway of the outer mitochondrial membrane. Nature, 1979, 279, 643-645.	13.7	462
60	Alamethicin-induced single channel conductance fluctuations in biological membranes. Nature, 1979, 282, 336-339.	13.7	46
61	Capacitance and conductance as tools for the measurement of asymmetric surface potentials and energy barriers of lipid bilayer membranes. Journal of Membrane Biology, 1979, 46, 71-89.	1.0	96

#	Article	IF	CITATIONS
62	Asymmetry of the gramicidin channel in bilayers of asymmetric lipid composition: I. Single channel conductance. Journal of Membrane Biology, 1979, 48, 365-383.	1.0	15
63	Asymmetry of the gramicidin channel in bilayers of asymmetric lipid composition: II. Voltage dependence of dimerization. Journal of Membrane Biology, 1979, 48, 385-401.	1.0	8
64	Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study. Journal of Membrane Biology, 1979, 48, 181-204.	1.0	341
65	Effect of benzyl alcohol on lipid bilayers. A comparisons of bilayer systems. Biophysical Journal, 1979, 28, 185-196.	0.2	85
66	Effect of the anesthetics benzyl alcohol and chloroform on bilayers made from monolayers. Biophysical Journal, 1979, 28, 259-279.	0.2	105
67	Bacteriorhodopsin in model membranes. A new component of the displacement photocurrent in the microsecond time scale. Biophysical Journal, 1979, 25, 465-472.	0.2	71
68	Pancuronium inactivates alamethicin-induced conductance in artificial membranes. Biophysical Journal, 1979, 25, 549-554.	0.2	2
69	The dielectric constant of phospholipid bilayers and the permeability of membranes to ions. Science, 1979, 206, 1196-1198.	6.0	144
70	Functional reconstitution of photosynthetic reaction centers in planar lipid bilayers. Proceedings of the United States of America, 1979, 76, 6351-6355.	3.3	72
71	Lipid phase transition in planar bilayer membrane and its effect on carrier- and pore-mediated ion transport Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 3403-3407.	3.3	134
72	Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 3057-3061.	3.3	142
73	The induction of ion channels through excitable membranes by acetylcholinesterase. Die Naturwissenschaften, 1980, 67, 608-610.	0.6	21
74	Displacement Photocurrents in Pigment-Containing Biomembranes: Artificial and Natural Systems. Advances in Chemistry Series, 1980, , 211-237.	0.6	22
75	Proton transport by bacteriorhodopsin in planar membranes assembled from air-water interface films Journal of General Physiology, 1980, 76, 649-682.	0.9	38
76	Thermodynamic and kinetic studies of the gating behavior of a K+-selective channel from the sarcoplasmic reticulum membrane Journal of General Physiology, 1980, 76, 397-324.	0.9	125
77	Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane Journal of General Physiology, 1980, 75, 251-270.	0.9	217
78	Quantitative analysis of the binding of melittin to planar lipid bilayers allowing for the discrete-charge effect. Biochimica Et Biophysica Acta - Biomembranes, 1980, 602, 234-247.	1.4	52
79	Study of proton pumps by phospholipid-impregnated millipore filters. FEBS Letters, 1980, 110, 62-64.	1.3	12

#	Article	IF	Citations
80	PROTON CHANNELS IN CHLOROPLAST MEMBRANES. Annals of the New York Academy of Sciences, 1980, 358, 25-35.	1.8	25
81	STRUCTURE AND MODE OF ACTION OF A VOLTAGE DEPENDENT ANION-SELECTIVE CHANNEL (VDAC) LOCATED IN THE OUTER MITOCHONDRIAL MEMBRANE DEPENDENT ANION-SELECTIVE CHANNEL (VDAC). Annals of the New York Academy of Sciences, 1980, 341, 552-563.	1.8	174
82	A novel concept of membrane reconstitution applied to acetylcholine receptor from Torpedo and matrix protein from escherichia coli. Neurochemistry International, 1980, 2, 291-298.	1.9	7
83	Generation of large and active membrane layers from thylakoid vesicles. FEBS Letters, 1981, 128, 149-153.	1.3	5
84	Further studies on the spreading of biomembranes at the air/water interface Structure, composition, enzymatic activities of human erythrocyte and sarcoplasmic reticulum membrane films. Biochimica Et Biophysica Acta - Biomembranes, 1981, 647, 29-39.	1.4	33
85	Functional reassembly of membrane proteins in planar lipid bilayers. Quarterly Reviews of Biophysics, 1981, 14, 1-79.	2.4	118
86	The sting. Melittin forms channels in lipid bilayers. Biophysical Journal, 1981, 36, 109-116.	0.2	352
87	Voltage dependence of the capacitance and area of black lipid membranes. Biophysical Journal, 1981, 36, 449-453.	0.2	41
88	Voltage-dependent conductance induced by alamethicin-phospholipid conjugates in lipid bilayers. Biophysical Journal, 1981, 36, 803-809.	0.2	32
89	Thermoelasticity of large lecithin bilayer vesicles. Biophysical Journal, 1981, 35, 637-652.	0.2	470
90	Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 7502-7506.	3.3	67
91	Matrix protein in planar membranes: clusters of channels in a native environment and their functional reassembly Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 2302-2306.	3.3	185
92	Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 3586-3590.	3.3	101
93	A QUANTITATIVE COMPARISON OF CHLOROPHYLL BILAYERS FORMED WITH AND WITHOUT SOLVENT. Photochemistry and Photobiology, 1981, 33, 271-274.	1.3	6
94	Protein interactions with lipid bilayers: The channels of kidney plasma membrane proteolipids. Journal of Membrane Biology, 1981, 63, 77-84.	1.0	42
95	Structure of the axolemma of frog myelinated nerve: Relaxation experiments with a lipophilic probe ion. Journal of Membrane Biology, 1981, 59, 127-134.	1.0	28
96	The adsorption of adrenocorticotropin-(1-24)-tetracosapeptide to lecithin bilayer membranes formed from liposomes. Biophysics of Structure and Mechanism, 1981, 8, 61-65.	1.9	13
97	A new method for membrane reconstitution: Fusion of protein-containing vesicles with planar bilayer membranes below lipid phase transition temperature. Biophysics of Structure and Mechanism, 1981, 7, 131-137.	1.9	25

#	Article	IF	CITATIONS
98	Relaxation studies of ion transport systems in lipid bilayer membranes. Quarterly Reviews of Biophysics, 1981, 14, 513-598.	2.4	166
99	A three-barrier model for the hemocyanin channel Journal of General Physiology, 1981, 78, 657-681.	0.9	20
100	Calcium-induced inactivation of alamethicin in asymmetric lipid bilayers Journal of General Physiology, 1982, 79, 387-409.	0.9	16
101	Characterization of a membrane pore-forming protein from Entamoeba histolytica Journal of Experimental Medicine, 1982, 156, 1677-1690.	4.2	162
102	Two purified fractions of alamethicin have different conductance properties. Biochimica Et Biophysica Acta - Biomembranes, 1982, 684, 53-58.	1.4	13
103	Probing the pore size of the hemocyanin channel. Biochimica Et Biophysica Acta - Biomembranes, 1982, 693, 173-176.	1.4	13
104	Solvent-free lipid bimolecular membranes of large surface area. Biochimica Et Biophysica Acta - Biomembranes, 1982, 687, 189-194.	1.4	30
105	Modification of ion transport in lipid bilayer membranes by the insecticides DDT and DDE. Biochimica Et Biophysica Acta - Biomembranes, 1982, 688, 138-144.	1.4	8
106	Involvement of the glycosome of trypanosoma brucei in carbon dioxide fixation. FEBS Letters, 1982, 143, 60-64.	1.3	62
107	Kinetics of carrier-mediated ion transport in two new types of solvent-free lipid bilayers. Biophysical Journal, 1982, 39, 141-150.	0.2	10
108	Molecular Mechanisms of Alamethicin Channel Gating. Biophysical Journal, 1982, 37, 154-156.	0.2	12
109	Artificial black membranes from bipolar lipids of thermophilic Archaebacteria. Biophysical Journal, 1982, 37, 563-566.	0.2	49
110	An ion-channel forming protein produced by Entamoeba histolytica EMBO Journal, 1982, 1, 801-804.	3.5	119
111	533—Structure and transport properties of artificial bipolar lipid membranes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 141, 591-601.	0.3	4
112	Structure and transport properties of artificial bipolar lipid membranes. Bioelectrochemistry, 1982, 9, 591-601.	1.0	16
113	Role for mouse macrophage IgG Fc receptor as ligand-dependent ion channel. Nature, 1983, 306, 186-189.	13.7	100
114	PHOTOELECTRON TRANSFER BETWEEN A CHARGED DERIVATIVE OF CHLOROPHYLL AND FERRICYANIDE AT THE LIPID BILAYER-WATER INTERFACE. Photochemistry and Photobiology, 1983, 38, 355-361.	1.3	20
115	Phloretin and phloretin analogs: Mode of action in planar lipid bilayers and monolayers. Journal of Membrane Biology, 1983, 72, 93-103.	1.0	70

#	Article	IF	CITATIONS
116	Purification of VDAC (Voltage-dependent anion-selective channel) from rat liver mitochondria. Journal of Membrane Biology, 1983, 74, 115-121.	1.0	72
117	A kinetic study of the opening and closing properties of the hemocyanin channel in artificial lipid bilayer membranes. Journal of Membrane Biology, 1983, 71, 173-182.	1.0	8
118	Strategies in the reassembly of membrane proteins into lipid bilayer systems and their functional assay. Journal of Bioenergetics and Biomembranes, 1983, 15, 321-334.	1.0	25
119	Proton-induced ion channels through lipid bilayer membranes. Die Naturwissenschaften, 1983, 70, 147-149.	0.6	13
120	Electrical properties of ionic channels formed by Helix pomatia hemocyanin in planar lipid bilayers. Biophysics of Structure and Mechanism, 1983, 10, 169-184.	1.9	1
121	The induction by protons of ion channels through lipid bilayer membranes. Biophysical Chemistry, 1983, 18, 89-99.	1.5	44
122	Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets. Biochemistry, 1983, 22, 2319-2323.	1.2	177
123	Diffusion potential cascade. Convenient detection of transferable membrane pores. Biochemistry, 1983, 22, 837-844.	1.2	83
124	Formation of lipid-protein bilayers by micropipette guided contact of two monolayers. FEBS Letters, 1983, 152, 187-190.	1.3	36
125	Pressure effects on alamethicin conductance in bilayer membranes. Biophysical Journal, 1983, 44, 39-47.	0.2	41
125 126	Pressure effects on alamethicin conductance in bilayer membranes. Biophysical Journal, 1983, 44, 39-47. Formation and properties of cell-size lipid bilayer vesicles. Biophysical Journal, 1983, 44, 375-381.	0.2	41
126	Formation and properties of cell-size lipid bilayer vesicles. Biophysical Journal, 1983, 44, 375-381. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophysical Journal, 1983, 43,	0.2	102
126 127	Formation and properties of cell-size lipid bilayer vesicles. Biophysical Journal, 1983, 44, 375-381. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophysical Journal, 1983, 43, 231-236. Alamethicin-induced current-voltage curve asymmetry in lipid bilayers. Biophysical Journal, 1983, 42,	0.2	102 312
126 127 128	Formation and properties of cell-size lipid bilayer vesicles. Biophysical Journal, 1983, 44, 375-381. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophysical Journal, 1983, 43, 231-236. Alamethicin-induced current-voltage curve asymmetry in lipid bilayers. Biophysical Journal, 1983, 42, 71-82. Formation of asymmetrical planar lipid bilayer membranes from characterized monolayers. Journal of	0.2 0.2 0.2	102 312 85
126 127 128 129	Formation and properties of cell-size lipid bilayer vesicles. Biophysical Journal, 1983, 44, 375-381. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophysical Journal, 1983, 43, 231-236. Alamethicin-induced current-voltage curve asymmetry in lipid bilayers. Biophysical Journal, 1983, 42, 71-82. Formation of asymmetrical planar lipid bilayer membranes from characterized monolayers. Journal of Proteomics, 1983, 7, 299-310. Single-channel fluctuations in bimolecular lipid membranes induced by rat olfactory epithelial	0.2 0.2 0.2 2.4	102 312 85 24
126 127 128 129 130	 Formation and properties of cell-size lipid bilayer vesicles. Biophysical Journal, 1983, 44, 375-381. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophysical Journal, 1983, 43, 231-236. Alamethicin-induced current-voltage curve asymmetry in lipid bilayers. Biophysical Journal, 1983, 42, 71-82. Formation of asymmetrical planar lipid bilayer membranes from characterized monolayers. Journal of Proteomics, 1983, 7, 299-310. Single-channel fluctuations in bimolecular lipid membranes induced by rat olfactory epithelial homogenates. Science, 1983, 220, 717-719. Isolation and Reconstitution of Neuronal ION Transport Proteins. Annual Review of Neuroscience, 	0.2 0.2 0.2 2.4 6.0	102 312 85 24 56

#	Article	IF	CITATIONS
134	Reconstitution of highly purified saxitoxin-sensitive Na+-channels into planar lipid bilayers EMBO Journal, 1984, 3, 509-515.	3.5	64
135	The Potassium Channel of Sarcoplasmic Reticulum. Current Topics in Membranes and Transport, 1984, , 99-132.	0.6	12
136	Solvent-free bilayers from squalene solutions of phospholipids. Bioelectrochemistry, 1984, 12, 155-166.	1.0	11
137	Reconstitution of channel proteins from Torpedo electroplax into virtually solvent-free lipid bilayers. Bioelectrochemistry, 1984, 12, 341-351.	1.0	4
138	The electrical capacitance of bilayer membranes. Bioelectrochemistry, 1984, 12, 393-404.	1.0	46
139	Response of isolated sperm plasma membranes from sea urchin to egg jelly. FEBS Journal, 1984, 144, 515-522.	0.2	25
140	Biochemical Aspects of Cholinergic Excitation. Angewandte Chemie International Edition in English, 1984, 23, 195-221.	4.4	61
141	Biochemische Aspekte der cholinergen Reizung. Angewandte Chemie, 1984, 96, 193-219.	1.6	22
142	Monocarboxylic acid permeation through lipid bilayer membranes. Journal of Membrane Biology, 1984, 77, 255-264.	1.0	216
143	Studies on the mechanism of action of channel-forming colicins using artificial membranes. Journal of Membrane Biology, 1984, 79, 105-118.	1.0	86
144	Channels in planar bilayers made from commercially available lipids. Pflugers Archiv European Journal of Physiology, 1984, 401, 433-434.	1.3	19
145	New molecular aspects of energy-transducing protein complexes. Journal of Bioenergetics and Biomembranes, 1984, 16, 11-36.	1.0	17
146	Thickness dependence of monoglyceride bilayer membrane conductance. Biophysical Journal, 1984, 46, 187-193.	0.2	16
147	Incorporation of ion channels from bovine rod outer segments into planar lipid bilayers. Biophysical Journal, 1984, 46, 587-595.	0.2	18
148	Activation and Inactivation of Melittin Channels. Biophysical Journal, 1984, 45, 112-114.	0.2	44
149	Ion-Bond Forms of the Gramicidin a Transmembrane Channel. Biophysical Journal, 1984, 45, 114-116.	0.2	42
150	Channel properties of the purified acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayer membranes. Biophysical Journal, 1984, 45, 165-174.	0.2	48
151	Alamethicin. A rich model for channel behavior. Biophysical Journal, 1984, 45, 233-247.	0.2	300

#	Article	IF	CITATIONS
152	Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum. Biophysical Journal, 1984, 45, 279-287.	0.2	144
153	Single potassium channels with delayed rectifier behavior from lobster axon membranes. Biophysical Journal, 1984, 45, 289-299.	0.2	34
154	Formation and properties of tetramers of band 3 protein from human erythrocyte membranes in planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1984, 775, 347-355.	1.4	24
155	Evidence that the crystalline arrays in the outer membrane of Neurospora mitochondria are composed of the voltage-dependent channel protein. Biochimica Et Biophysica Acta - Biomembranes, 1984, 774, 206-214.	1.4	43
156	Measuring the Properties of Single Channels in Cell Membranes. Current Topics in Membranes and Transport, 1984, 21, 133-179.	0.6	4
157	Structure and Selectivity of Porin Channels. Current Topics in Membranes and Transport, 1984, , 199-219.	0.6	17
158	A Ca2+-activated channel from Xenopus laevis oocyte membranes reconstituted into planar bilayers Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5155-5159.	3.3	53
159	Ion Movements in Gramicidin Channels. Current Topics in Membranes and Transport, 1984, 21, 327-372.	0.6	100
160	Reconstitution of Ion Channel. Critical Reviews in Biochemistry, 1985, 19, 1-44.	7.5	27
161	Direct measurement of the electrogenic activity of o-type cytochrome oxidase from Escherichia coli reconstituted into planar lipid bilayers Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2570-2573.	3.3	16
162	Phallolysin A mushroom toxin, forms proton and voltage gated membrane channels. European Biophysics Journal, 1985, 12, 199-209.	1.2	14
163	Theoretical stability diagram of solvent-containing black lipid films. European Biophysics Journal, 1985, 11, 239.	1.2	Ο
164	Leptinotoxin-h Action in Synaptosomes, Neurosecretory Cells, and Artificial Membranes: Stimulation of Ion Fluxes. Journal of Neurochemistry, 1985, 45, 1708-1718.	2.1	12
165	Electrochemical response of partially purified opioid receptors. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 196, 443-446.	0.3	5
166	Incorporation of membrane proteins into interfacial films: model membranes for electrical and structural characterization. Biochimica Et Biophysica Acta - Reviews on Bioenergetics, 1985, 811, 357-379.	0.8	62
167	Voltage dependence and ion selectivity of the mitochondrial channel, VDAC, are modified by succinic anhydride. Journal of Membrane Biology, 1985, 83, 81-86.	1.0	62
168	The mitochondrial voltage-dependent channel, VDAC, is modified asymmetrically by succinic anhydride. Journal of Membrane Biology, 1985, 83, 87-94.	1.0	20
169	Channel formation in phospholipid bilayer membranes by the toxin ofHeminthosporium maydis, race T. Journal of Membrane Biology, 1985, 87, 151-157.	1.0	6

#	Article	IF	Citations
170	Optical and electrical properties of thin monoolein lipid bilayers. Journal of Membrane Biology, 1985, 85, 181-189.	1.0	58
171	Evidence for titratable gating charges controlling the voltage dependence of the outer mitochondrial membrane channel, VDAC. Journal of Membrane Biology, 1985, 86, 51-59.	1.0	60
172	ELECTRICAL and EMISSION PROPERTIES OF CHLOROPHYLL a IN PLANAR ASYMMETRICAL MEMBRANES. Photochemistry and Photobiology, 1985, 41, 101-106.	1.3	9
173	Mechanisms of Biological Ion Transport— Carriers, Channels, and Pumps in Artificial Lipid Membranes. Angewandte Chemie International Edition in English, 1985, 24, 905-923.	4.4	106
175	Structure and dynamics of nerve membranes. , 1985, , 747-756.		2
176	Voltage-Dependent Channels Found in the Membrane Fraction of Corn Mitochondria. Plant Physiology, 1985, 79, 1094-1097.	2.3	48
177	The operation of the sodium channel in nerve and muscle. Progress in Neurobiology, 1985, 24, 257-291.	2.8	11
178	Porin from Bacterial and Mitochondrial Outer Membrane. Critical Reviews in Biochemistry, 1985, 19, 145-190.	7.5	247
179	An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes. Biophysical Journal, 1985, 48, 125-136.	0.2	7
180	The effect of an applied electric field on the charge recombination kinetics in reaction centers reconstituted in planar lipid bilayers. Biophysical Journal, 1985, 48, 311-320.	0.2	109
181	Protons decrease the single channel conductance of the sarcoplasmic reticulum K+ channel in neutral and negatively charged bilayers. Biophysical Journal, 1985, 48, 349-353.	0.2	8
182	The dependence of the conductance of phosphatidylcholine bilayers upon the concentration and composition of the external electrolyte. Biochimica Et Biophysica Acta - Biomembranes, 1985, 812, 181-192.	1.4	17
183	The effect of plant hormone abscisic acid on model membranes - differential scanning calorimetry and planar bilayer membranes investigations. Biochimica Et Biophysica Acta - Biomembranes, 1986, 863, 313-317.	1.4	8
184	Membrane actions of male contraceptive gossypol tautomers. Biochimica Et Biophysica Acta - Biomembranes, 1986, 863, 101-109.	1.4	24
185	Reversible bilayer junction of lipid monolayers: free mono-bi-monolayer contact. Biochimica Et Biophysica Acta - Biomembranes, 1986, 861, 331-336.	1.4	10
186	Relation between myelin sheath thickness, internode geometry, and sheath resistance. Experimental Neurology, 1986, 92, 234-247.	2.0	23
187	Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell, 1986, 44, 849-859.	13.5	305
188	Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N'-dicyclohexlycarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry, 1986, 25, 1015-1021.	1.2	200

#	Article	IF	CITATIONS
189	An electrical and structural characterization of proton/hydroxide currents in phospholipid vesicles. Biochemistry, 1986, 25, 2270-2276.	1.2	56
190	Extracellular release of lymphocyte cytolytic pore-forming protein (perforin) after ionophore stimulation Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5668-5672.	3.3	56
191	Permeability of lipid bilayers to water and ionic solutes. Chemistry and Physics of Lipids, 1986, 40, 167-188.	1.5	307
192	The effects of monolayers on the evaporation of liquids. Advances in Colloid and Interface Science, 1986, 25, 89-200.	7.0	144
193	Toward a neuropsychopharmacology of habituation: A vertical integration. Mathematical Modelling, 1986, 7, 809-888.	0.2	10
194	The interfacial bioelectrochemistry of lipid bilayer membranes: Laplace plane analysis. Bioelectrochemistry, 1986, 16, 361-370.	1.0	3
195	Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature, 1986, 321, 171-174.	13.7	104
196	Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature, 1986, 321, 613-616.	13.7	403
197	Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature, 1986, 323, 36-39.	13.7	292
198	How do the polyene macrolide antibiotics affect the cellular membrane properties?. BBA - Biomembranes, 1986, 864, 257-304.	7.9	688
199	Chemical modification of the two histidine and single cysteine residues in the channel-forming domain of colicin E1. Journal of Membrane Biology, 1986, 92, 237-245.	1.0	17
200	Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations. Journal of Membrane Biology, 1986, 90, 177-190.	1.0	350
201	Voltage-dependent channel formation by rods of helical polypeptides. Journal of Membrane Biology, 1986, 93, 111-132.	1.0	132
202	The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science, 1986, 233, 184-190.	6.0	272
203	Properties of a purified pore-forming protein (perforin 1) isolated from H-2-restricted cytotoxic T cell granules Journal of Experimental Medicine, 1986, 164, 144-155.	4.2	93
204	Identification and characterization of a pore-forming protein of human peripheral blood natural killer cells Journal of Experimental Medicine, 1986, 164, 2061-2076.	4.2	74
205	Video fluorescence microscopy studies of phospholipid vesicle fusion with a planar phospholipid membrane. Nature of membrane-membrane interactions and detection of release of contents Journal of General Physiology, 1987, 90, 703-735.	0.9	65
206	Characterization of the channel properties of a neuronal acetylcholine receptor reconstituted into planar lipid bilayers Journal of General Physiology, 1987, 90, 855-879.	0.9	30

#	Article	IF	CITATIONS
207	Single Na+ channels activated by veratridine and batrachotoxin Journal of General Physiology, 1987, 89, 459-480.	0.9	93
208	A calcium- and perforin-independent pathway of killing mediated by murine cytolytic lymphocytes Journal of Experimental Medicine, 1987, 166, 1894-1899.	4.2	64
209	Ultrasteep voltage dependence in a membrane channel Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4896-4900.	3.3	82
210	Identification, purification, and functional reconstitution of the cyclic GMP-dependent channel from rod photoreceptors Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 585-589.	3.3	283
211	Potential of membrane-mimetic polymers in membrane technology. Journal of Membrane Science, 1987, 30, 323-346.	4.1	15
212	Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1987, 905, 109-117.	1.4	146
213	Structure of planar membrane formed from liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1987, 900, 145-156.	1.4	4
214	The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochimica Et Biophysica Acta - Biomembranes, 1987, 905, 279-286.	1.4	145
215	The location of cytochrome c on the surface of ultrathin lipid multilayer films using x-ray diffraction. Biophysical Journal, 1987, 52, 735-747.	0.2	16
216	Solid-phase synthesis of melittin: purification and functional characterization. Biochemistry, 1987, 26, 6627-6631.	1.2	53
217	Liposomes as a model for olfactory cells: changes in membrane potential in response to various odorants. Biochemistry, 1987, 26, 6135-6140.	1.2	82
218	Procedure using voltage-sensitive spin-labels to monitor dipole potential changes in phospholipid vesicles: The estimation of phloretin-induced conductance changes in vesicles. Journal of Membrane Biology, 1987, 96, 165-173.	1.0	22
219	Permeation of divalent cations through α-latrotoxin channels in lipid bilayers: steady-state current-voltage relationships. Journal of Membrane Biology, 1987, 95, 55-62.	1.0	32
220	Purification and characterization of the voltage-dependent anion channel from the outer mitochondrial membrane of yeast. Journal of Membrane Biology, 1987, 99, 65-72.	1.0	38
221	Elimination and restoration of voltage dependence in the mitochondrial channel, VDAC, by graded modification with succinic anhydride. Journal of Membrane Biology, 1987, 98, 157-168.	1.0	21
222	Voltage gating in VDAC is markedly inhibited by micromolar quantities of aluminum. Journal of Membrane Biology, 1987, 99, 187-196.	1.0	38
223	Pore formation by Staphylococcus aureus alpha-toxin in lipid bilayers. European Biophysics Journal, 1987, 14, 349-58.	1.2	76
224	Effects of calcium on the gramicidin A single channel in phosphatidylserine membranes. European Biophysics Journal, 1987, 14, 369-74.	1.2	19

#	Article	IF	Citations
225	Influence of torus on the capacitance of asymmetrical phospholipid bilayers. Biophysical Chemistry, 1987, 27, 225-231.	1.5	6
226	Recent advances in the characterization of epithelial ionic channels. BBA - Biomembranes, 1987, 906, 1-31.	7.9	50
227	Gating properties of channels formed by colicin Ia in planar lipid bilayer membranes. Journal of Membrane Biology, 1988, 105, 143-153.	1.0	39
228	Ion modulation of membrane permeability: Effect of cations on intact cells and on cells and phospholipid bilayers treated with pore-forming agents. Journal of Membrane Biology, 1988, 103, 79-94.	1.0	82
229	Interaction of furosemide with lipid membranes. Journal of Membrane Biology, 1988, 101, 103-111.	1.0	10
230	Membrane-assisted receptor subtype selection: synthesis, membrane structure, and opioid receptor affinity of [Phe8,12]- and [Phe8,12, Lys10]dynorphin-(1–13)-tridecapeptide. Tetrahedron, 1988, 44, 721-732.	1.0	13
231	Pathogenic and Non-pathogenicEntamoeba:Pore Formation and Hemolytic Activity1. Journal of Protozoology, 1988, 35, 359-365.	0.9	20
232	Electrical oscillation and fluctuation in phospholipid membranes. Biophysical Chemistry, 1988, 29, 293-299.	1.5	32
233	Chloride channels in epithelia. BBA - Biomembranes, 1988, 947, 521-547.	7.9	197
234	A selective cholesterol-dependent induction of proton/hydroxide currents in phospholipid vesicles by amphotericin B. Biochemistry, 1988, 27, 2656-2660.	1.2	30
235	The synthetic precursor specific region of pre-pro-parathyroid hormone forms ion channels in lipid bilayers. Bioscience Reports, 1988, 8, 173-183.	1.1	9
236	Liposomes as models for taste cells: receptor sites for bitter substances including N-C=S substances and mechanism of membrane potential changes. Biochemistry, 1988, 27, 1239-1244.	1.2	56
237	Isolation and partial characterization of an ion channel protein from human sperm membranes. Archives of Biochemistry and Biophysics, 1988, 262, 491-500.	1.4	16
238	Properties of ion channels formed by Staphylococcus aureus δ-toxin. Biochimica Et Biophysica Acta - Biomembranes, 1988, 942, 280-294.	1.4	101
239	Conductance properties of des-Aib-Leu-des-Pheol-Phe-alamethicin in planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1988, 938, 310-314.	1.4	22
240	The mitochondrial outer membrane channel, VDAC, is modulated by a soluble protein. FEBS Letters, 1988, 241, 105-109.	1.3	82
241	Planar bilayer membranes made from phospholipid monolayers form by a thinning process. Biophysical Journal, 1988, 53, 327-335.	0.2	43
242	Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime. Biophysical Journal, 1988, 53, 541-548.	0.2	25

#	Article	IF	CITATIONS
243	Nonlinear Voltage Dependence of the Light-Driven Proton Pump Current of Bacteriorhodopsin. Biophysical Journal, 1988, 53, 617-621.	0.2	31
244	Alamethicin adsorption to a planar lipid bilayer. Biophysical Journal, 1988, 53, 649-658.	0.2	23
245	Ligand/Receptor Interactions —The Influence of the Microenvironment on Macroscopic Properties. Electrostatic Interactions with the Membrane Phase. Journal of Receptors and Signal Transduction, 1988, 8, 375-389.	1.2	11
246	Synthetic amphiphilic peptide models for protein ion channels. Science, 1988, 240, 1177-1181.	6.0	593
247	Chromophore Location and Charge Displacement in Bacteriorhodopsin. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1988, 92, 1045-1050.	0.9	11
248	Fusion of phospholipid vesicles with a planar membrane depends on the membrane permeability of the solute used to create the osmotic pressure Journal of General Physiology, 1989, 93, 201-210.	0.9	36
249	Membrane electronics of reconstituted thermophilic proteins: polymerization of planar phospholipid bilayer membranes. , 0, , .		0
250	Isolation, characterization and partial purification of a transferable membrane channel (amoebapore) produced by Entamoeba histolytica. Molecular and Biochemical Parasitology, 1989, 33, 237-247.	0.5	37
251	Mechanisms of attack and defence at the cell surface: The use of phospholipid bilayers as models for cell membrane. Bioscience Reports, 1989, 9, 503-507.	1.1	8
252	Reconstitution of the lipid matrix of the outer membrane of Gram-negative bacteria as asymmetric planar bilayer. Journal of Membrane Biology, 1989, 109, 95-103.	1.0	38
253	Single chloride channels in endosomal vesicle preparations from rat kidney cortex. Journal of Membrane Biology, 1989, 111, 265-275.	1.0	40
254	The voltage-dependent activity of Escherichia coli porins in different planar bilayer reconstitutions. FEBS Journal, 1989, 186, 303-308.	0.2	76
255	Electron diffraction and diffraction contrast imaging of thin organic films. Journal of Electron Microscopy Technique, 1989, 11, 286-297.	1.1	10
256	Reversible binding of substance P to artificial lipid membranes studied by capacitance minimization techniques. Biophysical Chemistry, 1989, 34, 103-114.	1.5	30
257	Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophysical Journal, 1989, 56, 631-636.	0.2	216
258	Calcium Channels in Bacteria Annals of the New York Academy of Sciences, 1989, 560, 426-429.	1.8	35
259	Dependence of the conductance of the α-latrotoxin channel on applied potential and potassium concentration. Biochimica Et Biophysica Acta - Biomembranes, 1989, 978, 179-184.	1.4	5
260	The influence of the trichorzianin C-terminal residues on the ion channel conductance in lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1989, 987, 133-136.	1.4	23

			-
#	ARTICLE	IF	CITATIONS
261	Cholesterol-dependent gramicidin A channel inactivation in red blood cell membranes and lipid bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 1989, 978, 145-150.	1.4	20
262	An artificial membrane-cable: decay and delay of electrical potentials along a lipid bilayer with ion channels. Biochimica Et Biophysica Acta - Biomembranes, 1989, 987, 222-230.	1.4	8
263	The Lipid Environment of the Nicotinic Acetylcholine Receptor in Native and Reconstituted Membrane. Critical Reviews in Biochemistry and Molecular Biology, 1989, 24, 437-478.	2.3	53
264	Voltage-gated channels formed in lipid bilayers by a positively charged segment of the Na-channel polypeptide Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 707-710.	3.3	68
265	Large aqueous channels in membrane vesicles derived from the rough endoplasmic reticulum of canine pancreas or the plasma membrane of Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6176-6180.	3.3	73
266	Biosensor Development with a Glutamate Receptor Ion-Channel Reconstituted in a Lipid Bilayer. Analytical Sciences, 1990, 6, 221-225.	0.8	43
267	Chapter 9 Reconstitution of Epithelial Ion Channels. Current Topics in Membranes and Transport, 1990, 37, 283-312.	0.6	3
268	Heat shock proteins induce pores in membranes. Bioscience Reports, 1990, 10, 509-518.	1.1	51
269	Colicin N forms voltage- and pH-dependent channels in planar lipid bilayer membranes. European Biophysics Journal, 1990, 18, 149-158.	1.2	33
270	Pore formation by complement in the outer membrane of Gram-negative bacteria studied with asymmetric planar lipopolysaccharide/phospholipid bilayers. Journal of Membrane Biology, 1990, 118, 161-170.	1.0	19
271	Functional renaturation of receptor polypeptides eluted from SDS polyacrylamide gels. European Biophysics Journal, 1990, 18, 129-34.	1.2	10
272	Evidence from its temperature dependence that the ?-dielectric dispersion of cell suspensions is not due solely to the charging of a static membrane capacitance. European Biophysics Journal, 1990, 18, 267.	1.2	36
273	Neuronal acetylcholine receptor channels from insects: a comparative electrophysiological study. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 167, 521-6.	0.7	17
274	K+ sensitive bilayer supporting electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 278, 175-192.	0.3	46
275	Impedance Techniques For Signal Trnnsduction In Lipid Membranes. , 0, , .		0
276	Properties of channels reconstituted from the major intrinsic protein of lens fiber membranes Journal of General Physiology, 1990, 96, 631-664.	0.9	148
277	On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Biochemistry, 1990, 29, 5829-5836.	1.2	93
278	Pore-forming toxins: Experiments with S. aureus α-toxin, C. perfringens Î,-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Toxicon, 1990, 28, 477-491.	0.8	71

#	Article	IF	CITATIONS
279	Voltage-dependent pump currents of the sarcoplasmic reticulum Ca2+-ATPase in planar lipid membranes. FEBS Letters, 1990, 268, 152-156.	1.3	20
280	Polarity-dependent voltage-gated porin channels from Escherichia coli in lipid bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1021, 175-181.	1.4	31
281	Group IIIA-metal hydroxides indirectly neutralize the voltage sensor of the voltage-dependent mitochondrial channel, VDAC, by interacting with a dynamic binding site. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1025, 127-134.	1.4	31
282	The electrical and spectroscopic properties of planar asymmetrical membranes incorporating chlorophyll a and plastoquinone-9. Model of incorporation of chlorophyll a and plastoquinone-9. Biochemistry and Cell Biology, 1991, 69, 42-48.	0.9	2
283	The ionic channels formed by cholera toxin in planar bilayer lipid membranes are entirely attributable to its B-subunit. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1067, 166-170.	1.4	36
284	Contribution of proline-14 to the structure and actions of melittin. FEBS Letters, 1991, 281, 240-244.	1.3	99
285	Electrogenic pump current of sarcoplasmic reticulum Ca2+-ATPase reconstituted at high lipid/protein ratio. FEBS Letters, 1991, 284, 46-50.	1.3	23
286	Voltage-dependent conductance for alamethicin in phospholipid vesicles. A test for the mechanism of gating. Biophysical Journal, 1991, 60, 380-388.	0.2	21
287	Formation of ion-conducting channels by the membrane attack complex proteins of complement. Biophysical Journal, 1991, 60, 761-769.	0.2	22
288	Measurement of voltage dependence of capacitance of planar bilayer lipid membrane with a patch clamp amplifier. Biophysical Journal, 1991, 59, 939-944.	0.2	25
289	Measurement of Voltage Dependence of Capacitanceof Bilayer Lipid Membrane under the Existenceof Ion Carriers. Journal of the Physical Society of Japan, 1991, 60, 3940-3952.	0.7	0
290	Membrane topography of ColE1 gene products: the hydrophobic anchor of the colicin E1 channel is a helical hairpin. Journal of Bacteriology, 1991, 173, 2927-2934.	1.0	67
291	Voltage gating of the mitochondrial outer membrane channel VDAC is regulated by a very conserved protein. American Journal of Physiology - Cell Physiology, 1991, 260, C371-C374.	2.1	69
292	Lipid Bilayer Membranes Containing Glycopeptides as Receptor Model. Polymer Journal, 1991, 23, 593-601.	1.3	1
293	Effect of surface charges on the electroporation process in lipid bilayers. , 1991, , 189-193.		2
294	Hierarchically Structured Materials Generated in Membrane Mimetic Systems: Nanosized Particle Production of Cds and ZnS at Monolayers. Materials Research Society Symposia Proceedings, 1991, 255, 355.	0.1	0
295	Photo-Switched Current through Bilayer Lipid Membrane Containing Spirobenzopyran. Chemistry Letters, 1991, 20, 2087-2090.	0.7	4
296	Comparative Study on the Potentiometric Responses between a Valinomycin-Based Bilayer Lipid Membrane and a Solvent Polymeric Membrane. Analytical Sciences, 1991, 7, 853-862.	0.8	25

297 Ion channel sensors for glutamic acid. Analytical Chemistry, 1991, 63, 2787-2795. 3.2 89 209 Situ-differented nature generation at historians of sensolytin from Aeromonas hydrophila: a lipid planar bilayer 1.2 29 209 Situ-differented nature generation of a sensolytin from Aeromonas hydrophila: a lipid planar bilayer 1.2 29 200 Modulation of a gated ion channel admittance in lipid bilayer membranes. Biosensors and fiscal channel damittance in lipid bilayer membranes. Biosensors and fiscal channel damittance in lipid nombrane detected by video fluorescence microscopy. 0.9 23 300 Fuelon of influenza virious with a planar lipid membrane detected by video fluorescence microscopy. 0.9 23 301 Biosenergetics., 1991, 0 0 302 Biosenergetics., 1991, 0 0 303 Investigation of Human Immunodeficiency Virus Fusion Peptides. Analysis of Interrelations Between 0.5 54 303 Monolayer and atomic force microscopy studies of incotinic acetylcholine receptor films., 1992, 0 0 303 Investigation of Human Immunodeficiency Virus Fusion Peptides. Analysis of Interrelations Between 0.5 54 304 Monolayer and atomic force microscopy studies of incotinic acetylcholine receptor films., 1992, 0.7<			ATION REPORT	
299 Struct/nected mutagenesis at National Network (Note Accompose Synthy Medical Methods), 1911, 5, 2745-2751. 1.2 29 299 Modulation of a gated ion channel admittance in lipid bilayer membranes. Biosensors and biodectronics, 1951, 6, 425-430. 6.3 11 200 Purflection and characterization of an alpha-bungarotoxin receptor that forms a functional moting channel, Morcedings of the National Academy of Sciences of He United States of America, 10.3 47 301 Fution of influma virious with a planar lipid membrane detected by video fluorescence microscopy. 0.9 23 301 Journal of Ceneral Physiology, 1991, 97, 1101-1119. 0 9 24 303 Investigation of Human limitumodeficiency Wrus Fusion Peptides, Analysis of Interrelations Between 0.5 54 304 Investigation of Human limitumodeficiency Wrus Fusion Peptides, Analysis of Interrelations Between 0.5 54 305 Monolayer and atomic force microscopy studies of inkotinic acetylcholine receptor films, 1992, 0 0 306 Memobrane-modifying properties of the porte-forming peptialosis saturnisporin SA IV and harzlanin HA V. 0.7 20 307 Wanolayer and atomic force microscopy studies of nicotinic acetylcholine receptor films, 1992, 0.0 00 308 Transport methods for probing the	#	Article	IF	CITATIONS
208 study. Molecular Microbiology. 1991, 5, 2745-2751. 12 25 299 Modulation of a gated ion channel admittance in lipid bilayer membranes. Biosensors and Bioelectronics, 1991, 6, 425-430. 5.3 11 200 Purification and characterization of an alpha-burggotoxin receptor that forms a functional formation of influenza virions with a planar lipid membrane detected by video fluorescence microscopy 0.9 23 201 Fusion of influenza virions with a planar lipid membrane detected by video fluorescence microscopy 0.9 23 202 Bioenergetics., 1991, 0 0 0 203 Investigation of Human Immunodeficiency Vrus Fusion Peptides. Analysis of Interrelations Between their Structure and Function. AUS Research and Human Retroverses, 1992, 8, 2-18. 0.6 64 203 Monolsyer and atomic force microscopy studies of nicotinic acetylcholine receptor films. , 1992, 0 0.7 20 204 Monolsyer and atomic force microscopy studies of autotive alpha.helical region homologous with complement C0. Biochemistry, 1992, 31, 5017-5021. 0.2 26 207 Channel-forming activity of the perform N-terminus and a putative alpha.helical region homologous with complement C0. Biochemistry, 1992, 31, 5017-5021. 0.2 50 208 Transport method	297	Ion channel sensors for glutamic acid. Analytical Chemistry, 1991, 63, 2787-2795.	3.2	89
209 Bieelectronics, 1991, 6, 425 430. 5.3 11 300 Purification and characterization of an alpha-bungarotoxin receptor that forms a functional notific channel. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3258-3262. 3.3 47 301 Fusion of influenza virions with a planar lipid membrane detected by video fluorescence microscopy. Journal of General Physiology, 1991, 97, 1101-1119. 0.9 23 302 Bioenergetics., 1991, 0 303 Investigation of Human Immunodoficiency Virus Fusion Peptides. Analysis of Interrelations Between Their Structure and Function. AIDS Research and Human Retroviruses, 1992, 8, 9-18. 0.5 54 303 Monolayer and atomic force microscopy studies of nicotinic acetylcholine receptor films., 1992, 0 304 Kembrane-modifying properties of the performing peptiabols saturnisporin SA IV and harzianin HA V. 0.7 20 306 Membrane-modifying properties of the performing repatibols saturnisporin SA IV and harzianin HA V. 0.7 20 307 Whendermet C9. Biochemistry, 1992, 13, 1017-5021. 1.2 26 308 Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 1992, 67, 7, 170-188. 0.5 105 310 Charge Translocation of HLKATPase and Na,KATPase. Annals of the	298	Site-directed mutagenesis at histidines of aerolysin from Aeromonas hydrophila: a lipid planar bilayer study. Molecular Microbiology, 1991, 5, 2745-2751.	1.2	29
800 nextrine channel. Proceedings of the National Academy of Sciences of the United States of America. 8.3 47 901 Fusion of influenza vitrons with a planar lipid membrane detected by video fluorescence microscopy. 0.9 23 902 Bioenergetics., 1991, 0 903 Investigation of Human Immunodeficiency Virus Fusion Peptides. Analysis of Interrelations Between 0.5 54 904 Monolayer and atomic force microscopy studies of nicotinic acetylcholine receptor films., 1992, 0 905 Monolayer and atomic force microscopy studies of nicotinic acetylcholine receptor films., 1992, 0 906 Felst Microbiology Letters, 1992, 105, 151-160. 0.7 20 907 Channel-forming activity of the perform N-terminus and a putative .alphahelical region homologous 1.2 26 908 Transport methods for probling the barrier domain of lipid bilayer membranes. Biophysical Journal, 0.2 50 909 Transport methods for probling the barrier domain of lipid bilayer membranes. Biophysical Journal, 0.2 50 908 Transport methods for probling the barrier domain of lipid bilayer membranes. Biophysical Journal, 0.2 50 909 Transport methods for probling the barrier domain of lipid bilayers. 80	299		5.3	11
301 journal of General Physiology, 1991, 97, 1101-1119. 0.3 23 302 Bioenergetics., 1991, , . 0 303 Investigation of Human Immunodeficiency Virus Fusion Peptides. Analysis of Interrelations Between Their Structure and Function. ADS Research and Human Retroviruses, 1992, 8, 9-18. 0.5 54 303 Monolayer and atomic force microscopy studies of nicotinic acetylcholine receptor films., 1992, 0 306 Membrane modifying properties of the pore forming peptalbols saturnisporin SA IV and harzianin HAV. 0.7 20 307 Channel-forming activity of the perforin N-terminus and a putative alphahelical region homologous with complement C9. Biochemistry, 1992, 31, 5017-5021. 1.2 26 308 Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 0.2 50 102 307 Channel-forming activity of the perform N-terminus and a putative alphahelical region homologous with complement C9. Biochemistry, 1992, 31, 5017-5021. 0.2 50 308 Transport methods for probing the barrier domain of lipid bilayer membranes. Jiophysical Journal, 0.2 50 105 309 Charge Translocation of H_KATPase and Na,KATPase. Annals of the New York Academy of Sciences, 1.8 3 33 310 Prolines are nof essential residues in the "barrel-stave" model for i	300	nicotinic channel Proceedings of the National Academy of Sciences of the United States of America,	3.3	47
303 Investigation of Human Immunodeficiency Virus Fusion Peptides. Analysis of Interrelations Between 0.5 54 303 Monolayer and atomic force microscopy studies of nicotinic acetylcholine receptor films., 1992, 0 306 Membrane-modifying properties of the pore-forming peptiabols saturnisporin SA IV and harzianin HA V. 0.7 20 307 Channel-forming activity of the perform N-terminus and a putative .alphahelical region homologous 1.2 26 308 Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 1992, 63, 78-88. 0.2 50 309 Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 1992, 63, 78-88. 0.2 50 309 Charge Translocation of Mixchondrial respiration by controlling the permeability of the outer membrane 1992, 61, 170-188. 105 310 Charge Translocation of H_K-ATPase and Na,K-ATPase. Annals of the New York Academy of Sciences, 18 3 311 Prolines are not essential residues in the "barrel-stave" model for ton channels induced by alamethicin analogues. Biophysical Journal, 1992, 186, 645-651. 1.0 12 311 Prolines are not essential residues in the "barrel-stave" model for ton channels induced by alamethicin analogues. Biophysical Research Communications, 1992, 186, 645-651. 1.0 12	301		0.9	23
303 Their Structure and Function. AIDS Research and Human Retroviruses, 1992, 8, 9-18. 0.3 54 304 Monolayer and atomic force microscopy studies of nicotinic acetylcholine receptor films., 1992, 0 306 Membrane-modifying properties of the pore-forming peptalbols saturnisporin SA IV and harzianin HA V. 0.7 20 307 Channel-forming activity of the perforin N-terminus and a putative .alpha.helical region homologous 1.2 26 308 Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 0.2 50 309 Regulation of Introchondrial respiration by controlling the permeability of the outer membrane 0.2 50 310 Charge Translocation of H,K-ATPase and Na,K-ATPase. Annals of the New York Academy of Sciences, 1.8 3 311 Prolines are not essential residues in the "barrel-stave" model for ion channels induced by 0.2 45 312 Porin of Pseudomonas aeruginosa forms low conductance ion channel in planar lipid bilayers. 1.0 12 313 The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid 1.4 53 314 Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of 1.0 31 <tr< td=""><td>302</td><td>Bioenergetics. , 1991, , .</td><td></td><td>0</td></tr<>	302	Bioenergetics. , 1991, , .		0
306 Membrane-modifying properties of the pore-forming peptalbols saturnisporin SA IV and harzlanin HA V. 0.7 20 307 Channel-forming activity of the perforin N-terminus and a putative .alphahelical region homologous 1.2 26 308 Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 1992, 63, 78-88. 0.2 50 309 Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 1992, 63, 78-88. 0.2 50 309 Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1098, 255-260. 0.5 105 310 Charge Translocation of H,K-ATPase and Na,K-ATPase. Annals of the New York Academy of Sciences, 1992, 671, 170-188. 1.8 3 311 Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Biophysical Journal, 1992, 63, 868-873. 0.2 45 312 Porin of Pseudomonas aeruginosa forms low conductance ion channel in planar lipid bilayers. Biochemical and Biophysical Research Communications, 1992, 111, 7-16. 1.0 12 313 The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16. 1.0 <t< td=""><td>303</td><td></td><td>0.5</td><td>54</td></t<>	303		0.5	54
306FEMS Microbiology Letters, 1992, 105, 151-160.0.120307Channel-forming activity of the perforin N-terminus and a putative .alphahelical region homologous1.226308Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 1992, 63, 78-88.0.250309Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1098, 252-260.0.5105310Charge Translocation of H,K-ATPase and Na,K-ATPase. Annals of the New York Academy of Sciences, 1992, 671, 170-188.1.83311Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Biophysical Journal, 1992, 63, 868-873.0.245312Porin of Pseudomonas aeruginosa forms low conductance ion channel in planar lipid bilayers. Biochemical and Biophysical Research Communications, 1992, 186, 645-651.1.012313The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16.1.453314Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of Membrane Biology, 1992, 127, 195-203.1.031	305	Monolayer and atomic force microscopy studies of nicotinic acetylcholine receptor films. , 1992, , .		0
307with complement C9. Biochemistry, 1992, 31, 5017-5021.1.226308Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 1992, 63, 78-88.0.250309Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1098, 255-260.0.5105310Charge Translocation of H,K-ATPase and Na,K-ATPase. Annals of the New York Academy of Sciences, 1992, 671, 170-188.1.83311Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Biophysical Journal, 1992, 63, 868-873.0.245312Porin of Pseudomonas aeruginosa forms low conductance ion channel in planar lipid bilayers. Biochemical and Biophysical Research Communications, 1992, 186, 645-651.1.012313The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16.1.031314Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of Membrane Biology, 1992, 127, 195-203.1.031	306	Membrane-modifying properties of the pore-forming peptaibols saturnisporin SA IV and harzianin HA V. FEMS Microbiology Letters, 1992, 105, 151-160.	0.7	20
3081992, 63, 78-88.0.230309Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1098, 255-260.0.5105310Charge Translocation of H,K-ATPase and Na,K-ATPase. Annals of the New York Academy of Sciences, 1992, 671, 170-188.1.83311Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Biophysical Journal, 1992, 63, 868-873.0.245312Porin of Pseudomonas aeruginosa forms low conductance ion channel in planar lipid bilayers. Biochemical and Biophysical Research Communications, 1992, 186, 645-651.1.012313The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16.1.453314Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of Membrane Biology, 1992, 127, 195-203.1.031	307		1.2	26
309through the mitochondrial channel, VDAČ. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1098, 255-260.0.5105310Charge Translocation of H,K-ATPase and Na,K-ATPase. Annals of the New York Academy of Sciences, 1992, 671, 170-188.1.83311Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Biophysical Journal, 1992, 63, 868-873.0.245312Porin of Pseudomonas aeruginosa forms low conductance ion channel in planar lipid bilayers. Biochemical and Biophysical Research Communications, 1992, 186, 645-651.1.012313The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16.1.453314Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of Membrane Biology, 1992, 127, 195-203.311031	308	Transport methods for probing the barrier domain of lipid bilayer membranes. Biophysical Journal, 1992, 63, 78-88.	0.2	50
3101992, 671, 170-188.1.83311Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Biophysical Journal, 1992, 63, 868-873.0.245312Porin of Pseudomonas aeruginosa forms low conductance ion channel in planar lipid bilayers. Biochemical and Biophysical Research Communications, 1992, 186, 645-651.1.012313The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16.1.453314Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of Membrane Biology, 1992, 127, 195-203.1.031	309	through the mitochondrial channel, VDAC. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1098,	0.5	105
311alamethicin analogues. Biophysical Journal, 1992, 63, 868-873.0.243312Porin of Pseudomonas aeruginosa forms low conductance ion channel in planar lipid bilayers. Biochemical and Biophysical Research Communications, 1992, 186, 645-651.1.012313The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16.1.453314Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of Membrane Biology, 1992, 127, 195-203.1.031	310		1.8	3
312Biochemical and Biophysical Research Communications, 1992, 186, 645-651.11012313The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16.1.453314Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of Membrane Biology, 1992, 127, 195-203.1.031	311		0.2	45
313bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16.1.433314Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of Membrane Biology, 1992, 127, 195-203.1.031315Toad bladder amiloride-sensitive channels reconstituted into planar lipid bilayers. Journal of1.05	312		1.0	12
Membrane Biology, 1992, 127, 195-203.	313	The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 7-16.	1.4	53
	314	Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. Journal of Membrane Biology, 1992, 127, 195-203.	1.0	31
	315	Toad bladder amiloride-sensitive channels reconstituted into planar lipid bilayers. Journal of Membrane Biology, 1992, 127, 121-8.	1.0	5

#	Article	IF	CITATIONS
316	Determination of the number of polypeptide subunits in a functional VDAC channel fromSaccharomyces cerevisiae. Journal of Bioenergetics and Biomembranes, 1992, 24, 27-31.	1.0	44
317	A soluble mitochondrial protein increases the voltage dependence of the mitochondrial channel, VDAC. Journal of Bioenergetics and Biomembranes, 1992, 24, 41-46.	1.0	61
318	Membrane-modifying properties of the pore-forming peptaibols saturnisporin SA IV and harzianin HA V. FEMS Microbiology Letters, 1992, 105, 51-60.	0.7	12
319	A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiology Letters, 1992, 105, 93-100.	0.7	178
320	Surface-bound biomembranes incorporating receptors: electrochemical and structural characterization. Biosensors and Bioelectronics, 1992, 7, 429-440.	5.3	12
321	Ca2+-sensitive monolayer electrodes. Journal of Electroanalytical Chemistry, 1992, 326, 161-176.	1.9	23
322	Control of ion transport across bilayer lipid membranes by adjustment of surface charge associated with phase domain structures. Analytica Chimica Acta, 1992, 257, 49-57.	2.6	51
323	Na+,K+-ATPase-based bilayer lipid membrane sensor for adenosine 5′-triphosphate. Analytica Chimica Acta, 1993, 281, 577-584.	2.6	33
324	Bilayer lipid membranes for electrochemical sensing. Electroanalysis, 1993, 5, 539-545.	1.5	70
325	Membrane transport of tetraphenylphosphonium and its homologues through the planar phospholipid bilayer: Concentration dependence and mutually competitive inhibition in membrane passive transport. Journal of Pharmaceutical Sciences, 1993, 82, 27-31.	1.6	13
326	Conformational change of photochromic spirobenzopyran in a bilayer lipid membrane observed via the current of ion-carriers. Bioelectrochemistry, 1993, 31, 161-165.	1.0	0
327	Activation kinetics of the incorporation of colicin Ia into an artificial membrane: A Markov or a fractal model?. Bioelectrochemistry, 1993, 32, 175-180.	1.0	7
328	Reconstitution of the native mitochondrial outer membrane in planar bilayers. Comparison with the outer membrane in a patch pipette and effect of aluminum compounds. Journal of Membrane Biology, 1993, 133, 129-43.	1.0	28
329	The functional properties of Ompβ, the regularly arrayed porin of the hyperthermophilic bacterium Thermotoga maritima. FEMS Microbiology Letters, 1993, 109, 231-236.	0.7	15
330	Asymmetry of orientation and voltage gating of the Acidovorax delafieldii porin Omp34 in lipid bilayers. FEBS Journal, 1993, 212, 129-135.	0.2	46
331	Highly stable lipid membranes from archaebacterial extremophiles. Progress in Polymer Science, 1993, 18, 763-804.	11.8	45
332	Direct transmembraneous reconstitution of bacteriorhodopsin into planar phospholipid bilayers. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1183, 171-179.	0.5	5
333	The outer mitochondrial membrane channel, VDAC, is modulated by a protein localized in the intermembrane space. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1144, 396-402.	0.5	55

#	Article	IF	CITATIONS
334	Effect of salts on conformational change of basic amphipathic peptides from β-structure to α-helix in the presence of phospholipid liposomes and their channel-forming ability. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1151, 76-82.	1.4	40
335	lonophore properties of OmpA of Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1145, 119-123.	1.4	66
336	Channels in Mitochondrial Membranes: Knowns, Unknowns, and Prospects for the Future. Critical Reviews in Biochemistry and Molecular Biology, 1993, 28, 127-171.	2.3	117
337	Effects of monoclonal antibodies on α-staphylotoxin action against erythrocytes and model phospholipid membranes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1182, 94-100.	1.8	2
338	Entero-Cytolysin (EC) from Vibrio cholerae Non-01 (Some Properties and Pore-Forming Activity). Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1993, 279, 494-504.	0.5	12
339	The electrical and spectroscopic properties of planar asymmetrical membranes incorporating chlorophyll a and plastoquinone-9. Influence of surface charges on electron transfer. Biochemistry and Cell Biology, 1993, 71, 169-175.	0.9	1
340	Synthetic peptides as models for ion channel proteins. Accounts of Chemical Research, 1993, 26, 191-197.	7.6	217
341	Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophysical Journal, 1993, 65, 23-27.	0.2	256
342	Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior. Biophysical Journal, 1993, 65, 1093-1100.	0.2	69
343	Probing alamethicin channels with water-soluble polymers. Size-modulated osmotic action. Biophysical Journal, 1993, 65, 2097-2105.	0.2	69
344	Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophysical Journal, 1993, 64, 16-25.	0.2	198
345	Probes of membrane electrostatics: synthesis and voltage-dependent partitioning of negative hydrophobic ion spin labels in lipid vesicles. Biophysical Journal, 1993, 64, 642-653.	0.2	33
346	A Novel Modular Langmuir-Blodgett/Montal-Mueller Trough. Molecular Crystals and Liquid Crystals, 1993, 235, 155-160.	0.3	2
347	Purification and characterization of protein H, the major porin of Pasteurella multocida. Journal of Bacteriology, 1993, 175, 266-276.	1.0	45
348	Recognition of Amino Acids by Membrane Potential of Immobilized Serum Albumin Membranes. Polymer Journal, 1993, 25, 747-755.	1.3	6
349	Mapping of residues forming the voltage sensor of the voltage-dependent anion-selective channel Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5446-5449.	3.3	114
350	Frequent Fusion of Liposomes to a Positively Charged Planar Bilayer without Calcium Ions1. Journal of Biochemistry, 1993, 114, 487-491.	0.9	11

#	Article	IF	CITATIONS
352	Purification and Characterization of the Voltage-Dependent Anion-Selective Channel Protein from Wheat Mitochondrial Membranes. Plant Physiology, 1993, 101, 579-587.	2.3	33
354	The detection and analysis of multiple-membrane-channel events by convolution. Physics in Medicine and Biology, 1994, 39, 1527-1535.	1.6	4
355	The lack of evidence for ELF magnetic-field effects on bilayer membranes and reconstituted membrane channels. Physics in Medicine and Biology, 1994, 39, 1515-1526.	1.6	6
356	A pore-forming protein with a metal-actuated switch. Protein Engineering, Design and Selection, 1994, 7, 655-662.	1.0	74
357	Implication of segment S45 in the permeation pathway of voltage-dependent sodium channels. European Biophysics Journal, 1994, 23, 39-49.	1.2	25
358	Templateâ€assembled melittin: Structural and functional characterization of a designed, synthetic channelâ€forming protein. Protein Science, 1994, 3, 1788-1805.	3.1	67
359	Permeability of membranes to amino acids and modified amino acids: Mechanisms involved in translocation. Amino Acids, 1994, 6, 213-229.	1.2	62
360	Recognition of substrates by membrane potential of immobilized glucose oxidase membranes. Journal of Applied Polymer Science, 1994, 51, 1735-1739.	1.3	9
361	Comparative analysis of the methods for measurement of membrane surface potential of planar lipid bilayers. Bioelectrochemistry, 1994, 33, 11-18.	1.0	23
362	Counting polymers moving through a single ion channel. Nature, 1994, 370, 279-281.	13.7	375
363	Pharmacology and Biophysical Properties of α7 and α7 - α8 α-Bungarotoxin Receptor Subtypes Immunopurified from the Chick Optic Lobe. European Journal of Neuroscience, 1994, 6, 1281-1291.	1.2	92
364	The major secreted product of the whipworm, Trichuris , is a pore-forming protein. Proceedings of the Royal Society B: Biological Sciences, 1994, 257, 255-261.	1.2	57
365	Pf3 coat protein forms voltage-gated ion channels in planar lipid bilayers. Biochemistry, 1994, 33, 283-290.	1.2	13
366	Permeability and electrical properties of planar lipid membranes from thylakoid lipids. Biophysical Journal, 1994, 66, 1404-1414.	0.2	41
367	Light-induced voltage changes associated with electron and proton transfer in photosystem II core complexes reconstituted in phospholipid monolayers. Biophysical Journal, 1994, 66, 2066-2072.	0.2	21
368	Characterization and partial purification of the VDAC-channel-modulating protein from calf liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1185, 203-212.	0.5	32
369	Influence of the lipid matrix on incorporation and function of LPS-free porin from Paracoccus denitrificans. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 231-242.	1.4	40
370	Two mode ion channels induced by interaction of acidic amphipathic α-helical peptides with lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1191, 181-189.	1.4	11

#	Article	IF	Citations
371	Asymmetric black membranes formed by one monolayer of bipolar lipids at the air/water interface. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1189, 96-100.	1.4	17
372	Activation Energy for Permeation of Phosphonium Cations through Phospholipid Bilayer Membrane. Biochemistry, 1994, 33, 4312-4318.	1.2	43
373	Alamethicin Pyromellitate: An Ion-Activated Channel-Forming Peptide. Biochemistry, 1994, 33, 6850-6858.	1.2	37
374	A helical-dipole model describes the single-channel current rectification of an uncharged peptide ion channel Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4859-4863.	3.3	69
375	Mimicry of natural material designs and processes. Journal of Materials Engineering and Performance, 1995, 4, 334-345.	1.2	31
376	Oriented channel insertion reveals the motion of a transmembrane beta strand during voltage gating of VDAC. Journal of Membrane Biology, 1995, 144, 121-9.	1.0	51
377	Low conductance states of a single ion channel are not ?closed?. Journal of Membrane Biology, 1995, 147, 233-9.	1.0	68
378	Staphylococcus aureus alpha-toxin-induced pores: Channel-like behavior in lipid bilayers and patch clamped cells. Journal of Membrane Biology, 1995, 143, 143-51.	1.0	44
379	Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Protein Science, 1995, 4, 1490-1497.	3.1	60
380	Macrotricyclic quaternary ammonium ions: membrane current caused by feeble forces between hydrophobic groups and bilayer membranes. Supramolecular Chemistry, 1995, 5, 219-224.	1.5	19
381	Conductance Change in Phospholipid Bilayer Membrane by an Electroneutral Ionophore, Monensin. Biochemistry, 1995, 34, 3455-3460.	1.2	26
382	Non stochastic distribution of single channels in planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1233, 105-110.	1.4	5
383	Ion channel formation by synthetic analogues of staphylococcal δ-toxin. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1236, 219-227.	1.4	25
384	Actinobacillus actinomycetemcomitans leukotoxin forms large conductance, voltage-gate ion channels when incorporated into planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1238, 34-41.	1.4	40
385	Horizontal â€~solvent-free' lipid bimolecular membranes with two-sided access can be formed and facilitate ion channel reconstitution. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1236, 339-344.	1.4	5
386	Conformation, pore-forming activity, and antigenicity of synthetic peptide analogues of a spiralin putative amphipathic α helix. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1235, 161-168.	1.4	20
387	Hydrophobic ion interaction on Na+ activation and dephosphorylation of reconstituted Na+,K+-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1235, 183-196.	1.4	10
388	Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophysical Journal, 1995, 69, 94-105.	0.2	193

#	Article	IF	CITATIONS
389	Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis. Biophysical Journal, 1995, 69, 2337-2349.	0.2	14
390	Micropipette manipulation technique for the monitoring of pH-dependent membrane lysis as induced by the fusion peptide of influenza virus. Biophysical Journal, 1995, 68, 315-325.	0.2	16
391	Charge selectivity of the designed uncharged peptide ion channel Ac-(LSSLLSL)3-CONH2. Biophysical Journal, 1995, 68, 1347-1358.	0.2	47
392	Modeling success and failure of Langmuir-Blodgett transfer of phospholipid bilayers to silicon dioxide. Biophysical Journal, 1995, 68, 1364-1373.	0.2	21
393	Lateral diffusion in planar lipid bilayers: a fluorescence recovery after photobleaching investigation of its modulation by lipid composition, cholesterol, or alamethicin content and divalent cations. Biophysical Journal, 1996, 71, 1364-1373.	0.2	122
394	Planar asymmetric lipid bilayers of glycosphingolipid or lipopolysaccharide on one side and phospholipids on the other: membrane potential, porin function, and complement activation. Biophysical Journal, 1996, 70, 321-329.	0.2	62
395	Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds. Biophysical Journal, 1996, 70, 1669-1675.	0.2	34
396	A Simple Method To Form an Asymmetric Bilayer Lipid Membrane and Its Enhancement of Photoelectric Response. Langmuir, 1996, 12, 4303-4304.	1.6	4
397	Dynamics and Free Energy of Polymers Partitioning into a Nanoscale Pore. Macromolecules, 1996, 29, 8517-8522.	2.2	234
398	A voltage-dependent chloride channel from Tetrahymena ciliary membrane incorporated into planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1280, 207-216.	1.4	7
399	Role of proline residue in the channel-forming and catecholamine-releasing activities of the peptaibol, trichosporin-B-VIa. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1283, 31-36.	1.4	19
400	Valinomycin acts as a channel in ultrathin lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1283, 1-3.	1.4	18
401	Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Letters, 1996, 398, 12-18.	1.3	266
402	Selective Na+ Transport through Phospholipid Bilayer Membrane by a Synthetic Calix[4]arene Carrier. Langmuir, 1996, 12, 2684-2689.	1.6	33
403	Characterization of a porin from the outer membrane of Vibrio anguillarum. Journal of Bacteriology, 1996, 178, 4182-4188.	1.0	23
404	A study of the interaction of adrenocorticotropin-(1–24)-tetracosapeptide with BLM and liposomes. , 1996, , 301-305.		6
405	The Role of Pyridine Dinucleotides in Regulating the Permeability of the Mitochondrial Outer Membrane. Journal of Biological Chemistry, 1996, 271, 26724-26731.	1.6	69
406	Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13770-13773.	3.3	2,907

#	Article	IF	CITATIONS
407	Pore Formation by S. aureus α-toxin in Liposomes and Planar Lipid Bilayers: Effects of Nonelectrolytes. Journal of Membrane Biology, 1996, 150, 37-45.	1.0	22
408	Properties of Voltage-gated Ion Channels Formed by Syringomycin E in Planar Lipid Bilayers. Journal of Membrane Biology, 1996, 149, 41-47.	1.0	79
409	Interaction of Nisin with Planar Lipid Bilayers Monitored by Fluorescence Recovery After Photobleaching. Journal of Membrane Biology, 1996, 151, 293-300.	1.0	39
410	Characterization and Ion Channel Activities of Novel Antibacterial Proteins from the Skin Mucosa of Carp (Cyprinus carpio). FEBS Journal, 1996, 240, 143-149.	0.2	97
411	Ionophore and Anthelmintic Activity of PF 1022A, a Cyclooctadepsipeptide, Are Not Related. Pest Management Science, 1996, 48, 399-407.	0.7	21
412	Theory of electroporation: A review. Bioelectrochemistry, 1996, 41, 135-160.	1.0	1,327
413	Filter switching device for dual-wavelength videoimaging. Journal of Fluorescence, 1996, 6, 103-106.	1.3	2
414	Hydrophobic Effects on Antibacterial and Channel-forming Properties of Cecropin A–Melittin Hybrids. Journal of Peptide Science, 1996, 2, 223-232.	0.8	36
415	On the one-sided action of amphotericin B on lipid bilayer membranes Journal of General Physiology, 1996, 107, 69-78.	0.9	56
416	Resonance energy transfer imaging of phospholipid vesicle interaction with a planar phospholipid membrane: undulations and attachment sites in the region of calcium-mediated membranemembrane adhesion Journal of General Physiology, 1996, 107, 329-351.	0.9	25
417	Mechanism of Proton Permeation through Chloroplast Lipid Membranes. Plant Physiology, 1996, 112, 759-766.	2.3	24
418	Self-catalyzed Insertion of Proteins into Phospholipid Membranes. Journal of Biological Chemistry, 1996, 271, 23675-23682.	1.6	33
419	ATP Flux Is Controlled by a Voltage-gated Channel from the Mitochondrial Outer Membrane. Journal of Biological Chemistry, 1996, 271, 28006-28008.	1.6	218
420	Individual Leaflets of a Membrane Bilayer Can Independently Regulate Permeability. Journal of Biological Chemistry, 1996, 271, 11627-11630.	1.6	52
421	Functionality of Polypeptide by Induction of Specific Tertiary Structure. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 2073-2084.	1.2	1
422	Growth temperature dependence of channel size of the major outer-membrane protein (OprF) in psychrotrophic Pseudomonas fluorescens strains. Microbiology (United Kingdom), 1997, 143, 1029-1035.	0.7	31
423	Functional Differences among Wheat Voltage-dependent Anion Channel (VDAC) Isoforms Expressed in Yeast. Journal of Biological Chemistry, 1997, 272, 6252-6260.	1.6	45
424	Potentiometric Responses of Ionophore-Incorporated Bilayer Lipid Membranes with and without Added Anionic Sites. Analytical Sciences, 1997, 13, 437-446.	0.8	28

	CITATION R	EPORT	
# 425	ARTICLE Ferrocenoyl Derivatives of Alamethicin: Redox-Sensitive Ion Channelsâ€. Biochemistry, 1997, 36, 1115-1122.	IF 1.2	Citations 27
426	De Novo Design, Synthesis, and Characterization of a Pore-Forming Small Globular Protein and Its Insertion into Lipid Bilayers. Biochemistry, 1997, 36, 3782-3791.	1.2	26
427	Mechanisms of Action of Bactericidal/Permeability-Increasing Protein BPI on Reconstituted Outer Membranes of Gram-Negative Bacteriaâ€. Biochemistry, 1997, 36, 10311-10319.	1.2	60
428	Structureâ^'Function Relations of Variant and Fragment Nisins Studied with Model Membrane Systems. Biochemistry, 1997, 36, 3802-3810.	1.2	43
429	Signal transduction across alamethicin ion channels in the presence of noise. Biophysical Journal, 1997, 73, 2456-2464.	0.2	54
430	VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophysical Journal, 1997, 72, 1954-1962.	0.2	323
431	Autodirected insertion: preinserted VDAC channels greatly shorten the delay to the insertion of new channels. Biophysical Journal, 1997, 72, 2129-2136.	0.2	21
432	Influence of proline position upon the ion channel activity of alamethicin. Biophysical Journal, 1997, 72, 2151-2159.	0.2	39
433	Membrane Permeabilization Mechanisms of a Cyclic Antimicrobial Peptide, Tachyplesin I, and Its Linear Analogâ€. Biochemistry, 1997, 36, 9799-9806.	1.2	130
434	Voltage sensing in the PhoE and OmpF outer membrane porins of Escherichia coli: role of charged residues. Journal of Molecular Biology, 1997, 269, 468-472.	2.0	79
435	Role of the constriction loop in the gating of outer membrane porin PhoE ofEscherichia coli. FEBS Letters, 1997, 415, 317-320.	1.3	37
436	Interaction of the 14-residue peptaibols, harzianins HC, with lipid bilayers: permeability modifications and conductance properties. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1323, 85-96.	1.4	27
437	The effect of sterols on the sensitivity of membranes to the channel-forming antifungal antibiotic, syringomycin E. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1324, 102-110.	1.4	42
438	Role of the Gln/Glu residues of trichocellins A-II/B-II in ion-channel formation in lipid membranes and catecholamine secretion from chromaffin cells. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1325, 209-214.	1.4	19
439	Ion-channels formed by hypelcins, antibiotic peptides, in planar bilayer lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1326, 47-53.	1.4	11
440	Isolation and characterization of the mitochondrial channel, VDAC, from the insect Heliothis virescens. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1327, 193-203.	1.4	7
441	The hinge portion of the S. aureus α-toxin crosses the lipid bilayer and is part of the trans-mouth of the channel. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1329, 51-60.	1.4	6
442	Lateral diffusion and conductance properties of a fluorescein-labelled alamethicin in planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1330, 284-292.	1.4	26

#	Article	IF	CITATIONS
443	Influence of Cys-130 S. aureus Alpha-toxin on Planar Lipid Bilayer and Erythrocyte Membranes. Journal of Membrane Biology, 1997, 156, 157-172.	1.0	24
444	Purification, Visualization, and Biophysical Characterization of Kv1.3 Tetramers. Journal of Biological Chemistry, 1997, 272, 2389-2395.	1.6	54
445	α7 and α8 Nicotinic Receptor Subtypes Immunopurified from Chick Retina have Different Immunological, Pharmacological and Functional Properties. European Journal of Neuroscience, 1997, 9, 1201-1211.	1.2	49
446	VI. Applications of S-layers. FEMS Microbiology Reviews, 1997, 20, 151-175.	3.9	40
447	Regulation of Metabolite Flux through Voltage-Gating of VDAC Channels. Journal of Membrane Biology, 1997, 157, 271-279.	1.0	247
448	Investigating synthetic P-regions from voltage-gated sodium channel at the conformational and functional levels. European Biophysics Journal, 1997, 25, 275-284.	1.2	9
449	Is it possible to induce ion channel memory control?. Bioelectrochemistry, 1997, 42, 193-195.	1.0	0
450	K+ sensors based on supported alkanethiol/phospholipid bilayers. Thin Solid Films, 1997, 293, 153-158.	0.8	25
451	Linear response of a fluctuating lipid bilayer. Thin Solid Films, 1998, 327-329, 796-799.	0.8	10
452	The structure and function of antiamoebin I, a proline-rich membrane-active polypeptide. Structure, 1998, 6, 783-792.	1.6	68
453	Synthesis and characterization of a new biotinylated gramicidin. , 1998, 4, 371-377.		15
454	A Novel Approach to Study the Geometry of the Water Lumen of Ion Channels: Colicin Ia Channels in Planar Lipid Bilayers. Journal of Membrane Biology, 1998, 161, 83-92.	1.0	80
455	Molecular Mechanisms of Polymyxin B-Membrane Interactions: Direct Correlation Between Surface Charge Density and Self-Promoted Transport. Journal of Membrane Biology, 1998, 162, 127-138.	1.0	128
456	Voltage-dependent Closing of Porin Channels: Analysis of Relaxation Kinetics. Journal of Membrane Biology, 1998, 165, 11-18.	1.0	17
457	Voltage sensitivity and conformational change of isolated S4L45 fragments from sodium channels are tuned to proline. European Biophysics Journal, 1998, 27, 595-604.	1.2	11
458	Compressibility and density of lipid bilayers composed of polyunsaturated phospholipids and cholesterol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 139, 189-197.	2.3	49
459	lonophore incorporated bilayer lipid membranes that selectively respond to metal ions and induce membrane permeability changes. Biosensors and Bioelectronics, 1998, 13, 1035-1046.	5.3	31
460	Tethered Lipid Bilayer Membranes: Formation and Ionic Reservoir Characterization. Langmuir, 1998, 14, 648-659.	1.6	299

#	Article	IF	CITATIONS
461	Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1369, 309-319.	1.4	20
462	Self-assembled α-hemolysin pores in an S-layer-supported lipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1370, 280-288.	1.4	72
463	Successful recovery of the normal electrophysiological properties of PorB (Class 3) porin from Neisseria meningitidis after expression in Escherichia coli and renaturation. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1370, 289-298.	1.4	33
464	Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1373, 137-146.	1.4	16
465	Ionic channels formed by a primary amphipathic peptide containing a signal peptide and a nuclear localization sequence. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1375, 52-60.	1.4	25
466	Antiamoebin can function as a carrier or as a pore-forming peptaibol. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1415, 255-260.	1.4	32
467	Simultaneous Measurement of Spectroscopic and Physiological Signals from a Planar Bilayer System: Detecting Voltage-Dependent Movement of a Membrane-Incorporated Peptide. Biochemistry, 1998, 37, 15376-15382.	1.2	12
468	Molecular and functional characterization of a recombinant protein of Trichuris trichiura. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1559-1565.	1.2	11
469	Coupling optical and electrical measurements in artificial membranes: Lateral diffusion of lipids and channel forming peptides in planar bilayers. Biological Procedures Online, 1998, 1, 81-91.	1.4	3
470	Nonlinear and Asymmetric Open Channel Characteristics of an Ion-Selective Porin in Planar Membranes. Biophysical Journal, 1998, 75, 1255-1262.	0.2	25
471	The Voltage-Gating Process of the Voltage-Dependent Anion Channel Is Sensitive to Ion Flow. Biophysical Journal, 1998, 75, 704-713.	0.2	42
472	Membrane Surface-Charge Titration Probed by Gramicidin A Channel Conductance. Biophysical Journal, 1998, 75, 1783-1792.	0.2	98
473	ATP Transport Through a Single Mitochondrial Channel, VDAC, Studied by Current Fluctuation Analysis. Biophysical Journal, 1998, 74, 2365-2373.	0.2	148
474	Cluster Organization of Ion Channels Formed by the Antibiotic Syringomycin E in Bilayer Lipid Membranes. Biophysical Journal, 1998, 74, 2918-2925.	0.2	75
475	The Sensor Regions of VDAC Are Translocated from within the Membrane to the Surface during the Gating Processes. Biophysical Journal, 1998, 74, 2926-2944.	0.2	95
476	Flicker noise in bilayer lipid membranes. Europhysics Letters, 1998, 43, 101-106.	0.7	19
477	Measurement of Ca ²⁺ Flux Through Ins(1,4,5)P ₃ Receptor-Ca ²⁺ Channels in Lipid Bilayers ("Dip-Tip" and "Schindler" Methodology). , 1999, 114, 221-234.		3
478	Channel Formation by FhaC, the Outer Membrane Protein Involved in the Secretion of the Bordetella pertussis Filamentous Hemagglutinin. Journal of Biological Chemistry, 1999, 274, 37731-37735.	1.6	88

#	Article	IF	CITATIONS
479	The Dual Role of Lipopolysaccharide as Effector and Target Molecule. Biological Chemistry, 1999, 380, 767-84.	1.2	48
481	Interfacial photochemistry of retinal proteins. Progress in Surface Science, 1999, 62, 1-237.	3.8	63
482	Molecular lateral diffusion in model membrane systems. Colloids and Surfaces B: Biointerfaces, 1999, 15, 147-160.	2.5	22
483	Structure-activity studies of normal and retro pig cecropin-melittin hybrids. Chemical Biology and Drug Design, 1999, 53, 244-251.	1.2	8
484	Hydrophobic thickness of fluid planar monooleylglycerol membranes maximally thinned by inversed micellisation. Biophysical Chemistry, 1999, 81, 143-155.	1.5	0
485	Isolation, amino acid sequence and functional assays of SGTx1. The first toxin purified from the venom of the spider Scodra griseipes. FEBS Journal, 1999, 265, 572-579.	0.2	37
486	Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature, 1999, 398, 686-690.	13.7	679
487	Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature, 1999, 398, 690-694.	13.7	313
488	Interaction of peptides and proteins with bacterial surface glycolipids: a comparison of glycosphingolipids and lipopolysaccharides. Journal of Industrial Microbiology and Biotechnology, 1999, 23, 414-424.	1.4	13
489	A functional protein pore with a "retro―transmembrane domain. Protein Science, 1999, 8, 1257-1267.	3.1	92
490	Complement Activation by Bacterial Surface Glycolipids: A Study with Planar Bilayer Membranes. Journal of Membrane Biology, 1999, 167, 223-232.	1.0	21
491	Mouse VDAC Isoforms Expressed in Yeast: Channel Properties and Their Roles in Mitochondrial Outer Membrane Permeability. Journal of Membrane Biology, 1999, 170, 89-102.	1.0	151
492	Probing the stability of S-layer-supported planar lipid membranes. European Biophysics Journal, 1999, 28, 583-590.	1.2	46
493	Pore-forming properties and antibacterial activity of proteins extracted from epidermal mucus of fish. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 122, 181-189.	0.8	83
494	Calcium-induced fusion of sea urchin egg secretory vesicles with planar phospholipid bilayer membranes. Molecular Membrane Biology, 1999, 16, 89-94.	2.0	13
495	Molecular Mechanisms of Interaction of Rabbit CAP18 with Outer Membranes of Gram-Negative Bacteriaâ€. Biochemistry, 1999, 38, 13643-13653.	1.2	35
496	Heparin influence on α-staphylotoxin formed channel. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1417, 167-182.	1.4	8
497	C-terminally shortened alamethicin on templates: influence of the linkers on conductances. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1420, 14-22.	1.4	15

#	Article	IF	CITATIONS
498	Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1421, 91-102.	1.4	61
499	The ion-channel activity of longibrachins LGA I and LGB II: effects of Pro-2/Ala and Gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 113-122.	1.4	14
500	Free Brownian Motion of Individual Lipid Molecules in Biomembranes. Biophysical Journal, 1999, 77, 2638-2642.	0.2	186
501	The Membrane-Permeabilizing Effect of Avenacin A-1 Involves the Reorganization of Bilayer Cholesterol. Biophysical Journal, 1999, 76, 281-290.	0.2	128
502	Meningococcal PorA/C1, a Channel that Combines High Conductance and High Selectivity. Biophysical Journal, 1999, 76, 804-813.	0.2	23
503	Genetically Engineered Metal Ion Binding Sites on the Outside of a Channel's Transmembrane β-Barrel. Biophysical Journal, 1999, 76, 837-845.	0.2	89
504	The Role of Proline and Glycine in Determining the Backbone Flexibility of a Channel-Forming Peptide. Biophysical Journal, 1999, 76, 1367-1376.	0.2	124
505	Morphological Behavior of Acidic and Neutral Liposomes Induced by Basic Amphiphilic α-Helical Peptides with Systematically Varied Hydrophobic-Hydrophilic Balance. Biophysical Journal, 1999, 76, 1457-1468.	0.2	44
506	Scanning Electrochemical Microscopy. 38. Application of SECM to the Study of Charge Transfer through Bilayer Lipid Membranes. Analytical Chemistry, 1999, 71, 4300-4305.	3.2	68
507	Conductive Properties and Gating of Channels Formed by Syringopeptin 25A, a Bioactive Lipodepsipeptide from Pseudomonas syringae pv. syringae, in Planar Lipid Membranes. Molecular Plant-Microbe Interactions, 1999, 12, 401-409.	1.4	32
508	Aggregation of Small Unilamellar Vesicles of Polyunsaturated Phosphatidylcholines under the Influence of Polyethylene Glycol. Zeitschrift Fur Physikalische Chemie, 1999, 211, 133-146.	1.4	4
509	Ion Channel Sensor. Analytical Letters, 1999, 32, 1271-1286.	1.0	10
510	Membrane pores. Advances in Structural Biology, 2000, 6, 299-322.	0.3	1
511	Purification, characterization and sequence analysis of Omp50,a new porin isolated from Campylobacter jejuni. Biochemical Journal, 2000, 352, 637.	1.7	12
512	Study on the packing geometry, stoichiometry, and membrane interaction of three analogs related to a pore-forming small globular protein. Biopolymers, 2000, 56, 96-108.	1.2	5
513	The Dynamic Activation of Colicin Ia Channels in Planar Bilayer Lipid Membrane. Journal of Theoretical Biology, 2000, 206, 235-241.	0.8	5
516	Aluminum Fluoride as a Storage Matrix for Atomic Hydrogen. Angewandte Chemie - International Edition, 2000, 39, 2516-2519.	7.2	15
517	The effect of lipid composition and physical state of phospholipid monolayer on the binding and incorporation of a basic amphipathic peptide from the C-terminal region of the HIV envelope protein gp41. Chemistry and Physics of Lipids, 2000, 107, 83-92.	1.5	13

#	Article	IF	CITATIONS
518	Electroporative fast pore-flickering of the annexin V–lipid surface complex, a novel gating concept for ion transport. Biophysical Chemistry, 2000, 86, 203-220.	1.5	14
519	Understanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes. Biophysical Chemistry, 2000, 85, 153-167.	1.5	72
520	Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. Bioelectrochemistry, 2000, 52, 161-167.	2.4	30
521	Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnology, 2000, 18, 1091-1095.	9.4	337
522	Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene, 2000, 19, 329-336.	2.6	322
523	Ion channel formation by N-terminal domain: a common feature of OprFs ofPseudomonasand OmpA ofEscherichia coli. FEMS Microbiology Letters, 2000, 190, 261-265.	0.7	38
524	The Role of Membrane Lateral Tension in Calcium-Induced Membrane Fusion. Journal of Membrane Biology, 2000, 176, 67-75.	1.0	29
525	The Role of Membrane Lateral Tension in Calcium-Induced Membrane Fusion. Journal of Membrane Biology, 2000, 176, 67-75.	1.0	18
526	The Lipids C2- and C16-Ceramide Form Large Stable Channels. Journal of Biological Chemistry, 2000, 275, 38640-38644.	1.6	269
527	Positive cooperativity without domains or subunits in a monomeric membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7819-7822.	3.3	44
528	Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3959-3964.	3.3	129
530	Structure-Function Analysis of Cysteine-Engineered Entomopathogenic Toxins. , 2000, 145, 101-113.		3
531	Electrophysiological Measurements on Reconstituted Outer Membranes. , 2000, 145, 355-370.		21
532	Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4666-4671.	3.3	397
533	Structure-Dependent Effects of Glucose-Containing Analogs of Platelet Activating Factor (PAF) on Membrane Integrity. Biological Chemistry, 2000, 381, 135-44.	1.2	13
534	Interaction of the Noncovalent Molecular Adapter, β-Cyclodextrin, with the Staphylococcal α-Hemolysin Pore. Biophysical Journal, 2000, 79, 1967-1975.	0.2	102
535	Evidence for association of lipopolysaccharide with Pseudomonas fluorescens strain MFO porin OprF. Research in Microbiology, 2000, 151, 873-876.	1.0	15
536	S-layer-supported lipid membranes. Reviews in Molecular Biotechnology, 2000, 74, 233-254.	2.9	61

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
537	Biochemical and biophysical characterization of in vitro folded outer membrane porin PorA of Neisseria meningitidis. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1464, 284-298.	1.4	55
538	Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1466, 79-86.	1.4	16
539	lsolation and characterization of novel glycoproteins from fish epidermal mucus: correlation between their pore-forming properties and their antibacterial activities. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1467, 271-280.	1.4	79
540	Flammutoxin, a cytolysin from the edible mushroom Flammulina velutipes, forms two different types of voltage-gated channels in lipid bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1467, 431-443.	1.4	17
541	Involvement of the C-terminal part of Pseudomonas fluorescens OprF in the modulation of its pore-forming properties. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1509, 237-244.	1.4	10
542	MOMP (major outer membrane protein) ofCampylobacter jejuni; a versatile pore-forming protein. FEBS Letters, 2000, 469, 93-97.	1.3	53
543	Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene, 2000, 19, 6342-6350.	2.6	182
544	Biochemical and Biophysical Characterization of OmpG: A Monomeric Porinâ€. Biochemistry, 2000, 39, 11845-11854.	1.2	101
545	A Protein Pore with a Single Polymer Chain Tethered within the Lumen. Journal of the American Chemical Society, 2000, 122, 2411-2416.	6.6	100
546	Cyclic Peptides as Molecular Adapters for a Pore-Forming Protein. Journal of the American Chemical Society, 2000, 122, 11757-11766.	6.6	134
547	Transmembrane Peptide NB of Influenza B: A Simulation, Structure, and Conductance Studyâ€. Biochemistry, 2000, 39, 12708-12716.	1.2	36
548	High-Throughput Permeability pH Profile and High-Throughput Alkane/Water logPwith Artificial Membranes. Journal of Medicinal Chemistry, 2001, 44, 923-930.	2.9	482
549	Alamethicinâ^'Leucine Zipper Hybrid Peptide:Â A Prototype for the Design of Artificial Receptors and Ion Channels. Journal of the American Chemical Society, 2001, 123, 12127-12134.	6.6	36
550	Interaction of CAP18-Derived Peptides with Membranes Made from Endotoxins or Phospholipids. Biophysical Journal, 2001, 80, 2935-2945.	0.2	62
551	Quantitative comparison of two types of planar lipid bilayers—folded and painted—with respect to fusion with vesicles. Journal of Proteomics, 2001, 48, 283-291.	2.4	7
552	Blepharismins, produced by the protozoan, Blepharisma japonicum , form ion-permeable channels in planar lipid bilayer membranes. FEBS Letters, 2001, 508, 423-426.	1.3	12
553	Ion channels formed by transcription factors recognize consensus DNA sequences. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1510, 209-218.	1.4	4
554	Lumen geometry of ion channels formed by Vibrio cholerae EL Tor cytolysin elucidated by nonelectrolyte exclusion. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1512, 53-63.	1.4	27

#	Article	IF	CITATIONS
555	Influence of plant terpenoids on the permeability of mitochondria and lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1512, 98-110.	1.4	37
556	Cytoplasmic membrane of a sensitive yeast is a primary target for Cryptococcus humicola mycocidal compound (microcin)1Part of this work was presented and published in Abstracts of the International Symposium â€~Modern Problems of Microbial Biochemistry and Biotechnology', Pushchino, Russia, June 25–30. 2000.1. Biochimica Et Biophysica Acta - Biomembranes. 2001. 1512. 239-250.	1.4	18
557	Evidence for membrane affinity of the C-terminal domain of bovine milk PP3 component. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1513, 217-222.	1.4	27
558	Isolation and characterisation of the major outer membrane protein of Erwinia carotovora. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1515, 12-22.	1.4	6
559	ANTIAPOPTOTIC PROTEINS. Cardiology Clinics, 2001, 19, 57-74.	0.9	66
560	S-layer Ultrafiltration Membranes:Â A New Support for Stabilizing Functionalized Lipid Membranes. Langmuir, 2001, 17, 499-503.	1.6	72
561	A Peptide-Tethered Lipid Bilayer on Mercury as a Biomimetic System. Langmuir, 2001, 17, 6585-6592.	1.6	44
562	Cell Membranes and Model Membranes. , 2001, , 65-79.		0
563	Actin Modulates the Gating of Neurospora crassa VDAC. Journal of Membrane Biology, 2001, 180, 73-81.	1.0	93
564	Amantadine blocks channel activity of the transmembrane segment of the NB protein from influenza B. European Biophysics Journal, 2001, 30, 416-420.	1.2	22
565	Ion channel are sensitive to gravity changes. Microgravity Science and Technology, 2001, 13, 35-38.	0.7	43
566	A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Molecular Microbiology, 2001, 41, 189-198.	1.2	134
567	Characterization and use of crystalline bacterial cell surface layers. Progress in Surface Science, 2001, 68, 231-278.	3.8	143
568	Detecting a tag on a channel opening: blockage of the biotinylated channels by streptavidin. Tetrahedron Letters, 2001, 42, 1563-1565.	0.7	14
569	Alkane derivative-bacteriorhodopsin interaction: proton transport and protein structure. Colloids and Surfaces B: Biointerfaces, 2001, 22, 31-38.	2.5	1
570	Conformation and ion channel properties of a five-helix bundle protein. Journal of Peptide Science, 2001, 7, 41-49.	0.8	7
571	Frequency response of alternating currents through theStaphylococcus aureus ?-hemolysin ion channel. Bioelectromagnetics, 2001, 22, 487-493.	0.9	4
573	A Synthetic Pore-Mediated Transmembrane Transport of Glutamic Acid. Angewandte Chemie - International Edition, 2001, 40, 2503-2506.	7.2	105

#	Article	IF	CITATIONS
574	Deposition of highly resistive lipid bilayer on silicon–silicon dioxide electrode and incorporation of gramicidin studied by ac impedance spectroscopy. Electrochimica Acta, 2001, 47, 791-798.	2.6	92
575	Bioelectrochemistry at metalâ [^] £water interfaces. Journal of Electroanalytical Chemistry, 2001, 504, 1-28.	1.9	152
576	Ion channeling phenomena and Tl-upd induced film dynamics in model biomembranes studied with EQCN and QCI techniques. Journal of Electroanalytical Chemistry, 2001, 509, 90-106.	1.9	25
577	Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. Oncogene, 2001, 20, 7579-7587.	2.6	188
578	Bcl-x Promotes the Open Configuration of the Voltage-dependent Anion Channel and Metabolite Passage through the Outer Mitochondrial Membrane. Journal of Biological Chemistry, 2001, 276, 19414-19419.	1.6	336
579	Water and Ion Permeation of Aquaporin-1 in Planar Lipid Bilayers. Journal of Biological Chemistry, 2001, 276, 31515-31520.	1.6	111
580	Prolonged Residence Time of a Noncovalent Molecular Adapter, β-Cyclodextrin, within the Lumen of Mutant α-Hemolysin Pores. Journal of General Physiology, 2001, 118, 481-494.	0.9	101
582	Identification of a Novel Chloride Channel Expressed in the Endoplasmic Reticulum, Golgi Apparatus, and Nucleus. Journal of Biological Chemistry, 2001, 276, 20413-20418.	1.6	40
583	Highly selective water channel activity measured by voltage clamp: Analysis of planar lipid bilayers reconstituted with purified AqpZ. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9624-9629.	3.3	93
584	Structural Organization and Properties of Membrane Lipids. , 2001, , 43-63.		0
585	Location of a Constriction in the Lumen of a Transmembrane Pore by Targeted Covalent Attachment of Polymer Molecules. Journal of General Physiology, 2001, 117, 239-252.	0.9	79
586	Water Permeability of Asymmetric Planar Lipid Bilayers. Journal of General Physiology, 2001, 118, 333-340.	0.9	75
587	Response by Bylayer Membranes Containing the Labial Palpus of Fly to Stimulative Substances. Molecular Crystals and Liquid Crystals, 2001, 370, 347-352.	0.3	1
588	Microstructured glass chip for ion-channel electrophysiology. Physical Review E, 2001, 64, 040901.	0.8	110
589	Lack of Interaction of Fluoroquinolones with Lipopolysaccharides. Antimicrobial Agents and Chemotherapy, 2002, 46, 1568-1570.	1.4	13
590	Ceramide Channels Increase the Permeability of the Mitochondrial Outer Membrane to Small Proteins. Journal of Biological Chemistry, 2002, 277, 26796-26803.	1.6	317
591	Asymmetric conductivity of engineered porins. Protein Engineering, Design and Selection, 2002, 15, 799-804.	1.0	7
592	Cloning and Porin Activity of the Major Outer Membrane Protein P1 from Coxiella burnetii. Infection and Immunity, 2002, 70, 6741-6750.	1.0	40

#	Article	IF	CITATIONS
593	Pore Formation and Function of Phosphoporin PhoE of Escherichia coli Are Determined by the Core Sugar Moiety of Lipopolysaccharide. Journal of Biological Chemistry, 2002, 277, 34247-34253.	1.6	26
594	Protein/Polymer Hybrid Biomimetic Valves. Materials Research Society Symposia Proceedings, 2002, 735, 451.	0.1	0
595	Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochemical Journal, 2002, 363, 521.	1.7	53
596	Bid induces cytochrome c-impermeable Bax channels in liposomes. Biochemical Journal, 2002, 363, 547.	1.7	44
597	Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochemical Journal, 2002, 363, 521-528.	1.7	77
598	Bid induces cytochrome c-impermeable Bax channels in liposomes. Biochemical Journal, 2002, 363, 547-552.	1.7	68
599	Design and Application of Ion-Channel Sensors Based on Biological and Artificial Receptors. Bulletin of the Chemical Society of Japan, 2002, 75, 187-201.	2.0	52
600	Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochemical Journal, 2002, 368, 611-620.	1.7	164
601	Modulating Ion Channel Properties of Transmembrane Peptide Nanotubes through Heteromeric Supramolecular Assemblies. Journal of the American Chemical Society, 2002, 124, 10004-10005.	6.6	152
602	A Biomimetic Membrane Consisting of a Polyethyleneoxythiol Monolayer Anchored to Mercury with a Phospholipid Bilayer on Top. Journal of Physical Chemistry B, 2002, 106, 10410-10416.	1.2	35
603	Bundles Consisting of Extended Transmembrane Segments of Vpu from HIV-1:Â Computer Simulations and Conductance Measurementsâ€. Biochemistry, 2002, 41, 7359-7365.	1.2	50
604	Ion Channel Formation from a Calix[4]arene Amide That Binds HCl. Journal of the American Chemical Society, 2002, 124, 2267-2278.	6.6	204
605	A Novel Membrane Charge Sensor:Â Sensitive Detection of Surface Charge at Polymer/Lipid Composite Films on Indium Tin Oxide Electrodes. Journal of Physical Chemistry B, 2002, 106, 477-486.	1.2	42
606	The mycocidal, membrane-active complex of Cryptococcus humicola is a new type of cellobiose lipid with detergent features. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1558, 161-170.	1.4	52
607	Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 359-364.	1.4	55
608	Behavior of silkworm yolk protein on phospholipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 375-383.	1.4	3
609	Syringotoxin pore formation and inactivation in human red blood cell and model bilayer lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1567, 143-149.	1.4	9
610	Modifications of Alamethicin Ion Channels by Substitution of Glu-7 for Gln-7. Biophysical Journal, 2002, 83, 219-228.	0.2	24

#	Article	IF	CITATIONS
611	Catalyzed Insertion of Proteins into Phospholipid Membranes: Specificity of the Process. Biophysical Journal, 2002, 83, 2550-2559.	0.2	7
612	Probing Distance and Electrical Potential within a Protein Pore with Tethered DNA. Biophysical Journal, 2002, 83, 3202-3210.	0.2	84
613	Partitioning of Differently Sized Poly(ethylene glycol)s into OmpF Porin. Biophysical Journal, 2002, 82, 160-169.	0.2	116
614	Dynamics of Nucleotides in VDAC Channels: Structure-Specific Noise Generation. Biophysical Journal, 2002, 82, 193-205.	0.2	84
615	Transport of Maltodextrins through Maltoporin: A Single-Channel Study. Biophysical Journal, 2002, 82, 803-812.	0.2	177
616	Syringomycin E Channel: A Lipidic Pore Stabilized by Lipopeptide?. Biophysical Journal, 2002, 82, 1985-1994.	0.2	81
617	Electrophysiologic properties of channels induced by Aβ25–35 in planar lipid bilayers. Peptides, 2002, 23, 1215-1228.	1.2	88
618	VDAC Channels Differentiate between Natural Metabolites and Synthetic Molecules. Journal of Membrane Biology, 2002, 187, 147-156.	1.0	62
619	The Phytotoxic Lipodepsipeptide Syringopeptin 25A from Pseudomonas syringae pv syringae Forms Ion Channels in Sugar Beet Vacuoles. Journal of Membrane Biology, 2002, 188, 237-248.	1.0	30
620	Detection of protein–Ligand interaction on the membranes using C-Terminus biotin-Tagged alamethicin. Bioorganic and Medicinal Chemistry, 2002, 10, 2635-2639.	1.4	18
621	Photocurrent of purple membrane adsorbed onto a thin polymer film: action characteristics of the local anesthetics. Colloids and Surfaces B: Biointerfaces, 2002, 23, 375-382.	2.5	7
622	Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal Î ³ -haemolysins in lipid membranes. Molecular Microbiology, 2002, 44, 1251-1267.	1.2	33
623	Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-XL. Oncogene, 2002, 21, 1963-1977.	2.6	87
624	The cytotoxic domain of colicin E9 is a channel-forming endonuclease. Nature Structural Biology, 2002, 9, 476-484.	9.7	52
625	Single channel recordings of α-hemolysin reconstituted in S-layer-supported lipid bilayers. Bioelectrochemistry, 2002, 55, 5-7.	2.4	44
626	Origin of membrane dipole potential: Contribution of the phospholipid fatty acid chains. Chemistry and Physics of Lipids, 2002, 117, 19-27.	1.5	95
627	Ion Channels and Lipid Bilayer Membranes Under High Potentials Using Microfabricated Apertures. Biomedical Microdevices, 2002, 4, 231-236.	1.4	71
628	Subunit composition of a bicomponent toxin: Staphylococcal leukocidin forms an octameric transmembrane pore. Protein Science, 2002, 11, 894-902.	3.1	122

#	Article	IF	CITATIONS
629	Electrostatic Influence on Ion Transport through the aHL Channel. Journal of Membrane Biology, 2003, 195, 137-146.	1.0	56
630	AlxGa1–xN—A New Material System for Biosensors. Advanced Functional Materials, 2003, 13, 841-846.	7.8	146
631	Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. Biophysical Chemistry, 2003, 104, 591-603.	1.5	88
632	Effective gating charge of ion channels induced by toxin syringomycin E in lipid bilayers. Bioelectrochemistry, 2003, 60, 21-27.	2.4	17
633	Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Molecular Microbiology, 2003, 49, 1031-1041.	1.2	72
634	Channel properties of template assembled alamethicin tetramers. Journal of Peptide Science, 2003, 9, 776-783.	0.8	17
635	A single-channel sensor based on gramicidin controlled by molecular recognition at bilayer lipid membranes containing receptor. Biosensors and Bioelectronics, 2003, 18, 973-983.	5.3	44
636	Oncorhyncin III: a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochemical Journal, 2003, 373, 621-628.	1.7	71
637	Synthesis and Characterization of Amphiphilic Biomimetic Assemblies at Electrochemically Active Surfaces. Langmuir, 2003, 19, 3875-3882.	1.6	21
638	Folding of a Monomeric Porin, OmpG, in Detergent Solutionâ€. Biochemistry, 2003, 42, 9453-9465.	1.2	76
639	Interaction of Amoebapores and NK-Lysin with Symmetric Phospholipid and Asymmetric Lipopolysaccharide/Phospholipid Bilayersâ€. Biochemistry, 2003, 42, 9804-9812.	1.2	33
640	New Method for Generating Tetraether Lipid Membranes on Porous Supports. Langmuir, 2003, 19, 2392-2397.	1.6	48
641	The antibacterial peptide ceratotoxin A displays alamethicin-like behavior in lipid bilayers. Peptides, 2003, 24, 1779-1784.	1.2	18
642	Synthetic copoly(Lys/Phe) and poly(Lys) translocate through lipid bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1616, 147-155.	1.4	20
643	Differential effect of PKA on the Ca2+ release kinetics of the type I and III InsP3 receptors. Biochemical and Biophysical Research Communications, 2003, 302, 121-126.	1.0	20
644	On Translocation through a Membrane Channel via an Internal Binding Site: Kinetics and Voltage Dependence. Biophysical Journal, 2003, 84, 2990-2998.	0.2	73
645	Partitioning of Individual Flexible Polymers into a Nanoscopic Protein Pore. Biophysical Journal, 2003, 85, 897-910.	0.2	112
646	Enlargement and Contracture of C2-Ceramide Channels. Biophysical Journal, 2003, 85, 1560-1575.	0.2	87

-			_	
C 17		ON	REPOR	Τ.
	IAL		REPOR	

#	Article	IF	CITATIONS
647	Probing Conformational Changes of Gramicidin Ion Channels by Single-Molecule Patch-Clamp Fluorescence Microscopy. Biophysical Journal, 2003, 85, 1826-1838.	0.2	114
648	Microfabricated Teflon Membranes for Low-Noise Recordings of Ion Channels in Planar Lipid Bilayers. Biophysical Journal, 2003, 85, 2684-2695.	0.2	225
649	Residue Ionization and Ion Transport through OmpF Channels. Biophysical Journal, 2003, 85, 3718-3729.	0.2	146
650	New Cationic Lipids Form Channel-Like Pores in Phospholipid Bilayers. Biophysical Journal, 2003, 84, 1750-1755.	0.2	11
651	Puroindolines Form Ion Channels in Biological Membranes. Biophysical Journal, 2003, 84, 2416-2426.	0.2	46
652	Boundary potentials of bilayer lipid membranes: methods and interpretations. Membrane Science and Technology, 2003, 7, 109-141.	0.5	19
653	Ion Carriers and Channels in Metal-Supported Lipid Bilayers as Probes of Transmembrane and Dipole Potentials. Langmuir, 2003, 19, 3386-3392.	1.6	41
654	Probing the Orientation of Reconstituted Maltoporin Channels at the Single-protein Level. Journal of Biological Chemistry, 2003, 278, 35542-35551.	1.6	59
655	The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6104-6108.	3.3	341
656	Review: Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. Journal of Endotoxin Research, 2003, 9, 67-84.	2.5	7
657	Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. Journal of Endotoxin Research, 2003, 9, 67-84.	2.5	34
658	Hybrid protein/polymer biomimetic membranes. , 0, , .		2
659	Gravitational impact on ion channels incorporated into planar lipid bilayers. Membrane Science and Technology, 2003, 7, 669-697.	0.5	16
660	Solute uptake through general porins. Frontiers in Bioscience - Landmark, 2003, 8, d1055-1071.	3.0	103
663	PB1-F2, an Influenza A Virus-Encoded Proapoptotic Mitochondrial Protein, Creates Variably Sized Pores in Planar Lipid Membranes. Journal of Virology, 2004, 78, 6304-6312.	1.5	121
664	Teflonâ,"¢-coated silicon apertures for supported lipid bilayer membranes. Applied Physics Letters, 2004, 85, 3307-3309.	1.5	34
666	Conductive polymer "molecular wires" increase conductance across artificial cell membranes. , 0, , .		1
667	Bid, but Not Bax, Regulates VDAC Channels. Journal of Biological Chemistry, 2004, 279, 13575-13583.	1.6	174

#	Article	IF	CITATIONS
668	Ion Channel Sensor on a Silicon Support. Materials Research Society Symposia Proceedings, 2004, 820, 158.	0.1	2
669	Omp35, a New Enterobacter aerogenes Porin Involved in Selective Susceptibility to Cephalosporins. Antimicrobial Agents and Chemotherapy, 2004, 48, 2153-2158.	1.4	33
670	Pore Size Dependence on Growth Temperature Is a Common Characteristic of the Major Outer Membrane Protein OprF in Psychrotrophic and Mesophilic Pseudomonas Species. Applied and Environmental Microbiology, 2004, 70, 6665-6669.	1.4	37
671	Poliovirus binding to its receptor in lipid bilayers results in particle-specific, temperature-sensitive channels. Journal of General Virology, 2004, 85, 1581-1589.	1.3	36
672	Biochemical enrichment and biophysical characterization of a taste receptor for L-arginine from the catfish, Ictalurus puntatus. BMC Neuroscience, 2004, 5, 25.	0.8	15
673	Helical kink and channel behaviour: a comparative study with the peptaibols alamethicin, trichotoxin and antiamoebin. European Biophysics Journal, 2004, 33, 169-74.	1.2	34
674	Stochastic Detection of Monovalent and Bivalent Protein–Ligand Interactions. Angewandte Chemie - International Edition, 2004, 43, 842-846.	7.2	105
675	Single DNA Rotaxanes of a Transmembrane Pore Protein. Angewandte Chemie - International Edition, 2004, 43, 3063-3067.	7.2	78
678	Tethered bilayer lipid membranes self-assembled on mercury electrodes. Bioelectrochemistry, 2004, 63, 161-167.	2.4	35
679	Channel Activity of a Viral Transmembrane Peptide in Micro-BLMs:Â Vpu1-32from HIV-1. Journal of the American Chemical Society, 2004, 126, 16267-16274.	6.6	91
680	Artificial Ion Channel Formed by Cucurbit[n]uril Derivatives with a Carbonyl Group Fringed Portal Reminiscent of the Selectivity Filter of K+Channels. Journal of the American Chemical Society, 2004, 126, 15944-15945.	6.6	169
681	Hybrid Protein–Polymer Biomimetic Membranes. IEEE Nanotechnology Magazine, 2004, 3, 256-263.	1.1	32
682	Giant Lipid Vesicles Impaled with Glass Microelectrodes:Â GigaOhm Seal by Membrane Spreading. Langmuir, 2004, 20, 11175-11182.	1.6	13
683	Electrophysiological Approaches to the Study of Protein Translocation in Mitochondria. International Review of Cytology, 2004, 238, 227-274.	6.2	27
684	Integrated sensor design using ion channels inserted into lipid bilayer membranes. , 0, , .		0
685	Ionophoric Activity of Pluronic Block Copolymersâ€. Biochemistry, 2004, 43, 3696-3703.	1.2	50
686	Methods to study CFTR protein in vitro. Journal of Cystic Fibrosis, 2004, 3, 79-83.	0.3	6
688	Salting Out the Ionic Selectivity of a Wide Channel: The Asymmetry of OmpF. Biophysical Journal, 2004, 87, 943-957.	0.2	155

#	Article	IF	CITATIONS
689	Conductance Studies on Trichotoxin_A50E and Implications for Channel Structure. Biophysical Journal, 2004, 87, 1705-1710.	0.2	25
690	Field-Dependent Effect of Crown Ether (18-Crown-6) on Ionic Conductance of α-Hemolysin Channels. Biophysical Journal, 2004, 87, 3162-3171.	0.2	39
691	Does VDAC insert into membranes in random orientation?. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1661, 68-77.	1.4	10
692	Antibacterial activity and pore-forming properties of ceratotoxins: a mechanism of action based on the barrel stave model. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1667, 148-156.	1.4	31
693	The Physiological Properties of a Novel Family of VDAC-Like Proteins from Drosophila melanogaster. Biophysical Journal, 2004, 86, 152-162.	0.2	39
694	Inner Field Compensation as a Tool for the Characterization of Asymmetric Membranes and Peptide-Membrane Interactions. Biophysical Journal, 2004, 86, 913-922.	0.2	23
695	Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Developmental and Comparative Immunology, 2004, 28, 127-138.	1.0	146
697	Functional refolding of the Campylobacter jejuni MOMP (major outer membrane protein) porin by GroEL from the same species. Biochemical Journal, 2004, 378, 851-856.	1.7	16
698	Single-Channel Recordings of Gramicidin at Agarose-Supported Bilayer Lipid Membranes Formed by the Tip-Dip and Painting Methods. Analytical Sciences, 2004, 20, 1217-1221.	0.8	25
699	Ion Permeability Induced in Planar Lipid Bilayer Membranes by Quinone Pigments Derived from Eukaryotic Microorganisms. Behavior Research Methods, 2005, , 121-157.	2.3	Ο
700	Reconstitution of General Diffusion Pores from Bacterial Outer Membranes. , 2005, , 99-117.		0
701	An automated method for generating analogic signals that embody the Markov kinetics of model ionic channels. Journal of Neuroscience Methods, 2005, 147, 8-14.	1.3	2
702	Incorporation of channel-forming peptides in a Hg-supported lipid bilayer. Journal of Electroanalytical Chemistry, 2005, 576, 121-128.	1.9	28
703	Local anesthetics facilitate ion transport across lipid planar bilayer membranes under an electric field: Dependence on type of lipid bilayer. Colloids and Surfaces B: Biointerfaces, 2005, 42, 197-203.	2.5	7
704	Design, synthesis and characterization of monomolecular interfacial layers. Bioelectrochemistry, 2005, 66, 9-21.	2.4	2
705	Biomimetic Design of Nanopatterned Membranes. Nanobiotechnology, 2005, 1, 153-164.	1.2	21
706	Protein electrostriction: a possibility of elastic deformation of the α-hemolysin channel by the applied field. European Biophysics Journal, 2005, 34, 997-1006.	1.2	17
707	Dynamical behavior of lipid bilayer membranes for taste substances under random membrane-potential fluctuations. Biophysical Chemistry, 2005, 118, 1-6.	1.5	1

#	Article	IF	CITATIONS
708	Sphingosine Forms Channels in Membranes That Differ Greatly from Those Formed by Ceramide. Journal of Bioenergetics and Biomembranes, 2005, 37, 227-236.	1.0	64
709	Sphingolipids Influence the Sensitivity of Lipid Bilayers to Fungicide, Syringomycin E. Journal of Bioenergetics and Biomembranes, 2005, 37, 339-399.	1.0	22
710	Nanopores: maltoporin channel as a sensor for maltodextrin and lambda-phage. Journal of Nanobiotechnology, 2005, 3, 3.	4.2	20
711	Functional Reconstitution of Specific Porins. , 2005, , 183-212.		1
712	Lipid-mediated resistance of Gram-negative bacteria against various pore-forming antimicrobial peptides. Journal of Endotoxin Research, 2005, 11, 167-173.	2.5	33
713	Investigating the Function of Ion Channels in Tethered Lipid Membranes by Impedance Spectroscopy. MRS Bulletin, 2005, 30, 207-210.	1.7	24
714	Nanotechnology With S-Layer Proteins. , 2005, 300, 101-124.		31
715	Integrated Platform for Ion Channel Sensing. , 0, , .		1
716	Electromechanical effects on tether formation from lipid membranes: A theoretical analysis. Physical Review E, 2005, 72, 041926.	0.8	16
717	Purified Bacillus anthracis Lethal Toxin Complex Formed in Vitro and during Infection Exhibits Functional and Biological Activity. Journal of Biological Chemistry, 2005, 280, 10834-10839.	1.6	54
718	Design and Application of Planar Bilayer Lipid Membranes Containing Biological Ion Channels for Chemical Sensing. Behavior Research Methods, 2005, , 221-245.	2.3	10
719	Rapid fabrication of polymer microfluidic systems for the production of artificial lipid bilayers. Journal of Micromechanics and Microengineering, 2005, 15, S139-S144.	1.5	36
720	A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinctin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6309-6314.	3.3	68
721	Bax Channel Inhibitors Prevent Mitochondrion-mediated Apoptosis and Protect Neurons in a Model of Global Brain Ischemia. Journal of Biological Chemistry, 2005, 280, 42960-42970.	1.6	146
722	Anthrax Biosensor, Protective Antigen Ion Channel Asymmetric Blockade. Journal of Biological Chemistry, 2005, 280, 34056-34062.	1.6	75
723	2D-Protein Crystals (S-Layers) as Support for Lipid Membranes. Behavior Research Methods, 2005, 1, 247-293.	2.3	14
724	Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2005, 49, 4876-4883.	1.4	111
726	Stochastic sensors. Journal of Materials Chemistry, 2005, 15, 831.	6.7	66

#	Article	IF	CITATIONS
727	Functional Reconstitution of Protein Ion Channels into Planar Polymerizable Phospholipid Membranes. Nano Letters, 2005, 5, 1181-1185.	4.5	45
728	Direct Introduction of Single Protein Channels and Pores into Lipid Bilayers. Journal of the American Chemical Society, 2005, 127, 6502-6503.	6.6	56
729	The Internal Cavity of the Staphylococcal α-Hemolysin Pore Accommodates â^1⁄4175 Exogenous Amino Acid Residues. Biochemistry, 2005, 44, 8919-8929.	1.2	18
730	Potassium Ion Transport by Valinomycin across a Hg-Supported Lipid Bilayer. Journal of the American Chemical Society, 2005, 127, 13316-13323.	6.6	65
731	Voltage-dependent synchronization of gating of syringomycin E ion channels. FEBS Letters, 2005, 579, 5675-5679.	1.3	13
732	Proapoptotic Triterpene Electrophiles (Avicins) Form Channels in Membranes: Cholesterol Dependence. Biophysical Journal, 2005, 88, 2577-2584.	0.2	45
733	Interactions of Peptides with a Protein Pore. Biophysical Journal, 2005, 89, 1030-1045.	0.2	248
734	Conductance and Ion Selectivity of a Mesoscopic Protein Nanopore Probed with Cysteine Scanning Mutagenesis. Biophysical Journal, 2005, 89, 3059-3070.	0.2	50
735	New Insights into the Mechanism of Permeation through Large Channels. Biophysical Journal, 2005, 89, 3950-3959.	0.2	46
736	The Control of Membrane Properties by Synthetic Polymers. Behavior Research Methods, 2005, 2, 121-166.	2.3	6
737	S-Layers. , 2005, , 77-92.		4
738	Voltage-Gated Sodium and Calcium Channels in Nerve, Muscle, and Heart. IEEE Transactions on Nanobioscience, 2005, 4, 58-69.	2.2	19
740	Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis. Analytical Chemistry, 2006, 78, 8169-8174.	3.2	443
741	Interaction of Zwitterionic Penicillins with the OmpF Channel Facilitates Their Translocation. Biophysical Journal, 2006, 90, 1617-1627.	0.2	146
742	Channel Activity of OmpF Monitored in Nano-BLMs. Biophysical Journal, 2006, 91, 2163-2171.	0.2	88
743	Sphingosine, a Product of Ceramide Hydrolysis, Influences the Formation of Ceramide Channels. Biophysical Journal, 2006, 91, 1749-1756.	0.2	38
744	A pH-Tunable Nanofluidic Diode:Â Electrochemical Rectification in a Reconstituted Single Ion Channel. Journal of Physical Chemistry B, 2006, 110, 21205-21209.	1.2	117
745	Lipid-Specific Membrane Activity of Human β-Defensin-3. Biochemistry, 2006, 45, 5663-5670.	1.2	37

#	Article	IF	CITATIONS
746	Effects of Synthetic Amphiphilic α-Helical Peptides on the Electrochemical and Structural Properties of Supported Hybrid Bilayers on Gold. Langmuir, 2006, 22, 1919-1927.	1.6	8
747	Electrochemical Investigation of Melittin Reconstituted into a Mercury-Supported Lipid Bilayer. Langmuir, 2006, 22, 6644-6650.	1.6	37
748	Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1846-1851.	1.4	53
749	Translocation of positively charged copoly(Lys/Tyr) across phospholipid membranes. Biochemical and Biophysical Research Communications, 2006, 339, 761-768.	1.0	8
750	Functional characterization of Pseudomonas fluorescens OprE and OprQ membrane proteins. Biochemical and Biophysical Research Communications, 2006, 346, 1048-1052.	1.0	14
751	Ion Channel Conductance Measurements on a Silicon-Based Platform. Journal of Physics: Conference Series, 2006, 38, 21-24.	0.3	3
752	The mode of action of the lantibiotic lacticin 3147 - a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Molecular Microbiology, 2006, 61, 285-296.	1.2	202
753	pH-dependent pore-forming activity of OmpATb from Mycobacterium tuberculosis and characterization of the channel by peptidic dissection. Molecular Microbiology, 2006, 61, 826-837.	1.2	44
754	Investigation of interaction of Leu-enkephalin with lipid membranes. Colloids and Surfaces B: Biointerfaces, 2006, 48, 148-158.	2.5	16
755	β-Cyclodextrin derivatives that inhibit anthrax lethal toxin. Bioorganic and Medicinal Chemistry, 2006, 14, 33-40.	1.4	43
756	Automated Formation of Lipid-Bilayer Membranes in a Microfluidic Device. Nano Letters, 2006, 6, 1961-1965.	4.5	187
757	Effect of acidity on the formation of solvent-free lipid bilayers. Russian Journal of Electrochemistry, 2006, 42, 1107-1112.	0.3	3
758	Actin and amphiphilic polymers influence on channel formation by Syringomycin E in lipid bilayers. European Biophysics Journal, 2006, 35, 382-392.	1.2	4
759	Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides. European Biophysics Journal, 2006, 35, 401-409.	1.2	16
760	Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports, 2006, 61, 429-444.	3.8	969
761	Biomolecular engineering at interfaces. Chemical Engineering Science, 2006, 61, 989-1003.	1.9	52
762	Membrane electroporation theories: a review. Medical and Biological Engineering and Computing, 2006, 44, 5-14.	1.6	315
763	Temperature-Responsive Protein Pores. Journal of the American Chemical Society, 2006, 128, 15332-15340.	6.6	118

#	Article	IF	Citations
764	Epithelial Sodium Channel in Planar Lipid Bilayers. , 2006, 337, 89-99.		3
765	Search for Cyclodextrin-Based Inhibitors of Anthrax Toxins: Synthesis, Structural Features, and Relative Activities. Antimicrobial Agents and Chemotherapy, 2006, 50, 3740-3753.	1.4	61
766	New Approaches to Lipid Bilayer Fabrication: Microfluidic Solvent Extraction and Hydrogel Encapsulation. Advances in Science and Technology, 2006, 53, 22.	0.2	2
767	Mobility of a One-Dimensional Confined File of Water Molecules as a Function of File Length. Physical Review Letters, 2006, 96, 148101.	2.9	46
768	Single molecule measurements of channel proteins incorporated into biomimetic polymer membranes. Nanotechnology, 2006, 17, 3710-3717.	1.3	61
769	Scanning electrochemical microscopy: principles and applications to biophysical systems. Physiological Measurement, 2006, 27, R63-R108.	1.2	112
770	Trends in the development and application of functional biomembrane surfaces. Biotechnology Annual Review, 2006, 12, 85-136.	2.1	4
771	Effect of block architecture on the ability of polyalkylene oxides to overcome multidrug resistance of tumor cells. Journal of Drug Delivery Science and Technology, 2006, 16, 259-265.	1.4	3
772	Study of supported bilayer lipid membranes for use in chemo-electric energy conversion via active proton transport. , 2007, , .		1
773	Measurement of VDAC Permeability in Intact Mitochondria and in Reconstituted Systems. Methods in Cell Biology, 2007, 80, 241-260.	0.5	23
774	Towards a Mechanism of Function of the Viral Ion Channel Vpu from HIV-1. Journal of Biomolecular Structure and Dynamics, 2007, 24, 589-596.	2.0	26
775	The N-Terminal Domain of OmpATb Is Required for Membrane Translocation and Pore-Forming Activity in Mycobacteria. Journal of Bacteriology, 2007, 189, 6351-6358.	1.0	26
776	Phosphorothioate oligonucleotides reduce mitochondrial outer membrane permeability to ADP. American Journal of Physiology - Cell Physiology, 2007, 292, C1388-C1397.	2.1	24
777	VDAC closure increases calcium ion flux. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2510-2515.	1.4	229
778	Pore formation by Vibrio cholerae cytolysin requires cholesterol in both monolayers of the target membrane. Biochimie, 2007, 89, 271-277.	1.3	16
779	Avicins, a novel plant-derived metabolite lowers energy metabolism in tumor cells by targeting the outer mitochondrial membrane. Mitochondrion, 2007, 7, 234-240.	1.6	54
780	Asymmetry of syringomycin E channel studied by polymer partitioning. FEBS Letters, 2007, 581, 804-808.	1.3	36
781	In vitro synthesis, tetramerization and single channel characterization of virus-encoded potassium channel Kcv. FEBS Letters, 2007, 581, 1027-1034.	1.3	25

ARTICLE IF CITATIONS # Urea denaturation of î±-hemolysin pore inserted in planar lipid bilayer detected by single nanopore 782 1.3 44 recording: Loss of structural asymmetry. FEBS Letters, 2007, 581, 3371-3376. Electrochemistry in and at single biological cells., 2007, , 719-749. Functional Bionetworks from Nanoliter Water Droplets. Journal of the American Chemical Society, 784 6.6 346 2007, 129, 8650-8655. Ion-Channel Reconstitution. Methods in Molecular Biology, 2007, 400, 571-585. Stochastic Sensing on a Modular Chip Containing a Single-Ion Channel. Analytical Chemistry, 2007, 79, 786 3.2 94 2207-2213. Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1. Molecular Membrane Biology, 2007, 24, 282-293. Enhanced Stability and Fluidity in Droplet on Hydrogel Bilayers for Measuring Membrane Protein 788 4.5 74 Diffusion. Nano Letters, 2007, 7, 3875-3878. Designing Nanosensors Based on Charged Derivatives of Gramicidin A. Journal of the American 6.6 74 Chemical Society, 2007, 129, 9737-9745. Effect of Agents Modifying the Membrane Dipole Potential on Properties of Syringomycin E Channels. 790 42 1.6 Langmuir, 2007, 23, 6889-6892. A Storable Encapsulated Bilayer Chip Containing a Single Protein Nanopore. Journal of the American 791 6.6 132 Chemical Society, 2007, 129, 4701-4705. Direct Detection of Membrane Channels from Gels Using Water-in-Oil Droplet Bilayers. Journal of the 792 6.6 89 American Chemical Society, 2007, 129, 16042-16047. Structure and Mechanism of Action of the Antimicrobial Peptide Piscidin. Biochemistry, 2007, 46, 793 1.2 135 1771-1778. Voltage-Dependent Anion Channel Transports Calcium Ions through Biomimetic Membranes. Langmuir, 794 1.6 52 2007, 23, 3898-3905. Electrical Behavior of Droplet Interface Bilayer Networks: $\hat{a} \in \infty$ Experimental Analysis and Modeling. Journal of the American Chemical Society, 2007, 129, 11854-11864. 795 6.6 Kinetics of Cryptdin-4 Translocation Coupled with Peptide-Induced Vesicle Leakage. Biochemistry, 2007, 796 1.2 6 46, 11882-11891. Phosphorothioate Oligonucleotides Block the VDAC Channel. Biophysical Journal, 2007, 93, 1184-1191. 797 798 Nanopore-based single-molecule DNA analysis. Nanomedicine, 2007, 2, 459-481. 1.7 119 799 Methods in Membrane Lipids. Methods in Molecular Biology, 2007, , . 0.4

#	Article	IF	CITATIONS
800	Supported Bilayer Lipid Membrane Arrays on Photopatterned Selfâ€Assembled Monolayers. Chemistry - A European Journal, 2007, 13, 7957-7964.	1.7	36
801	Ligand-Induced Extramembrane Conformation Switch Controlling Alamethicin Assembly and the Channel Current. Chemistry and Biodiversity, 2007, 4, 1313-1322.	1.0	13
802	Nanopore Arrays for Stable and Functional Freeâ€Standing Lipid Bilayers. Advanced Materials, 2007, 19, 4466-4470.	11.1	111
803	Inhibition of S. aureus α-hemolysin and B. anthracis lethal toxin by β-cyclodextrin derivatives. Bioorganic and Medicinal Chemistry, 2007, 15, 5424-5431.	1.4	81
804	pH modulation of transport properties of alamethicin oligomers inserted in zwitterionic-based artificial lipid membranes. Biophysical Chemistry, 2007, 130, 139-147.	1.5	18
805	Determination of the lipid bilayer breakdown voltage by means of linear rising signal. Bioelectrochemistry, 2007, 70, 23-27.	2.4	49
806	Formation and stability of a suspended biomimetic lipid bilayer on silicon submicrometer-sized pores. Journal of Colloid and Interface Science, 2007, 308, 337-343.	5.0	58
807	Calixarene-based photoresponsive ion carrier for the control of Na+ flux across a lipid bilayer membrane by visible light. Materials Letters, 2007, 61, 805-808.	1.3	14
808	Laser ablation of micropores for formation of artificial planar lipid bilayers. Biomedical Microdevices, 2007, 9, 863-868.	1.4	23
809	Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip. Biosensors and Bioelectronics, 2007, 22, 1111-1115.	5.3	60
810	Integrated electrodes on a silicon based ion channel measurement platform. Biosensors and Bioelectronics, 2007, 23, 183-190.	5.3	30
811	Biotinylated MCM-41 channels as a sensing element in planar bilayer lipid membranes. Sensors and Actuators B: Chemical, 2007, 126, 632-640.	4.0	22
812	Alkylated glass partition allows formation of solvent-free lipid bilayer by Montal–Mueller technique. Bioelectrochemistry, 2008, 74, 22-25.	2.4	28
813	Miniaturized planar lipid bilayer: increased stability, low electric noise and fast fluid perfusion. Analytical and Bioanalytical Chemistry, 2008, 390, 841-846.	1.9	28
814	Single-Molecule Investigation of the Influence Played by Lipid Rafts on Ion Transport and Dynamic Features of the Pore-Forming Alamethicin Oligomer. Journal of Membrane Biology, 2008, 224, 45-54.	1.0	4
815	Transport at the nanoscale: temperature dependence of ion conductance. European Biophysics Journal, 2008, 38, 121-125.	1.2	60
816	Specific Permeability of Chiral Amino Acids through Functional Molecular Membranes Composed of an Amphiphilic Graft Peptide. ChemPhysChem, 2008, 9, 1110-1113.	1.0	4
817	The design of molecular sensing interfaces with lipid-bilayer assemblies. TrAC - Trends in Analytical Chemistry, 2008, 27, 512-520.	5.8	61

#	Article	IF	CITATIONS
818	The effect of dipole potential of lipid bilayers on the properties of ion channels formed by cyclic lipodepsipeptide syringomycin E. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2008, 2, 259-270.	0.3	8
819	Rectification Properties and pH-Dependent Selectivity of Meningococcal Class 1 Porin. Biophysical Journal, 2008, 94, 1194-1202.	0.2	12
820	Sizing the Bacillus anthracis PA63 Channel with Nonelectrolyte Poly(Ethylene Clycols). Biophysical Journal, 2008, 95, 1157-1164.	0.2	41
821	Nano for bio: Nanopore arrays for stable and functional lipid bilayer membranes (Mini Review). Biointerphases, 2008, 3, FA74-FA79.	0.6	23
822	Influence of Amphiphilic Block Copolymer Induced Changes in Membrane Ion Conductance on the Reversal of Multidrug Resistance. Journal of Medicinal Chemistry, 2008, 51, 4253-4259.	2.9	14
823	Encapsulating a Single G-Quadruplex Aptamer in a Protein Nanocavity. Journal of Physical Chemistry B, 2008, 112, 8354-8360.	1.2	53
824	Flip-flop of hydroxy fatty acids across the membrane as monitored by proton-sensitive microelectrodes. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1292-1297.	1.4	22
825	Cholesterol's decoupling effect on membrane partitioning and permeability revisited: Is there anything beyond Fick's law of diffusion?. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2154-2156.	1.4	15
826	Effects of novel antituberculosis agents on OmpF channel activity. Biochemical and Biophysical Research Communications, 2008, 376, 174-179.	1.0	3
827	Structure and mode of action of the antimicrobial peptide arenicin. Biochemical Journal, 2008, 410, 113-122.	1.7	92
828	Long-term storable and shippable lipid bilayer membrane platform. Lab on A Chip, 2008, 8, 1742.	3.1	31
829	Electroformation of solvent-free lipid membranes over microaperture array. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	7
830	Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip. Lab on A Chip, 2008, 8, 602.	3.1	43
831	Electrochemical Sensing of Membrane Potential and Enzyme Function Using Gallium Arsenide Electrodes Functionalized with Supported Membranes. Journal of Physical Chemistry B, 2008, 112, 5736-5741.	1.2	18
832	Droplet interface bilayers. Molecular BioSystems, 2008, 4, 1191.	2.9	411
833	X-ray Structure Analysis of Free-Standing Lipid Membranes Facilitated by Micromachined Apertures. Langmuir, 2008, 24, 4952-4958.	1.6	17
834	Asymmetric Droplet Interface Bilayers. Journal of the American Chemical Society, 2008, 130, 5878-5879.	6.6	195
835	Polyelectrolyte Entry and Transport through an Asymmetric α-Hemolysin Channel. Journal of Physical Chemistry B, 2008, 112, 14687-14691.	1.2	36

#	Article	IF	Citations
836	Altering the Activity of Syringomycin E via the Membrane Dipole Potential. Langmuir, 2008, 24, 2987-2991.	1.6	23
837	Using Ion Channel-Forming Peptides to Quantify Proteinâ^'Ligand Interactions. Journal of the American Chemical Society, 2008, 130, 1453-1465.	6.6	52
838	Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes. Behavior Research Methods, 2008, , 165-226.	2.3	44
839	Facilitated Permeation of Antibiotics across Membrane Channels â^' Interaction of the Quinolone Moxifloxacin with the OmpF Channel. Journal of the American Chemical Society, 2008, 130, 13301-13309.	6.6	57
840	Stochastic sensing of biomolecules in a nanopore sensor array. Nanotechnology, 2008, 19, 505504.	1.3	28
841	Anti-apoptotic Bcl-2 Family Proteins Disassemble Ceramide Channels. Journal of Biological Chemistry, 2008, 283, 6622-6630.	1.6	110
842	Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 124-128.	3.3	260
843	Formation of nanopores in suspended lipid bilayers using quantum dots. Journal of Physics: Conference Series, 2008, 109, 012022.	0.3	11
844	First evidence of the pore-forming properties of a keratin from skin mucus of rainbow trout (<i>Oncorhynchus mykiss</i> , formerly <i>Salmo gairdneri</i>). Biochemical Journal, 2008, 411, 33-40.	1.7	38
845	Membrane pore formation by pentraxin proteins from <i>Limulus</i> , the American horseshoe crab. Biochemical Journal, 2008, 413, 305-313.	1.7	13
846	Biophysical Characterization of In- and Efflux in Gram-Negative Bacteria. Current Drug Targets, 2008, 9, 789-796.	1.0	16
847	Characterization of porous substrates for biochemical energy conversion devices. , 2008, , .		2
848	Automatable lipid bilayer formation for ion channel studies. , 2008, , .		0
849	Self-Healing Bilayer Lipid Membranes Formed Over Synthetic Substrates. , 2008, , .		0
850	Tools for Studying Membrane Components: Detergents and Model Systems. , 0, , 42-67.		0
852	Single Molecule Fluorescence in Membrane Biology. , 2009, , 253-288.		0
853	A Smart Nanopore for Bio-Detection. ECS Transactions, 2009, 16, 1-8.	0.3	1
854	Ceramide channel formed in open well thermal plastic chips. , 2009, , .		0

#	Article	IF	CITATIONS
855	Identification of Novel in Vivo Phosphorylation Sites of the Human Proapoptotic Protein BAD. Journal of Biological Chemistry, 2009, 284, 28004-28020.	1.6	48
856	Tailored Current—Voltage Relationships of Droplet-Interface Bilayers Using Biomolecules and External Feedback Control. Journal of Intelligent Material Systems and Structures, 2009, 20, 1233-1247.	1.4	29
857	Automated sampling and data processing derived from biomimetic membranes. Bioinspiration and Biomimetics, 2009, 4, 044001.	1.5	6
858	Development of an automation technique for the establishment of functional lipid bilayer arrays. Journal of Micromechanics and Microengineering, 2009, 19, 025014.	1.5	46
859	Chapter 2 Viral Channel-Forming Proteins. International Review of Cell and Molecular Biology, 2009, 275, 35-63.	1.6	25
860	A membrane interferometer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5627-5632.	3.3	27
861	Biological Nanopores for Singleâ€Molecule Biophysics. ChemBioChem, 2010, 11, 25-34.	1.3	79
862	The Dynamic Side of the Hofmeister Effect: A Singleâ€Molecule Nanopore Study of Specific Complex Formation. ChemPhysChem, 2009, 10, 1445-1449.	1.0	29
863	Coupled Modulated Bilayers: A Phenomenological Model. ChemPhysChem, 2009, 10, 2839-2846.	1.0	30
864	Detection of nerve agent hydrolytes in an engineered nanopore. Sensors and Actuators B: Chemical, 2009, 139, 440-446.	4.0	36
865	Amyloid-β-Induced Ion Flux in Artificial Lipid Bilayers and Neuronal Cells: Resolving a Controversy. Neurotoxicity Research, 2009, 16, 1-13.	1.3	99
866	Bilayer lipid membranes from falling droplets. Analytical and Bioanalytical Chemistry, 2009, 393, 1601-1605.	1.9	25
867	Biomimetic membranes for sensor and separation applications. Analytical and Bioanalytical Chemistry, 2009, 395, 697-718.	1.9	150
868	The Outer Membrane Protein VhOmp of Vibrio harveyi: Pore-Forming Properties in Black Lipid Membranes. Journal of Membrane Biology, 2009, 230, 101-111.	1.0	10
869	Antibiotic translocation through membrane channels: temperature-dependent ion current fluctuation for catching the fast events. European Biophysics Journal, 2009, 38, 1141-1145.	1.2	50
870	Electromagnetic field (EMF) effects on channel activity of nanopore OmpF protein. European Biophysics Journal, 2009, 38, 1069-1078.	1.2	7
871	Directional ion selectivity in a biological nanopore with bipolar structure. Journal of Membrane Science, 2009, 331, 137-142.	4.1	38
872	Ion channel and toxin measurement using a high throughput lipid membrane platform. Biosensors and Bioelectronics, 2009, 24, 1806-1810.	5.3	66

#	Article	IF	CITATIONS
873	Bilayer lipid membrane (BLM) based ion selective electrodes at the meso-, micro-, and nano-scales. Biosensors and Bioelectronics, 2009, 24, 1843-1849.	5.3	37
874	Rapid fabrication of Teflon micropores for artificial lipid bilayer formation. Biosensors and Bioelectronics, 2009, 25, 931-934.	5.3	18
875	Gallium nitride electrodes for membrane-based electrochemical biosensors. European Physical Journal E, 2009, 30, 233-8.	0.7	14
876	Properties of Bacillus cereus hemolysin II: A heptameric transmembrane pore. Protein Science, 2009, 11, 1813-1824.	3.1	62
877	Conductance of phytotoxin channels in the presence of large organic ions. Cell and Tissue Biology, 2009, 3, 470-476.	0.2	0
878	Nonspecific porins of the outer membrane of Gram-negative bacteria: Structure and functions. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2009, 3, 3-15.	0.3	10
879	The effect of phloretin on sphingolipid-containing membranes modified by syringomycin E. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2009, 3, 281-285.	0.3	2
880	Gramicidin Pores Report the Activity of Membrane-Active Enzymes. Journal of the American Chemical Society, 2009, 131, 16119-16126.	6.6	43
881	Slowing DNA Translocation through Nanopores Using a Solution Containing Organic Salts. Journal of Physical Chemistry B, 2009, 113, 13332-13336.	1.2	71
882	Study of Peptide Transport through Engineered Protein Channels. Journal of Physical Chemistry B, 2009, 113, 3572-3578.	1.2	72
883	Nanopore Stochastic Detection of a Liquid Explosive Component and Sensitizers Using Boromycin and an Ionic Liquid Supporting Electrolyte. Analytical Chemistry, 2009, 81, 460-464.	3.2	53
884	Polyelectrolyte and unfolded protein pore entrance depends on the pore geometry. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1377-1386.	1.4	27
885	Composite S-layer lipid structures. Journal of Structural Biology, 2009, 168, 207-216.	1.3	47
886	Reactive derivatives of gramicidin enable light- and ion-modulated ion channels. , 2009, , .		3
887	Diffusion, Exclusion, and Specific Binding in a Large Channel: A Study of OmpF Selectivity Inversion. Biophysical Journal, 2009, 96, 56-66.	0.2	77
888	Structure of Functional Staphylococcus aureus α-Hemolysin Channels in Tethered Bilayer Lipid Membranes. Biophysical Journal, 2009, 96, 1547-1553.	0.2	138
889	Coupled Diffusion of Peripherally Bound Peptides along the Outer and Inner Membrane Leaflets. Biophysical Journal, 2009, 96, 2689-2695.	0.2	38
890	The Temperature Dependence of Lipid Membrane Permeability, its Quantized Nature, and the Influence of Anesthetics. Biophysical Journal, 2009, 96, 4581-4591.	0.2	187

#	Article	IF	CITATIONS
891	Understanding Ion Conductance on a Molecular Level: An All-Atom Modeling of the Bacterial Porin OmpF. Biophysical Journal, 2009, 97, 1898-1906.	0.2	88
892	Interaction of Heparins and Dextran Sulfates with a Mesoscopic Protein Nanopore. Biophysical Journal, 2009, 97, 2894-2903.	0.2	13
893	Imaging and Patterning of Pore-Suspending Membranes with Scanning Ion Conductance Microscopy. Langmuir, 2009, 25, 3022-3028.	1.6	57
894	Structural and Functional Analysis of the HCV p7 Protein. Methods in Molecular Biology, 2009, 510, 125-143.	0.4	6
895	The thermodynamics of lipid ion channel formation in the absence and presence of anesthetics. BLM experiments and simulations. Soft Matter, 2009, 5, 3319.	1.2	31
896	A System for the Determination of Planar Lipid Bilayer Breakdown Voltage and Its Applications. IEEE Transactions on Nanobioscience, 2009, 8, 132-138.	2.2	22
897	Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes. Biological Chemistry, 2009, 390, 337-349.	1.2	32
898	Handbook of Single-Molecule Biophysics. , 2009, , .		70
899	Nanopore analytics: sensing of single molecules. Chemical Society Reviews, 2009, 38, 2360.	18.7	1,035
900	Detection Of Nerve Agent Hydrolytes In An Engineered Nanopore. Biophysical Journal, 2009, 96, 646a.	0.2	2
900 901	Detection Of Nerve Agent Hydrolytes In An Engineered Nanopore. Biophysical Journal, 2009, 96, 646a. Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays. Soft Matter, 2009, 5, 4021.	0.2	2 60
	Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays. Soft		
901	Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays. Soft Matter, 2009, 5, 4021.	1.2	60
901 902	Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays. Soft Matter, 2009, 5, 4021. Nanofiber-supported phospholipid bilayers. Soft Matter, 2009, 5, 5037.	1.2 1.2	60 7
901 902 903	Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays. Soft Matter, 2009, 5, 4021. Nanofiber-supported phospholipid bilayers. Soft Matter, 2009, 5, 5037. Modeling Kinetics of Subcellular Disposition of Chemicals. Chemical Reviews, 2009, 109, 1793-1899. Enhanced Long-Term Stability for Single Ion Channel Recordings Using Suspended Poly(lipid) Bilayers.	1.2 1.2 23.0	60 7 63
901 902 903 904	Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays. Soft Matter, 2009, 5, 4021. Nanofiber-supported phospholipid bilayers. Soft Matter, 2009, 5, 5037. Modeling Kinetics of Subcellular Disposition of Chemicals. Chemical Reviews, 2009, 109, 1793-1899. Enhanced Long-Term Stability for Single Ion Channel Recordings Using Suspended Poly(lipid) Bilayers. Journal of the American Chemical Society, 2009, 131, 6662-6663.	1.2 1.2 23.0	60 7 63 25
901 902 903 904 905	Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays. Soft Matter, 2009, 5, 4021. Nanofiber-supported phospholipid bilayers. Soft Matter, 2009, 5, 5037. Modeling Kinetics of Subcellular Disposition of Chemicals. Chemical Reviews, 2009, 109, 1793-1899. Enhanced Long-Term Stability for Single Ion Channel Recordings Using Suspended Poly(lipid) Bilayers. Journal of the American Chemical Society, 2009, 131, 6662-6663. Photoresponsive Hybrid Silica Materials Containing Azobenzene Ligands. , 0, , 457-507. Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2	1.2 1.2 23.0 6.6	 60 7 63 25 1

#	Article	IF	CITATIONS
909	Automatable production of shippable bilayer chips by pin tool deposition for an ion channel measurement platform. Biotechnology Journal, 2010, 5, 511-514.	1.8	5
910	Modulating the activity of the channel-forming segment of Vpr protein from HIV-1. European Biophysics Journal, 2010, 39, 1089-1095.	1.2	7
911	Impact of the glycostructure of amphiphilic membrane components on the function of the outer membrane of Gram-negative bacteria as a matrix for incorporated channels and a target for antimicrobial peptides or proteins. European Journal of Cell Biology, 2010, 89, 11-23.	1.6	37
912	Electrochemical Elucidation of the Facilitated Ion Transport Across a Bilayer Lipid Membrane in the Presence of Neutral Carrier Compounds. Electroanalysis, 2010, 22, 1229-1238.	1.5	19
913	Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Current Opinion in Biotechnology, 2010, 21, 439-476.	3.3	298
914	Lipid ion channels. Biophysical Chemistry, 2010, 150, 2-22.	1.5	136
915	Disulfide bond tethering of extracellular loops does not affect the closure of OmpF porin at acidic pH. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2886-2894.	1.5	19
916	The Proapoptotic Influenza A Virus Protein PB1-F2 Forms a Nonselective Ion Channel. PLoS ONE, 2010, 5, e11112.	1.1	55
917	Membrane Permeabilization by Oligomeric α-Synuclein: In Search of the Mechanism. PLoS ONE, 2010, 5, e14292.	1.1	118
918	Inactivation of the KcsA potassium channel explored with heterotetramers. Journal of General Physiology, 2010, 135, 29-42.	0.9	22
920	Implication of Porins in β-Lactam Resistance of Providencia stuartii. Journal of Biological Chemistry, 2010, 285, 32273-32281.	1.6	49
921	Probing single nanometer-scale pores with polymeric molecular rulers. Journal of Chemical Physics, 2010, 132, 135101.	1.2	47
922	Antimicrobial Peptides and Peptaibols, Substitutes for Conventional Antibiotics. Current Pharmaceutical Design, 2010, 16, 3212-3223.	0.9	48
923	Non-invasive measurement techniques for measuring properties of droplet interface bilayers. Smart Materials and Structures, 2010, 19, 094016.	1.8	7
924	Permeation through nanochannels: revealing fast kinetics. Journal of Physics Condensed Matter, 2010, 22, 454131.	0.7	9
925	Sum Frequency Generation (SFG) Vibrational Spectroscopy of Planar Phosphatidylethanolamine Hybrid Bilayer Membranes under Water. Langmuir, 2010, 26, 9710-9719.	1.6	24
926	Analysis of Single Nucleic Acid Molecules with Protein Nanopores. Methods in Enzymology, 2010, 475, 591-623.	0.4	103
927	Single molecule sensing by nanopores and nanopore devices. Analyst, The, 2010, 135, 441-451.	1.7	166

	CITA	ATION REPORT	
#	Article	IF	CITATIONS
928	Surfactin Activity Depends on the Membrane Dipole Potential. Langmuir, 2010, 26, 15092-15097.	1.6	47
929	Molecular Basis of Enrofloxacin Translocation through OmpF, an Outer Membrane Channel of Escherichia coli - When Binding Does Not Imply Translocation. Journal of Physical Chemistry B, 2010, 114, 5170-5179.	1.2	88
930	Stable and Reproducible Bilayer Lipid Membranes Based on Silicon Microfabrication Techniques. Behavior Research Methods, 2010, , 71-86.	2.3	2
931	Osmotic stress regulates the strength and kinetics of sugar binding to the maltoporin channel. Journal of Physics Condensed Matter, 2010, 22, 454110.	0.7	9
932	Size and Dynamics of the Vibrio cholerae Porins OmpU and OmpT ProbedÂby Polymer Exclusion. Biophysical Journal, 2010, 98, 1820-1829.	0.2	24
933	Comparing the Temperature-Dependent Conductance of the Two Structurally Similar E. coli Porins OmpC and OmpF. Biophysical Journal, 2010, 98, 1830-1839.	0.2	54
934	Antimicrobial Protegrin-1 Forms Ion Channels: Molecular Dynamic Simulation, Atomic Force Microscopy, and Electrical Conductance Studies. Biophysical Journal, 2010, 98, 2644-2652.	0.2	49
935	Blockage of Anthrax PA63 Pore by a Multicharged High-Affinity Toxin Inhibitor. Biophysical Journal, 2010, 99, 134-143.	0.2	50
936	Polymer Partitioning and Ion Selectivity Suggest Asymmetrical Shape forÂthe Membrane Pore Formed b Epsilon Toxin. Biophysical Journal, 2010, 99, 782-789.)y 0.2	47
937	Changes in Single K+ Channel Behavior Induced by a Lipid Phase Transition. Biophysical Journal, 2010, 99, 3675-3683.	0.2	41
938	Novel Class of Spider Toxin. Journal of Biological Chemistry, 2010, 285, 32293-32302.	1.6	38
939	Sealing of Submicrometer Wells by a Shear-Driven Lipid Bilayer. Nano Letters, 2010, 10, 1900-1906.	4.5	42
940	A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chemical Communications, 2010, 46, 1620.	2.2	81
941	Fractional Polymerization of a Suspended Planar Bilayer Creates a Fluid, Highly Stable Membrane for Ion Channel Recordings. Journal of the American Chemical Society, 2010, 132, 7086-7093.	6.6	26
942	Stable lipid bilayers based on micro- and nano-fabrication. Supramolecular Chemistry, 2010, 22, 406-41	2. 1.5	12
943	Free-Standing Lipid Bilayers in Silicon Chipsâ^'Membrane Stabilization Based on Microfabricated Apertures with a Nanometer-Scale Smoothness. Langmuir, 2010, 26, 1949-1952.	1.6	70
944	Bilayer Formation between Lipid-Encased Hydrogels Contained in Solid Substrates. ACS Applied Materials & Interfaces, 2010, 2, 3654-3663.	4.0	35
945	VDAC, a multi-functional mitochondrial protein regulating cell life and death. Molecular Aspects of Medicine, 2010, 31, 227-285.	2.7	607

#	Article	IF	CITATIONS
946	Templating membrane assembly, structure, and dynamics using engineered interfaces. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 839-850.	1.4	26
947	Structural polymorphism of non-covalent peptide-based delivery systems: Highway to cellular uptake. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2304-2314.	1.4	62
948	Permeation of Antibiotics through Escherichia coli OmpF and OmpC Porins: Screening for Influx on a Single-Molecule Level. Journal of Biomolecular Screening, 2010, 15, 302-307.	2.6	85
949	Regulated Attachment Method for Reconstituting Lipid Bilayers of Prescribed Size within Flexible Substrates. Analytical Chemistry, 2010, 82, 959-966.	3.2	81
950	Electrochemical impedance spectroscopy and fluorescence lifetime imaging of lipid mixtures self-assembled on mercury. Soft Matter, 2010, 6, 2733.	1.2	29
951	Lipid bilayers on topochemically structured planar colloidal crystals: a versatile platform for optical recording of membrane-mediated ion transport. Soft Matter, 2010, 6, 5334.	1.2	3
952	Brownian dynamics simulation of ion channels embedded in silicon membranes for sensor applications. , 2011, , .		0
953	Formation of droplets interface bilayer by coplanar EWOD device. , 2011, , .		Ο
954	Phospholamban generates cation selective ion channels. Physical Chemistry Chemical Physics, 2011, 13, 12935.	1.3	18
955	Chemical-Induced pH-Mediated Molecular Switch. Analytical Chemistry, 2011, 83, 7692-7697.	3.2	8
955 956	Chemical-Induced pH-Mediated Molecular Switch. Analytical Chemistry, 2011, 83, 7692-7697. CMOS low current measurement system for biomedical applications. , 2011, , .	3.2	8 36
		3.2 4.0	
956	CMOS low current measurement system for biomedical applications. , 2011, , . Microfluidic Fabrication of Asymmetric Giant Lipid Vesicles. ACS Applied Materials & amp; Interfaces,		36
956 957	CMOS low current measurement system for biomedical applications. , 2011, , . Microfluidic Fabrication of Asymmetric Giant Lipid Vesicles. ACS Applied Materials & amp; Interfaces, 2011, 3, 1434-1440. Polymerized Planar Suspended Lipid Bilayers for Single Ion Channel Recordings: Comparison of	4.0	36 119
956 957 958	CMOS low current measurement system for biomedical applications. , 2011, , . Microfluidic Fabrication of Asymmetric Giant Lipid Vesicles. ACS Applied Materials & amp; Interfaces, 2011, 3, 1434-1440. Polymerized Planar Suspended Lipid Bilayers for Single Ion Channel Recordings: Comparison of Several Dienoyl Lipids. Langmuir, 2011, 27, 1882-1890.	4.0 1.6	36 119 25
956 957 958 959	 CMOS low current measurement system for biomedical applications. , 2011, , . Microfluidic Fabrication of Asymmetric Giant Lipid Vesicles. ACS Applied Materials & amp; Interfaces, 2011, 3, 1434-1440. Polymerized Planar Suspended Lipid Bilayers for Single Ion Channel Recordings: Comparison of Several Dienoyl Lipids. Langmuir, 2011, 27, 1882-1890. Imaging Molecular Transport across Lipid Bilayers. Biophysical Journal, 2011, 101, 700-708. Bax Forms Two Types of Channels, One of Which Is Voltage-Gated. Biophysical Journal, 2011, 101, 101, 101, 101, 101, 101, 10	4.0 1.6 0.2	36 119 25 52
956 957 958 959 960	 CMOS low current measurement system for biomedical applications. , 2011, , . Microfluidic Fabrication of Asymmetric Giant Lipid Vesicles. ACS Applied Materials & amp; Interfaces, 2011, 3, 1434-1440. Polymerized Planar Suspended Lipid Bilayers for Single Ion Channel Recordings: Comparison of Several Dienoyl Lipids. Langmuir, 2011, 27, 1882-1890. Imaging Molecular Transport across Lipid Bilayers. Biophysical Journal, 2011, 101, 700-708. Bax Forms Two Types of Channels, One of Which Is Voltage-Gated. Biophysical Journal, 2011, 101, 2163-2169. Shaken, Not Stirred: Collapsing a Peptoid Monolayer To Produce Free-Floating, Stable Nanosheets. 	4.0 1.6 0.2 0.2	36 119 25 52 18

#	Article	IF	CITATIONS
965	Interaction of cephalosporins with outer membrane channels of Escherichia coli. Revealing binding by fluorescence quenching and ion conductance fluctuations. Physical Chemistry Chemical Physics, 2011, 13, 1521-1530.	1.3	23
966	Simple Reconstitution of Protein Pores in Nano Lipid Bilayers. Nano Letters, 2011, 11, 3334-3340.	4.5	39
967	SEM-induced shrinking of solid-state nanopores for single molecule detection. Nanotechnology, 2011, 22, 425302.	1.3	42
968	Fluorinated Amphiphiles Control the Insertion of α-Hemolysin Pores into Lipid Bilayers. Biochemistry, 2011, 50, 1599-1606.	1.2	21
969	Nanopores. , 2011, , .		32
970	Viral channel forming proteins — Modeling the target. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 561-571.	1.4	31
971	Visualization of ceramide channels by transmission electron microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1196-1201.	1.4	45
972	5- and 4′-Hydroxylated flavonoids affect voltage gating of single alpha-hemolysin pore. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2051-2058.	1.4	21
973	Dynamic Transbilayer Lipid Asymmetry. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004671-a004671.	2.3	152
974	Investigations on Membrane Perturbation by Chrysin and Its Copper Complex Using Self-Assembled Lipid Bilayers. Langmuir, 2011, 27, 13374-13382.	1.6	48
975	Planar lipid bilayers: Observing pore creation and extinction. , 2011, 2011, 746-9.		0
976	Tuning the Cavity of Cyclodextrins: Altered Sugar Adaptors in Protein Pores. Journal of the American Chemical Society, 2011, 133, 1987-2001.	6.6	42
977	Creating Scalable and Addressable Biomimetic Membrane Arrays in Biomedicine. , 0, , .		0
978	Test Systems to Study the Structure and Function of Uncoupling Protein 1: A Critical Overview. Frontiers in Endocrinology, 2011, 2, 63.	1.5	13
979	Fungicidal Activities and Mechanisms of Action of Pseudomonas syringae pv. syringae Lipodepsipeptide Syringopeptins 22A and 25A. Frontiers in Microbiology, 2011, 2, 216.	1.5	33
980	Tailored ß-Cyclodextrin Blocks the Translocation Pores of Binary Exotoxins from C. Botulinum and C. Perfringens and Protects Cells from Intoxication. PLoS ONE, 2011, 6, e23927.	1.1	34
981	Altered Antibiotic Transport in OmpC Mutants Isolated from a Series of Clinical Strains of Multi-Drug Resistant E. coli. PLoS ONE, 2011, 6, e25825.	1.1	98
982	Single channel conductance modeling of the peptide alamethicin in synthetically formed bilayers. Proceedings of SPIE, 2011, , .	0.8	0

#	Article	IF	CITATIONS
983	Ion channel activity of brain abundant protein BASP1 in planar lipid bilayers. FEBS Journal, 2011, 278, 461-469.	2.2	33
984	Transport of large organic ions through syringomycin channels in membranes containing dipole modifiers. Cell and Tissue Biology, 2011, 5, 397-405.	0.2	1
985	lon transport across biomembranes and model membranes. Journal of Solid State Electrochemistry, 2011, 15, 1459-1470.	1.2	14
986	Bacterial Expression, Purification and Characterization of a Rice Voltage-Dependent, Anion-Selective Channel Isoform, OsVDAC4. Journal of Membrane Biology, 2011, 244, 67-80.	1.0	18
987	Uniâ€molecular detection and quantification of selected βâ€lactam antibiotics with a hybrid αâ€hemolysin protein pore. Journal of Molecular Recognition, 2011, 24, 199-207.	1.1	20
988	Evidence of DNA transfer across a model membrane by a neutral amphiphilic block copolymer. Journal of Gene Medicine, 2011, 13, 538-548.	1.4	12
989	Translocation of singleâ€stranded DNA through the αâ€hemolysin protein nanopore in acidic solutions. Electrophoresis, 2011, 32, 3034-3041.	1.3	36
990	Automated lipid bilayer and ion channel measurement platform. Biosensors and Bioelectronics, 2011, 26, 2651-2654.	5.3	24
991	Charged bilayer membranes in asymmetric ionic solutions: Phase diagrams and critical behavior. Physical Review E, 2011, 84, 031919.	0.8	20
992	Voltage-controlled insertion of single α-hemolysin and <i>Mycobacterium smegmatis</i> nanopores into lipid bilayer membranes. Applied Physics Letters, 2011, 98, .	1.5	6
993	Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86. Microbiology (United Kingdom), 2011, 157, 1531-1540.	0.7	24
994	Multiple Peptide Resistance Factor (MprF)-mediated Resistance of Staphylococcus aureus against Antimicrobial Peptides Coincides with a Modulated Peptide Interaction with Artificial Membranes Comprising Lysyl-Phosphatidylglycerol. Journal of Biological Chemistry, 2011, 286, 18692-18700.	1.6	84
995	Synthetic Biomimetic Membranes and Their Sensor Applications. Sensors, 2012, 12, 9530-9550.	2.1	74
996	Horizontal Bilayer for Electrical and Optical Recordings. Materials, 2012, 5, 2705-2730.	1.3	22
997	Challenges in the Development of Functional Assays of Membrane Proteins. Materials, 2012, 5, 2205-2242.	1.3	40
998	Influenza Virus-Mediated Membrane Fusion: Determinants of Hemagglutinin Fusogenic Activity and Experimental Approaches for Assessing Virus Fusion. Viruses, 2012, 4, 1144-1168.	1.5	147
999	Deciphering the Function of the Outer Membrane Protein OprD Homologue of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2012, 56, 3826-3832.	1.4	57
1000	Lipid bilayer array for simultaneous recording of ion channel activities. Applied Physics Letters, 2012, 101, .	1.5	14

#	Article	IF	CITATIONS
1001	Handling of artificial membranes using electrowetting-actuated droplets on a microfluidic device combined with integrated pA-measurements. Biomicrofluidics, 2012, 6, 012813.	1.2	8
1002	Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current. Journal of General Physiology, 2012, 140, 69-82.	0.9	23
1003	Tetrameric assembly of KvLm <i>K</i> ⁺ channels with defined numbers of voltage sensors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16917-16922.	3.3	14
1004	Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity. Biochemistry Research International, 2012, 2012, 1-12.	1.5	6
1005	Biotechnology-Utilized Nanopore for Single-Molecule Investigation. , 2012, , 26-49.		0
1006	Stable Lipid Bilayers Based on Micro- and Nano-Fabrication as a Platform for Recording Ion-Channel Activities. Analytical Sciences, 2012, 28, 1049-1057.	0.8	18
1007	Planar Lipid Bilayers Containing Gramicidin A as a Molecular Sensing System Based on an Integrated Current. Analytical Sciences, 2012, 28, 661-667.	0.8	6
1008	Pulling Peptides across Nanochannels: Resolving Peptide Binding and Translocation through the Hetero-oligomeric Channel from <i>Nocardia farcinica</i> . ACS Nano, 2012, 6, 10699-10707.	7.3	57
1009	Effect of Dipole Modifiers on the Magnitude of the Dipole Potential of Sterol-Containing Bilayers. Langmuir, 2012, 28, 9908-9914.	1.6	39
1010	Kinetics and thermodynamics of binding reactions as exemplified by anthrax toxin channel blockage with a cationic cyclodextrin derivative. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18453-18458.	3.3	19
1011	On-Chip Stochastic Resonance of Ion Channel Systems With Variable Internal Noise. IEEE Transactions on Nanobioscience, 2012, 11, 169-175.	2.2	4
1012	Obstructing Toxin Pathways by Targeted Pore Blockage. Chemical Reviews, 2012, 112, 6388-6430.	23.0	36
1013	Single-molecule investigation of G-quadruplex using a nanopore sensor. Methods, 2012, 57, 40-46.	1.9	28
1014	All-d-Enantiomer of β-Amyloid Peptide Forms Ion Channels in Lipid Bilayers. Journal of Chemical Theory and Computation, 2012, 8, 1143-1152.	2.3	38
1015	Detection means of the effects of electromagnetic field on membrane nano-pore forming proteins. , 2012, , .		0
1016	Wild Type, Mutant Protein Unfolding and Phase Transition Detected by Single-Nanopore Recording. ACS Chemical Biology, 2012, 7, 652-658.	1.6	119
1017	The Role of Lys147 in the Interaction between MPSA-Gold Nanoparticles and the α-Hemolysin Nanopore. Langmuir, 2012, 28, 15643-15650.	1.6	18
1018	Miniaturised technologies for the development of artificial lipid bilayer systems. Lab on A Chip, 2012, 12, 1026.	3.1	152

#	Article	IF	CITATIONS
1019	Antibiotic Uptake through Membrane Channels: Role of <i>Providencia stuartii</i> OmpPst1 Porin in Carbapenem Resistance. Biochemistry, 2012, 51, 10244-10249.	1.2	30
1020	Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La ³⁺ Ions. Journal of Physical Chemistry C, 2012, 116, 6537-6542.	1.5	28
1021	Functional Interaction Analysis of GM1-Related Carbohydrates and <i>Vibrio cholerae</i> Toxins Using Carbohydrate Microarray. Analytical Chemistry, 2012, 84, 6884-6890.	3.2	25
1022	Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology, 2012, 432, 485-494.	1.1	189
1023	PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNASequencing by Synthesis. Scientific Reports, 2012, 2, 684.	1.6	109
1024	Nanochannels Preparation and Application in Biosensing. ACS Nano, 2012, 6, 7556-7583.	7.3	184
1025	Model membrane platforms to study protein-membrane interactions . Molecular Membrane Biology, 2012, 29, 144-154.	2.0	83
1026	VDAC, The early days. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1438-1443.	1.4	39
1027	Ceramide channels: Influence of molecular structure on channel formation in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1291-1301.	1.4	38
1028	Indole prevents Escherichia coli cell division by modulating membrane potential. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1590-1594.	1.4	142
1029	Persisterâ€promoting bacterial toxin TisB produces anionâ€selective pores in planar lipid bilayers. FEBS Letters, 2012, 586, 2529-2534.	1.3	87
1030	Visualizing the Growth and Dynamics of Liquidâ€Ordered Domains During Lipid Bilayer Folding in a Microfluidic Chip. Small, 2012, 8, 3613-3619.	5.2	5
1031	Electrochemical Impedance Spectroscopy and Atomic Force Microscopic Studies of Electrical and Mechanical Properties of Nano-Black Lipid Membranes and Size Dependence. Langmuir, 2012, 28, 14739-14746.	1.6	26
1032	Antibiotic Permeation across the OmpF Channel: Modulation of the Affinity Site in the Presence of Magnesium. Journal of Physical Chemistry B, 2012, 116, 4433-4438.	1.2	60
1033	Packaging in Synthetic Biology. , 2012, , 383-418.		0
1034	6.3 Gating Dynamics of the Potassium Channel Pore. , 2012, , 31-67.		4
1035	Piezo proteins are pore-forming subunits of mechanically activated channels. Nature, 2012, 483, 176-181.	13.7	848
1036	Permeability of Phospholipid Membrane for Small Polar Molecules Determined from Osmotic Swelling of Giant Phospholipid Vesicles. Behavior Research Methods, 2012, 16, 301-335.	2.3	8

#	Article	IF	CITATIONS
1037	Bioadhesives. , 2012, , 194-201.		0
1038	Increased salt concentration promotes competitive block of OmpF channel by protons. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2777-2782.	1.4	16
1039	Interactions of High-Affinity Cationic Blockers with the Translocation Pores of B.Âanthracis, C.Âbotulinum, and C.Âperfringens Binary Toxins. Biophysical Journal, 2012, 103, 1208-1217.	0.2	31
1040	Development of the Structural Core and of Conformational Heterogeneity during the Conversion of Oligomers of the Mouse Prion Protein to Worm-like Amyloid Fibrils. Journal of Molecular Biology, 2012, 423, 217-231.	2.0	54
1041	Detecting and Characterizing Individual Molecules with Single Nanopores. Methods in Molecular Biology, 2012, 870, 3-20.	0.4	5
1042	Planar Lipid Bilayer Method for Studying Channel Molecules. Springer Protocols, 2012, , 229-275.	0.1	10
1043	Bacterial Electrical Conduction. , 2012, , 173-173.		0
1044	Probing DNA–Lipid Membrane Interactions with a Lipopeptide Nanopore. ACS Nano, 2012, 6, 3356-3363.	7.3	8
1045	Solution exchange of droplet contacting lipid bilayer system. , 2012, , .		0
1046	Ionophores in Planar Lipid Bilayers. , 2012, , 61-66.		13
1047	System for Measuring Planar Lipid Bilayer Properties. Journal of Membrane Biology, 2012, 245, 625-632.	1.0	4
1048	Molecular-Level Characterization of Lipid Membrane Electroporation using Linearly Rising Current. Journal of Membrane Biology, 2012, 245, 651-659.	1.0	36
1049	Probing Structural Features of Alzheimer's Amyloid-β Pores in Bilayers Using Site-Specific Amino Acid Substitutions. Biochemistry, 2012, 51, 776-785.	1.2	51
1050	Inversion of Membrane Surface Charge by Trivalent Cations Probed with a Cation-Selective Channel. Langmuir, 2012, 28, 15824-15830.	1.6	30
1051	Probing Amphotericin B Single Channel Activity by Membrane Dipole Modifiers. PLoS ONE, 2012, 7, e30261.	1.1	39
1052	Ionic conductance of synthetic channels: analysis, lessons, and recommendations. Chemical Society Reviews, 2012, 41, 148-175.	18.7	155
1053	Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids and Surfaces B: Biointerfaces, 2012, 94, 333-340.	2.5	113
1054	CMOS Low Current Measurement System for Biomedical Applications. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 111-119.	2.7	56

#	Article	IF	Citations
1055	Natural and artificial ion channels for biosensing platforms. Analytical and Bioanalytical Chemistry, 2012, 402, 209-230.	1.9	42
1056	Circulating MicroRNAs. Methods in Molecular Biology, 2013, , .	0.4	2
1057	Bacterial Cell Surfaces. Methods in Molecular Biology, 2013, , .	0.4	5
1058	Nano bioresearch approach by microtechnology. Drug Discovery Today, 2013, 18, 552-559.	3.2	2
1059	Effects of styryl dye RH 421 on the activity of amphotericin B in cell and model membranes. Cell and Tissue Biology, 2013, 7, 289-292.	0.2	0
1060	Disruption of model cell membranes by carbon nanotubes. Carbon, 2013, 60, 67-75.	5.4	92
1061	Simultaneous detection of CMPA and PMPA, hydrolytes of soman and cyclosarin nerve agents, by nanopore analysis. Sensors and Actuators B: Chemical, 2013, 176, 625-631.	4.0	14
1062	A Model for the Interfacial Kinetics of Phospholipase D Activity on Long-Chain Lipids. Biophysical Journal, 2013, 105, 146-153.	0.2	13
1063	Investigation of transmembrane protein fused in lipid bilayer membranes supported on porous silicon. Journal of Medical Engineering and Technology, 2013, 37, 28-34.	0.8	11
1064	Photolithographic Fabrication of Microapertures with Well-Defined, Three-Dimensional Geometries for Suspended Lipid Membrane Studies. Analytical Chemistry, 2013, 85, 9078-9086.	3.2	22
1065	Changes of dipole potential of phospholipid membranes resulted from flavonoid adsorption. Biophysics (Russian Federation), 2013, 58, 366-372.	0.2	6
1066	Phloretin-Induced Reduction in Dipole Potential of Sterol-Containing Bilayers. Journal of Membrane Biology, 2013, 246, 985-991.	1.0	17
1067	Sensing Single Mixed-Monolayer Protected Gold Nanoparticles by the α-Hemolysin Nanopore. Analytical Chemistry, 2013, 85, 10149-10158.	3.2	23
1068	Probing Mercury(II)–DNA Interactions by Nanopore Stochastic Sensing. Journal of Physical Chemistry B, 2013, 117, 4763-4769.	1.2	52
1069	Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4417-26.	3.3	49
1070	Decreased Aperture Surface Energy Enhances Electrical, Mechanical, and Temporal Stability of Suspended Lipid Membranes. ACS Applied Materials & Interfaces, 2013, 5, 11918-11926.	4.0	36
1071	Biological Pores on Lipid Bilayers. , 2013, , 95-119.		1
1072	Local Partition Coefficients Govern Solute Permeability of Cholesterol-Containing Membranes. Biophysical Journal, 2013, 105, 2760-2770.	0.2	67

#	Article	IF	CITATIONS
1073	Electrophysiological Characterization of Bacterial Pore-Forming Proteins in Planar Lipid Bilayers. Methods in Molecular Biology, 2013, 966, 381-396.	0.4	5
1074	Split-and-contact device to form planar lipid bilayers. , 2013, , .		0
1075	Heterologous expression and purification of an active human <scp>TRPV</scp> 3 ion channel. FEBS Journal, 2013, 280, 6010-6021.	2.2	6
1076	Characterizing the Lateral Friction of Nanoparticles on Onâ€Chip Integrated Black Lipid Membranes. Small, 2013, 9, 876-884.	5.2	10
1077	Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2026-2031.	1.4	82
1078	Electrochemical impedance spectroscopy as a method for electrical characterization of the bilayers formed from lipid-amino acid systems. Chemistry and Physics of Lipids, 2013, 175-176, 116-122.	1.5	1
1079	Confinement induced stochastic sensing of charged coronene and perylene aggregates in α-hemolysin nanochannels. Soft Matter, 2013, 9, 10196.	1.2	4
1080	Transport of Cesium Ion Across a Bilayer Lipid Membrane and Its Facilitation in the Presence of Iodide Ion. Electroanalysis, 2013, 25, 1823-1826.	1.5	5
1081	Amphipathic antenna of an inward rectifier K ⁺ channel responds to changes in the inner membrane leaflet. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 749-754.	3.3	68
1082	Polypeptide Translocation Through the Mitochondrial TOM Channel: Temperature-Dependent Rates at the Single-Molecule Level. Journal of Physical Chemistry Letters, 2013, 4, 78-82.	2.1	16
1083	Structure and function of a unique pore-forming protein from a pathogenic acanthamoeba. Nature Chemical Biology, 2013, 9, 37-42.	3.9	36
1084	The Effect of Bacterial Signal Indole on the Electrical Properties of Lipid Membranes. ChemPhysChem, 2013, 14, 417-423.	1.0	34
1085	Current Fluctuation Analysis of the PopB and PopD Translocon Components of the Pseudomonas aeruginosa Type III Secretion System. Biophysical Journal, 2013, 104, 1445-1455.	0.2	13
1086	Electrostatic Interactions Drive the Nonsteric Directional Block of OmpF Channel by La ³⁺ . Langmuir, 2013, 29, 15320-15327.	1.6	10
1087	Porous silicon membrane for investigation of transmembrane proteins. Superlattices and Microstructures, 2013, 58, 72-80.	1.4	22
1088	A Membrane-Translocating Peptide Penetrates into Bilayers without Significant Bilayer Perturbations. Biophysical Journal, 2013, 104, 2419-2428.	0.2	42
1089	Cationic Cell-Penetrating Peptide Binds to Planar Lipid Bilayers Containing Negatively Charged Lipids but does not Induce Conductive Pores. Biophysical Journal, 2013, 104, 1933-1939.	0.2	14
1090	Nanotechnology with S-Layer Proteins. Methods in Molecular Biology, 2013, 996, 153-175.	0.4	18

#	Article	IF	CITATIONS
1091	Recording of Ion Channel Activity in Planar Lipid Bilayer Experiments. Methods in Molecular Biology, 2013, 998, 109-118.	0.4	45
1092	Lipid bilayer technologies in ion channel recordings and their potential in drug screening assay. Sensors and Actuators B: Chemical, 2013, 185, 530-542.	4.0	40
1093	Constructing droplet interface bilayers from the contact of aqueous droplets in oil. Nature Protocols, 2013, 8, 1048-1057.	5.5	115
1094	Water defects induced by expansion and electrical fields in DMPC and DMPE monolayers: Contribution of hydration and confined water. Colloids and Surfaces B: Biointerfaces, 2013, 102, 871-878.	2.5	13
1096	The use of virtual ground to control transmembrane voltages and measure bilayer currents in serial arrays of droplet interface bilayers. Smart Materials and Structures, 2013, 22, 094023.	1.8	6
1097	OmpC-like porin from outer membrane of Yersinia enterocolitica: Molecular structure and functional activity. Biochemistry (Moscow), 2013, 78, 496-504.	0.7	0
1098	Spatial Orientation and Electric-Field-Driven Transport of Hypericin Inside of Bilayer Lipid Membranes. Journal of Physical Chemistry B, 2013, 117, 1280-1286.	1.2	19
1099	Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers. Journal of the American Chemical Society, 2013, 135, 5545-5548.	6.6	23
1100	Engineering Lipid Bilayer Membranes for Protein Studies. International Journal of Molecular Sciences, 2013, 14, 21561-21597.	1.8	92
1101	Differential Detergent Extraction of Mycobacterium marinum Cell Envelope Proteins Identifies an Extensively Modified Threonine-Rich Outer Membrane Protein with Channel Activity. Journal of Bacteriology, 2013, 195, 2050-2059.	1.0	25
1102	The Bacterial Translocon SecYEG Opens upon Ribosome Binding. Journal of Biological Chemistry, 2013, 288, 17941-17946.	1.6	42
1103	Patch-Clamp Electrophysiology of Intracellular Ca ²⁺ Channels. Cold Spring Harbor Protocols, 2013, 2013, pdb.top066217.	0.2	22
1104	Assembling an ion channel: ORF 3a from SARS oV. Biopolymers, 2013, 99, 628-635.	1.2	15
1105	High Yield, Reproducible and Quasiâ€Automated Bilayer Formation in a Microfluidic Format. Small, 2013, 9, 1076-1085.	5.2	29
1107	Anthrax toxin-induced rupture of artificial lipid bilayer membranes. Journal of Chemical Physics, 2013, 139, 065101.	1.2	18
1108	Filter gate closure inhibits ion but not water transport through potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10842-10847.	3.3	61
1109	Single-Molecule Trapping Dynamics of Sugar-Uptake Channels in Marine Bacteria. Physical Review Letters, 2013, 110, 238102.	2.9	15
1110	Solvation of polymers as mutual association. I. General theory. Journal of Chemical Physics, 2013, 138, 164901.	1.2	7

#	Article	IF	CITATIONS
1111	Automated Parallel Recordings of Topologically Identified Single Ion Channels. Scientific Reports, 2013, 3, 1995.	1.6	123
1112	Lytic and Non-Lytic Permeabilization of Cardiolipin-Containing Lipid Bilayers Induced by Cytochrome c. PLoS ONE, 2013, 8, e69492.	1.1	10
1113	Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system. ELife, 2014, 3, e03671.	2.8	365
1114	Organic electrochemical transistors as impedance biosensors. MRS Communications, 2014, 4, 189-194.	0.8	37
1115	Bax channel triplet: co-operativity and voltage gating. Biochemical Journal, 2014, 459, 397-404.	1.7	1
1116	Rupture of zwitterionic lipid vesicles by an amphipathic, α-helical peptide: Indirect effects of sensor surface and implications for experimental analysis. Colloids and Surfaces B: Biointerfaces, 2014, 121, 340-346.	2.5	15
1117	A methodological combined framework for roadmapping biosensor research: a fault tree analysis approach within a strategic technology evaluation frame. Critical Reviews in Biotechnology, 2014, 34, 31-55.	5.1	19
1118	Structure-kinetic relationship of carbapenem antibacterials permeating through <i>E. coli</i> OmpC porin. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2998-3012.	1.5	40
1119	Chronoamperometric Technique as a Useful Method for Electrical Characterization of Bilayer Lipid Membranes. Journal of the Electrochemical Society, 2014, 161, H11-H16.	1.3	1
1120	Study of the Protein Complex, Pore Diameter, and Pore-forming Activity of the Borrelia burgdorferi P13 Porin. Journal of Biological Chemistry, 2014, 289, 18614-18624.	1.6	14
1121	A New Cellsâ€Compatible Microfluidic Device for Single Channel Recordings. Electroanalysis, 2014, 26, 1653-1659.	1.5	3
1122	Formation of suspended bilayer lipid membrane between electrowetting-driven encapsulated droplets. Biomicrofluidics, 2014, 8, 052006.	1.2	4
1123	Recording ion channels across soy-extracted lecithin bilayer generated by water-soluble quantum dots. Philosophical Magazine, 2014, 94, 345-357.	0.7	1
1124	Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. Journal of the Royal Society Interface, 2014, 11, 20140232.	1.5	39
1125	Chronopotentiometry Insight into Acid-Base Equilibria between Phosphatidylcholine Bilayer and Ions from Electrolyte Solution. Journal of the Electrochemical Society, 2014, 161, H114-H120.	1.3	7
1126	Biomembrane disruption by silica-core nanoparticles: Effect of surface functional group measured using a tethered bilayer lipid membrane. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 429-437.	1.4	27
1127	Synthetic ion transporters: Pore formation in bilayers via coupled activity of non-spanning cobalt-cage amphiphiles. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1247-1254.	1.4	6
1128	The Effect of pH on the Electrical Capacitance of Phosphatidylcholine–Phosphatidylserine System in Bilayer Lipid Membrane. Journal of Membrane Biology, 2014, 247, 361-369.	1.0	18

#	Article	IF	CITATIONS
1129	The interaction of dipole modifiers with amphotericin-ergosterol complexes. Effects of phospholipid and sphingolipid membrane composition. European Biophysics Journal, 2014, 43, 207-215.	1.2	21
1130	Long Open Amphotericin Channels Revealed in Cholesterol-Containing Phospholipid Membranes Are Blocked by Thiazole Derivative. Journal of Membrane Biology, 2014, 247, 211-229.	1.0	9
1131	Efficient repairing effect of PEG based tri-block copolymer on mechanically damaged PC12 cells and isolated spinal cord. Journal of Materials Science: Materials in Medicine, 2014, 25, 1539-1551.	1.7	4
1132	Lysozyme binding to tethered bilayer lipid membranes prepared by rapid solvent exchange and vesicle fusion methods. European Biophysics Journal, 2014, 43, 191-198.	1.2	5
1133	Interaction of protamine with gramâ€negative bacteria membranes: possible alternative mechanisms of internalization in <i>Escherichia coli</i> , <i>Salmonella typhimurium</i> and <i>Pseudomonas aeruginosa</i> . Journal of Peptide Science, 2014, 20, 240-250.	0.8	15
1134	Shaped Apertures in Photoresist Films Enhance the Lifetime and Mechanical Stability of Suspended Lipid Bilayers. Biophysical Journal, 2014, 106, 1650-1659.	0.2	34
1135	Biomimetic membranes: A review. Journal of Membrane Science, 2014, 454, 359-381.	4.1	314
1136	Lipid charge regulation of non-specific biological ion channels. Physical Chemistry Chemical Physics, 2014, 16, 3881-3893.	1.3	21
1137	Nanopore detection of copper ions using a polyhistidine probe. Biosensors and Bioelectronics, 2014, 53, 453-458.	5.3	65
1138	Evidence of Unfolded Protein Translocation through a Protein Nanopore. ACS Nano, 2014, 8, 11350-11360.	7.3	74
1139	A new approach for the fabrication of microscale lipid bilayers at glass pipets: application to quantitative passive permeation visualization. Soft Matter, 2014, 10, 8433-8441.	1.2	11
1140	Dynamic morphologies of microscale droplet interface bilayers. Soft Matter, 2014, 10, 2530.	1.2	23
1141	Quantifying Short-Lived Events in Multistate Ionic Current Measurements. ACS Nano, 2014, 8, 1547-1553.	7.3	78
1142	Air-stable droplet interface bilayers on oil-infused surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7588-7593.	3.3	125
1143	Ion Conductivity of the Bacterial Translocation Channel SecYEG Engaged in Translocation. Journal of Biological Chemistry, 2014, 289, 24611-24616.	1.6	25
1144	Giant Unilamellar Vesicles and Suspended Nanobilayers as Model Systems for Biophysical Research. Behavior Research Methods, 2014, , 67-89.	2.3	Ο
1145	Designing inhibitors of anthrax toxin. Expert Opinion on Drug Discovery, 2014, 9, 299-318.	2.5	29
1146	Real-time label-free measurement of HIV-1 protease activity by nanopore analysis. Biosensors and Bioelectronics, 2014, 62, 158-162.	5.3	49

#	Article	IF	CITATIONS
1147	Cationic PAMAM Dendrimers as Pore-Blocking Binary Toxin Inhibitors. Biomacromolecules, 2014, 15, 2461-2474.	2.6	23
1148	Automated Lipid Membrane Formation Using a Polydimethylsiloxane Film for Ion Channel Measurements. Analytical Chemistry, 2014, 86, 8910-8915.	3.2	9
1149	Amphiphilic COSAN and I2-COSAN crossing synthetic lipid membranes: planar bilayers and liposomes. Chemical Communications, 2014, 50, 6700.	2.2	68
1150	Channel-Forming Activity of Cecropins in Lipid Bilayers: Effect of Agents Modifying the Membrane Dipole Potential. Langmuir, 2014, 30, 7884-7892.	1.6	43
1151	Study of p <i>K</i> Values and Effective Dielectric Constants of Ionizable Residues in Pentapeptides and in Staphylococcal Nuclease (SNase) Using a Mean-Field Approach. Journal of Physical Chemistry B, 2014, 118, 4053-4061.	1.2	0
1152	The Influence of Halogen Derivatives of Thyronine and Fluorescein on the Dipole Potential of Phospholipid Membranes. Journal of Membrane Biology, 2014, 247, 739-745.	1.0	8
1153	Application of OmpF nanochannel forming protein in polynucleotide sequence recognition. Journal of Molecular Recognition, 2014, 27, 575-587.	1.1	3
1154	Inhibition of the Human Respiratory Syncytial Virus Small Hydrophobic Protein and Structural Variations in a Bicelle Environment. Journal of Virology, 2014, 88, 11899-11914.	1.5	40
1155	Evidence of Conducting Hydrophobic Nanopores Across Membranes in Response to an Electric Field. Journal of Physical Chemistry C, 2014, 118, 6752-6757.	1.5	38
1156	Nanopore Biosensor for Label-Free and Real-Time Detection of Anthrax Lethal Factor. ACS Applied Materials & amp; Interfaces, 2014, 6, 7334-7339.	4.0	37
1157	Lipid bilayer arrays: Cyclically formed and measured. Biotechnology Journal, 2014, 9, 446-451.	1.8	14
1158	Pseudo painting/air bubble technique for planar lipid bilayers. Journal of Neuroscience Methods, 2014, 233, 13-17.	1.3	23
1159	Viral potassium channels as a robust model system for studies of membrane–protein interaction. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1096-1103.	1.4	28
1160	Crystal structure of a COG4313 outer membrane channel. Scientific Reports, 2015, 5, 11927.	1.6	19
1161	Nanoscale Potentiometry. , 2015, , 804-849.		0
1163	Magnetically Responsive Droplet Interface Bilayer Networks. , 2015, , .		0
1164	Electric polarizability of lipid bilayers: The influence of the structure. Journal of Chemical Physics, 2015, 143, 144904.	1.2	1
1165	Multifunctional, Micropipette-based Method for Incorporation And Stimulation of Bacterial Mechanosensitive Ion Channels in Droplet Interface Bilayers. Journal of Visualized Experiments, 2015, ,	0.2	5

#	Article	IF	CITATIONS
1167	Spontaneous Reconstitution of Functional Transmembrane Proteins During Bioorthogonal Phospholipid Membrane Synthesis. Angewandte Chemie - International Edition, 2015, 54, 12738-12742.	7.2	30
1168	Incorporating Stimuli-Responsive Bacteria in Microfluidic Droplets. , 2015, , .		0
1170	The Effect of the Nonlinearity of the Response of Lipid Membranes to Voltage Perturbations on the Interpretation of Their Electrical Properties. A New Theoretical Description. Membranes, 2015, 5, 495-512.	1.4	22
1171	Toxins Secreted by Bacillus Isolated from Lung Adenocarcinomas Favor the Penetration of Toxic Substances. Frontiers in Microbiology, 2015, 6, 1301.	1.5	3
1172	Screening ion-channel ligand interactions with passive pumping in a microfluidic bilayer lipid membrane chip. Biomicrofluidics, 2015, 9, 014103.	1.2	4
1173	Expression and Purification of OsVDAC4. Methods in Enzymology, 2015, 556, 51-75.	0.4	1
1174	Reconstitution of proteins on electroformed giant unilamellar vesicles. Methods in Cell Biology, 2015, 128, 319-338.	0.5	31
1175	New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1868-1885.	1.4	36
1176	Rapid discrimination of DNA sequences using an engineered nanopore. , 2015, , .		0
1177	Effects of dipole modifiers on channel-forming activity of amyloid and amyloid-like peptides in lipid bilayers. Cell and Tissue Biology, 2015, 9, 250-259.	0.2	4
1178	Pore Hydration States of KcsA Potassium Channels in Membranes. Journal of Biological Chemistry, 2015, 290, 26765-26775.	1.6	11
1179	The role of lipids in mechanosensation. Nature Structural and Molecular Biology, 2015, 22, 991-998.	3.6	160
1180	Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nature Protocols, 2015, 10, 188-198.	5.5	134
1181	Analysis of fast channel blockage: revealing substrate binding in the microsecond range. Analyst, The, 2015, 140, 4820-4827.	1.7	22
1182	High Impedance Droplet–Solid Interface Lipid Bilayer Membranes. Analytical Chemistry, 2015, 87, 2094-2099.	3.2	14
1183	Micro―and Nanoâ€Technologies for Lipid Bilayerâ€Based Ionâ€Channel Functional Assays. Chemistry - an Asian Journal, 2015, 10, 1266-1274.	1.7	29
1184	Modifiers of Membrane Dipole Potentials as Tools for Investigating Ion Channel Formation and Functioning. International Review of Cell and Molecular Biology, 2015, 315, 245-297.	1.6	25
1185	Nucleobase Recognition by Truncated α-Hemolysin Pores. ACS Nano, 2015, 9, 7895-7903.	7.3	40

#	Article	IF	CITATIONS
1186	MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Research, 2015, 201, 61-66.	1.1	84
1187	Role of Hydrogen Bonding and Polyanion Composition in the Formation of Lipid Bilayers on Top of Polyelectrolyte Multilayers. Langmuir, 2015, 31, 8623-8632.	1.6	14
1188	Outer-membrane translocation of bulky small molecules by passive diffusion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2991-9.	3.3	70
1189	Planar Lipid Bilayer Formation Using Droplet Contact Method and Its Applications. Seibutsu Butsuri, 2015, 55, 077-080.	0.0	1
1190	Understanding Voltage Gating of Providencia stuartii Porins at Atomic Level. PLoS Computational Biology, 2015, 11, e1004255.	1.5	10
1191	Contact Bubble Bilayers with Flush Drainage. Scientific Reports, 2015, 5, 9110.	1.6	43
1192	Channel function reconstitution and reâ€animation: a singleâ€channel strategy in the postcrystal age. Journal of Physiology, 2015, 593, 2553-2573.	1.3	28
1193	Antibiotic translocation through porins studied in planar lipid bilayers using parallel platforms. Analyst, The, 2015, 140, 4874-4881.	1.7	13
1194	Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium, 2015, 58, 67-78.	1.1	66
1195	Quantification of Fluoroquinolone Uptake through the Outer Membrane Channel OmpF of <i>Escherichia coli</i> . Journal of the American Chemical Society, 2015, 137, 13836-13843.	6.6	70
1196	Tetramethylammonium-Filled Protein Nanopore for Single-Molecule Analysis. Analytical Chemistry, 2015, 87, 9991-9997.	3.2	23
1197	How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions. Channels, 2015, 9, 262-280.	1.5	25
1198	Dynamics and Energy Contributions for Transport of Unfolded Pertactin through a Protein Nanopore. ACS Nano, 2015, 9, 9050-9061.	7.3	52
1199	Measurement of membrane tension of free standing lipid bilayers via laser-induced surface deformation spectroscopy. Soft Matter, 2015, 11, 8641-8647.	1.2	18
1200	Methacrylate Polymer Scaffolding Enhances the Stability of Suspended Lipid Bilayers for Ion Channel Recordings and Biosensor Development. ACS Biomaterials Science and Engineering, 2015, 1, 955-963.	2.6	19
1201	Electroporation Threshold of POPC Lipid Bilayers with Incorporated Polyoxyethylene Glycol (C ₁₂ E ₈). Journal of Physical Chemistry B, 2015, 119, 192-200.	1.2	17
1202	Automated Formation of Lipid Membrane Microarrays for Ionic Singleâ€Molecule Sensing with Protein Nanopores. Small, 2015, 11, 119-125.	5.2	59
1203	Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells. Electromagnetic Biology and Medicine, 2015, 34, 1-13.	0.7	7

#	Article	IF	CITATIONS
1204	Transport across the outer membrane porin of mycolic acid containing actinomycetales: Nocardia farcinica. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 654-661.	1.4	5
1205	Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation. Scientific Reports, 2014, 4, 3885.	1.6	103
1206	A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. Lab on A Chip, 2015, 15, 541-548.	3.1	43
1207	Membrane dipole modifiers modulate single-length nystatin channels via reducing elastic stress in the vicinity of the lipid mouth of a pore. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 192-199.	1.4	20
1208	Improved wheat grain yield by a new method of root selection. Agronomy for Sustainable Development, 2015, 35, 195-202.	2.2	40
1209	Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study. Toxins, 2016, 8, 337.	1.5	6
1210	What Ion Flow along Ion Channels Can Tell us about Their Functional Activity. Membranes, 2016, 6, 53.	1.4	16
1211	Nanopore-CMOS Interfaces for DNA Sequencing. Biosensors, 2016, 6, 42.	2.3	16
1212	Formation of droplet interface bilayers in a Teflon tube. Scientific Reports, 2016, 6, 34355.	1.6	6
1213	Enhanced stability of freestanding lipid bilayer and its stability criteria. Scientific Reports, 2016, 6, 38158.	1.6	18
1214	Supported lipid bilayer membrane arrays on micro-patterned ITO electrodes. RSC Advances, 2016, 6, 72821-72826.	1.7	9
1215	Biomimetic Flow Sensors. , 2016, , 309-322.		0
1216	Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 2016, 532, 64-68.	13.7	628
1217	Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation. ACS Applied Materials & Interfaces, 2016, 8, 13166-13179.	4.0	113
1218	OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities. Physica A: Statistical Mechanics and Its Applications, 2016, 457, 215-224.	1.2	2
1220	Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents. Soft Matter, 2016, 12, 5096-5109.	1.2	18
1221	Local Anesthetics Affect Gramicidin A Channels via Membrane Electrostatic Potentials. Journal of Membrane Biology, 2016, 249, 781-787.	1.0	14
1222	<i>Biodesalination</i> —On harnessing the potential of nature's desalination processes. Bioinspiration and Biomimetics, 2016, 11, 041001.	1.5	21

#	Article	IF	CITATIONS
1223	MOMP from Campylobacter jejuni Is a Trimer of 18-Stranded β-Barrel Monomers with a Ca 2+ Ion Bound at the Constriction Zone. Journal of Molecular Biology, 2016, 428, 4528-4543.	2.0	36
1224	Correlated trapping of sugar molecules by the trimeric protein channel chitoporin. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3032-3040.	1.4	11
1225	Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore. European Biophysics Journal, 2016, 45, 843-852.	1.2	36
1226	Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays. Lab on A Chip, 2016, 16, 3576-3588.	3.1	39
1227	Photobiology and Photochemistry Hand-in-Hand in Targeted Antitumoral Therapies. , 2016, , 171-356.		4
1228	Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9003-9008.	3.3	23
1229	Electrostatic Control of Polymer Translocation Speed through α-Hemolysin Protein Pore. Macromolecules, 2016, 49, 9132-9138.	2.2	22
1231	Automated Lipid Bilayer Membrane Formation Using a Polydimethylsiloxane Thin Film. Journal of Visualized Experiments, 2016, , .	0.2	3
1232	Laboratory Membrane Systems. , 2016, , 95-114.		2
1233	Effects of alkali and ammonium ions in the detection of poly(ethyleneglycol) by alpha-hemolysin nanopore sensor. RSC Advances, 2016, 6, 56647-56655.	1.7	11
1234	Identification and Functional Characterization of a Novel OprD-like Chitin Uptake Channel in Non-chitinolytic Bacteria. Journal of Biological Chemistry, 2016, 291, 13622-13633.	1.6	11
1235	Stochastic Detection of MPSA-Gold Nanoparticles Using a α-Hemolysin Nanopore Equipped with a Noncovalent Molecular Adaptor. Analytical Chemistry, 2016, 88, 6214-6222.	3.2	9
1236	Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii. Structure, 2016, 24, 221-231.	1.6	49
1237	Membrane platforms for biological nanopore sensing and sequencing. Current Opinion in Biotechnology, 2016, 39, 17-27.	3.3	18
1238	Molecular Basis of Filtering Carbapenems by Porins from β-Lactam-resistant Clinical Strains of Escherichia coli. Journal of Biological Chemistry, 2016, 291, 2837-2847.	1.6	65
1239	Two types of syringomycin E channels in sphingomyelin-containing bilayers. European Biophysics Journal, 2016, 45, 91-98.	1.2	12
1240	Label-Free Nanopore Single-Molecule Measurement of Trypsin Activity. ACS Sensors, 2016, 1, 607-613.	4.0	59
1241	Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example. Biophysical Journal, 2016, 110, 600-611.	0.2	55

#	Article	IF	Citations
1242	Elucidating the Link Between Structure and Function of Ion Channels and Transporters with Voltage-Clamp and Patch-Clamp Fluorometry. Neuromethods, 2016, , 67-95.	0.2	0
1243	Specific electrical capacitance and voltage breakdown as a function of temperature for different planar lipid bilayers. Bioelectrochemistry, 2016, 112, 132-137.	2.4	16
1244	Phloretin modulates the rate of channel formation by polyenes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 289-294.	1.4	9
1245	Nanochannels for electrical biosensing. TrAC - Trends in Analytical Chemistry, 2016, 79, 134-150.	5.8	42
1246	Inhibition of the hemolytic activity caused byStaphylococcus aureusalpha-hemolysin through isatin-Schiff copper(II) complexes. FEMS Microbiology Letters, 2016, 363, fnv207.	0.7	20
1247	Effects of Dipole Potential Modifiers on Heterogenic Lipid Bilayers. Journal of Membrane Biology, 2016, 249, 97-106.	1.0	6
1248	Using the plant vacuole as a biological system to investigate the functional properties of exogenous channels and transporters. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 607-612.	1.4	33
1249	Probing transport of charged β-lactamase inhibitors through OmpC, a membrane channel from E.Âcoli. Biochemical and Biophysical Research Communications, 2017, 484, 51-55.	1.0	26
1250	Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature, 2017, 541, 407-411.	13.7	188
1251	Nanopore sensor for copper ion detection using a polyamine decorated Î ² -cyclodextrin as the recognition element. RSC Advances, 2017, 7, 15315-15320.	1.7	19
1252	Metal–organic complex-functionalized protein nanopore sensor for aromatic amino acids chiral recognition. Analyst, The, 2017, 142, 1048-1053.	1.7	22
1253	Highly efficient formation of droplet interface bilayers by using a microperforated separator. , 2017, , .		0
1254	Single Residue Acts as Gate in OccK Channels. Journal of Physical Chemistry B, 2017, 121, 2614-2621.	1.2	15
1255	Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules. ACS Nano, 2017, 11, 5465-5473.	7.3	74
1256	Artificial Cell Membrane Systems for Biosensing Applications. Analytical Chemistry, 2017, 89, 216-231.	3.2	97
1257	<i>Clostridium difficile</i> toxins A and B: Receptors, pores, and translocation into cells. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 461-473.	2.3	46
1258	The toxic mode of action of cyclic lipodepsipeptide fusaricidins, produced by <i>Paenibacillus polymyxa</i> , toward mammalian cells. Journal of Applied Microbiology, 2017, 123, 436-449.	1.4	17
1259	Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers. Scientific Reports, 2017, 7, 45180.	1.6	35

#	Article	IF	CITATIONS
1260	Metal-Organic Cuboctahedra for Synthetic Ion Channels with Multiple Conductance States. CheM, 2017, 2, 393-403.	5.8	89
1261	Sharp volumetric billboard based characterization and modeling of complex 3D Ni/Al high energy ball milled composites. Mechanics of Materials, 2017, 108, 93-106.	1.7	7
1262	Whole-GUV patch-clamping. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 328-333.	3.3	41
1263	³¹ P and ¹ H NMR Studies of the Molecular Organization of Lipids in the Parallel Artificial Membrane Permeability Assay. Molecular Pharmaceutics, 2017, 14, 284-295.	2.3	8
1264	Electrostatic interactions at the microscale modulate dynamics and distribution of lipids in bilayers. Soft Matter, 2017, 13, 686-694.	1.2	10
1265	Channel-Inactivating Mutations and Their Revertant Mutants in the Envelope Protein of Infectious Bronchitis Virus. Journal of Virology, 2017, 91, .	1.5	27
1266	Effect of endosomal acidification on small ion transport through the anthrax toxin <scp>PA</scp> ₆₃ channel. FEBS Letters, 2017, 591, 3481-3492.	1.3	5
1267	Functional analysis of an unusual porin-like channel that imports chitin for alternative carbon metabolism in Escherichia coli. Journal of Biological Chemistry, 2017, 292, 19328-19337.	1.6	6
1268	The dipole-modifying effect of styrylpyridinium dyes and flavonoids on model membranes of different lipid compositions. Cell and Tissue Biology, 2017, 11, 335-341.	0.2	3
1269	Engineering Enhanced Pore Sizes Using FhuA Δ1-160 from <i>E. coli</i> Outer Membrane as Template. ACS Sensors, 2017, 2, 1619-1626.	4.0	29
1270	Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Nature Protocols, 2017, 12, 1901-1911.	5.5	50
1271	Two-field surface pattern control via marginally stable magnetorheological elastomers. Soft Matter, 2017, 13, 6576-6584.	1.2	51
1272	Engineered Protein Nanopore for Real-time Monitoring Single-molecule Reaction Between Cadmium Ion and Glutathione. Chinese Journal of Analytical Chemistry, 2017, 45, 1172-1178.	0.9	6
1273	Propagation of a thermo-mechanical perturbation on a lipid membrane. Soft Matter, 2017, 13, 6555-6561.	1.2	14
1274	Peptide translocation across MOMP, the major outer membrane channel from Campylobacter jejuni. Biochemistry and Biophysics Reports, 2017, 11, 79-83.	0.7	4
1275	Nanoscale Investigation of Generation 1 PAMAM Dendrimers Interaction with a Protein Nanopore. Scientific Reports, 2017, 7, 6167.	1.6	16
1276	Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer. Scientific Reports, 2017, 7, 6857.	1.6	13
1277	Fabrication, characterisation and stability of oil-in-water emulsions stabilised by solid lipid particles: the role of particle characteristics and emulsion microstructure upon Pickering functionality. Food and Function, 2017, 8, 2583-2591.	2.1	27

#	Article	IF	CITATIONS
1278	Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides. Langmuir, 2017, 33, 14451-14459.	1.6	61
1279	Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles. ACS Nano, 2017, 11, 12492-12499.	7.3	43
1280	Detecting Interactions between Nanomaterials and Cell Membranes by Synthetic Nanopores. ACS Nano, 2017, 11, 12615-12623.	7.3	25
1281	Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization. ACS Nano, 2017, 11, 11931-11945.	7.3	23
1282	Electrophysiology of Epithelial Sodium Channel (ENaC) Embedded in Supported Lipid Bilayer Using a Single Nanopore Chip. Langmuir, 2017, 33, 13680-13688.	1.6	21
1283	Extended beta distributions open the access to fast gating in bilayer experiments—assigning the voltageâ€dependent gating to the selectivity filter. FEBS Letters, 2017, 591, 3850-3860.	1.3	13
1284	Nanopore Single-Molecule Analysis of Metal Ion–Chelator Chemical Reaction. Analytical Chemistry, 2017, 89, 7958-7965.	3.2	29
1285	Polydopamine Coating To Stabilize a Free-Standing Lipid Bilayer for Channel Sensing. Langmuir, 2017, 33, 7256-7262.	1.6	4
1286	Lipid bilayer membrane technologies: A review on single-molecule studies of DNA sequencing by using membrane nanopores. Mikrochimica Acta, 2017, 184, 1883-1897.	2.5	14
1287	Biopores/membrane proteins in synthetic polymer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 619-638.	1.4	70
1288	A Planar Bilayer Lipid Membrane Sensor Using a Miniaturized Auto-patch System. Analytical Sciences, 2017, 33, 1421-1425.	0.8	3
1289	Strategies in the Design and Use of Synthetic "Internal Glycan―Vaccines. Methods in Enzymology, 2017, 597, 335-357.	0.4	0
1290	Artificial Lipid Membranes: Past, Present, and Future. Membranes, 2017, 7, 38.	1.4	124
1291	ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels. Journal of Nanobiotechnology, 2017, 15, 90.	4.2	7
1292	Single-molecule porphyrin-metal ion interaction and sensing application. Biosensors and Bioelectronics, 2018, 109, 272-278.	5.3	23
1293	Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. Journal of General Physiology, 2018, 150, 637-646.	0.9	34
1294	Lipid Bilayers Manipulated through Monolayer Technologies for Studies of Channel-Membrane Interplay. Biological and Pharmaceutical Bulletin, 2018, 41, 303-311.	0.6	13
1295	Can We Rebuild the Cell Membrane?. , 2018, , 3-27.		2

#	Article	IF	CITATIONS
1296	Amphiphobic Septa Enhance the Mechanical Stability of Free-Standing Bilayer Lipid Membranes. Langmuir, 2018, 34, 5615-5622.	1.6	16
1297	Simulated auditory nerve axon demyelination alters sensitivity and response timing to extracellular stimulation. Hearing Research, 2018, 361, 121-137.	0.9	36
1298	Model Biological Membranes and Possibilities of Application of Electrochemical Impedance Spectroscopy for their Characterization. Electroanalysis, 2018, 30, 207-219.	1.5	13
1299	Development and application of bio-inspired microfluidics. International Journal of Modern Physics B, 2018, 32, 1840013.	1.0	6
1300	Lipid-mediated regulation of pore-forming activity of syringomycin E by thyroid hormones and xanthene dyes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 691-699.	1.4	12
1301	Lipid environment of membrane proteins in cryo-EM based structural analysis. Biophysical Reviews, 2018, 10, 307-316.	1.5	37
1302	If Squeezed, a Camel Passes Through the Eye of a Needle: Voltage-Mediated Stretching of Dendrimers Facilitates Passage Through a Nanopore. Journal of Membrane Biology, 2018, 251, 405-417.	1.0	2
1303	Sucrose solutions alter the electric capacitance and dielectric permittivity of lipid bilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 51-57.	2.3	22
1304	Toward Realistic Large-Area Cell Membrane Mimics: Excluding Oil, Controlling Composition, and Including Ion Channels. Langmuir, 2018, 34, 5880-5888.	1.6	22
1305	Biomimetic ion channels formation by emulsion based on chemically modified cyclodextrin nanotubes. Faraday Discussions, 2018, 210, 41-54.	1.6	8
1306	Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4081-4086.	3.3	38
1307	Lipid-mediated mode of action of local anesthetics on lipid pores induced by polyenes, peptides and lipopeptides. Colloids and Surfaces B: Biointerfaces, 2018, 166, 1-8.	2.5	10
1308	Ion Channels Induced by Antimicrobial Agents in Model Lipid Membranes are Modulated by Plant Polyphenols Through Surrounding Lipid Media. Journal of Membrane Biology, 2018, 251, 551-562.	1.0	14
1309	Ampicillin permeation across OmpF, the major outer-membrane channel in Escherichia coli. Journal of Biological Chemistry, 2018, 293, 7030-7037.	1.6	35
1310	Transmembrane Signaling with Lipidâ€Bilayer Assemblies as a Platform for Channelâ€Based Biosensing. Chemical Record, 2018, 18, 433-444.	2.9	1
1311	Formation of MspA channel on Nanopore-Spanning Lipid Bilayer. IOP Conference Series: Materials Science and Engineering, 2018, 394, 022067.	0.3	0
1312	Hydrogel Microelectrodes for the Rapid, Reliable, and Repeatable Characterization of Lipid Membranes. Langmuir, 2018, 34, 15166-15173.	1.6	7
1313	Regulation of the Pore-Forming Activity of Cecropin A by Local Anesthetics. Cell and Tissue Biology, 2018, 12, 331-341.	0.2	7

	CITATION	REPORT	
# 1314	ARTICLE Biologically Responsive Membranes. Interface Science and Technology, 2018, 25, 145-171.	IF 1.6	Citations 8
1315	Single-Molecule Dynamics and Discrimination between Hydrophilic and Hydrophobic Amino Acids in Peptides, through Controllable, Stepwise Translocation across Nanopores. Polymers, 2018, 10, 885.	2.0	14
1316	Passive Permeability of Planar Lipid Bilayers toÂOrganic Anions. Biophysical Journal, 2018, 115, 1931-1941.	0.2	38
1317	Residence time of singlet oxygen in membranes. Scientific Reports, 2018, 8, 14000.	1.6	17
1318	Effect of late endosomal DOBMP lipid and traditional model lipids of electrophysiology on the anthrax toxin channel activity. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2192-2203.	1.4	4
1319	Nanopore labelâ€free detection of singleâ€nucleotide deletion in Baxα/BaxΔ2. Electrophoresis, 2018, 39, 2410-2416.	1.3	9
1320	From current trace to the understanding of confined media. European Physical Journal E, 2018, 41, 99.	0.7	4
1321	Interaction of Oil and Lipids in Freestanding Lipid Bilayer Membranes Studied with Label-Free High-Throughput Wide-Field Second-Harmonic Microscopy. Langmuir, 2018, 34, 11305-11310.	1.6	15
1322	Directional control of a processive molecular hopper. Science, 2018, 361, 908-912.	6.0	69
1323	Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis. MBio, 2018, 9, .	1.8	248
1324	Single-Molecule, Real-Time Dissecting of Peptide Nucleic Acid–DNA Duplexes with a Protein Nanopore Tweezer. Analytical Chemistry, 2018, 90, 7682-7690.	3.2	27
1325	Electrode-supported biomimetic membranes: An electrochemical and surface science approach for characterizing biological cell membranes. Current Opinion in Electrochemistry, 2018, 12, 60-72.	2.5	31
1326	Phospholipid bilayers at the mercury (Hg)/water interface. Electrochimica Acta, 2018, 281, 152-161.	2.6	3
1327	Directional K+ channel insertion in a single phospholipid bilayer: Neutron reflectometry and electrophysiology in the joint exploration of a model membrane functional platform. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1742-1750.	1.1	13
1328	Reconstitution of Ion Channels in Planar Lipid Bilayers: New Approaches. Advances in Biomembranes and Lipid Self-Assembly, 2018, 27, 147-185.	0.3	4
1329	Impact of Electric Fields on the Nanoscale Behavior of Lipid Monolayers at the Surface of Graphite in Solution. Langmuir, 2018, 34, 9561-9571.	1.6	7
1330	Blocking ion channels induced by antifungal lipopeptide syringomycin E with amide-linked local anesthetics. Scientific Reports, 2018, 8, 11543.	1.6	3
1331	Advances in Membrane Proteins. , 2018, , .		0

#	Article	IF	CITATIONS
1332	Ion Channels. , 2018, , 17-45.		0
1333	Dynamics of a polyelectrolyte through aerolysin channel as a function of applied voltage and concentrationart. European Physical Journal E, 2018, 41, 58.	0.7	1
1334	Effects of Cholesterol Concentration and Osmolarity on the Fluidity and Membrane Tension of Free-standing Black Lipid Membranes. Analytical Sciences, 2018, 34, 1237-1242.	0.8	5
1335	The Persistence-Inducing Toxin HokB Forms Dynamic Pores That Cause ATP Leakage. MBio, 2018, 9, .	1.8	68
1336	Controlling Interactions of Cyclic Oligosaccharides with Heteroâ€Oligomeric Nanopores: Kinetics of Binding and Release at the Singleâ€Molecule Level. Small, 2018, 14, e1801192.	5.2	6
1337	Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chemical Reviews, 2018, 118, 8598-8654.	23.0	112
1338	Horizontal black lipid bilayer membranes for studying pore-forming toxins. Analytical Methods, 2018, 10, 3153-3161.	1.3	4
1339	Chitosugar translocation by an unexpressed monomeric protein channel. Physical Review E, 2018, 97, 052417.	0.8	3
1341	How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions?. Advances in Biomembranes and Lipid Self-Assembly, 2018, , 107-146.	0.3	12
1342	Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 335-343.	1.4	35
1343	On Modeling Diversity in Electrical Cellular Response: Data-Driven Approach. ACS Sensors, 2019, 4, 2471-2480.	4.0	2
1344	Chemistry of Lipid Membranes from Models to Living Systems: A Perspective of Hydration, Surface Potential, Curvature, Confinement and Heterogeneity. Journal of the American Chemical Society, 2019, 141, 12168-12181.	6.6	39
1345	Manipulation of charge distribution in the arginine and glutamate clusters of the OmpG pore alters sugar specificity and ion selectivity. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183021.	1.4	6
1346	Rapid Nanopore Assay for Carbapenem-Resistant Klebsiella pneumoniae. Frontiers in Microbiology, 2019, 10, 1672.	1.5	15
1347	Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes. Scientific Reports, 2019, 9, 16034.	1.6	23
1348	Exploring the Nature of Cationic Blocker Recognition by the Anthrax Toxin Channel. Biophysical Journal, 2019, 117, 1751-1763.	0.2	4
1349	The Main (Glyco) Phospholipid (MPL) of Thermoplasma acidophilum. International Journal of Molecular Sciences, 2019, 20, 5217.	1.8	8
1350	Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophysical Journal, 2019, 116, 258-269.	0.2	24

#	Article	IF	CITATIONS
1351	Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. ACS Nano, 2019, 13, 13668-13676.	7.3	76
1352	Cooperativity and Steep Voltage Dependence in a Bacterial Channel. International Journal of Molecular Sciences, 2019, 20, 4501.	1.8	2
1353	Spatiotemporal Imaging of Water in Operating Voltage-Gated Ion Channels Reveals the Slow Motion of Interfacial Ions. Nano Letters, 2019, 19, 7608-7613.	4.5	13
1354	High bandwidth approaches in nanopore and ion channel recordingsÂ-ÂA tutorial review. Analytica Chimica Acta, 2019, 1061, 13-27.	2.6	39
1355	Equivalent circuit model modified for free-standing bilayer lipid membranes beyond 1 TΩ. Japanese Journal of Applied Physics, 2019, 58, SDDK02.	0.8	3
1356	Nanopore-Assisted, Sequence-Specific Detection, and Single-Molecule Hybridization Analysis of Short, Single-Stranded DNAs. Analytical Chemistry, 2019, 91, 8630-8637.	3.2	20
1357	Temporal change of AC impedance measured across a free-standing bilayer lipid membrane. AIP Conference Proceedings, 2019, , .	0.3	0
1358	Probing membrane protein properties using droplet interface bilayers. Experimental Biology and Medicine, 2019, 244, 709-720.	1.1	14
1359	TRP Channel Reconstitution in Lipid Bilayers. Methods in Molecular Biology, 2019, 1987, 143-166.	0.4	1
1361	Photolithographic Fabrication of Micro Apertures in Dry Film Polymer Sheets for Channel Recordings in Planar Lipid Bilayers. Journal of Membrane Biology, 2019, 252, 173-182.	1.0	3
1362	Lipid Headgroup Charge and Acyl Chain Composition Modulate Closure of Bacterial β-Barrel Channels. International Journal of Molecular Sciences, 2019, 20, 674.	1.8	11
1363	Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3Dâ€Printed Microfluidic Setup. Small, 2019, 15, e1900725.	5.2	29
1364	The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. Advances in Experimental Medicine and Biology, 2019, 1117, 33-64.	0.8	67
1365	Lipid Membrane Models for Biomembrane Properties' Investigation. , 2019, , 311-340.		4
1366	The Effect of Buffers on Weak Acid Uptake by Vesicles. Biomolecules, 2019, 9, 63.	1.8	17
1367	Spatially Resolved Chemical Detection with a Nanoneedle-Probe-Supported Biological Nanopore. ACS Nano, 2019, 13, 2606-2614.	7.3	20
1368	Remotely Controlled in Situ Growth of Silver Microwires Forming Bioelectronic Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 8928-8936.	4.0	9
1369	Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. ACS Sensors, 2019, 4, 530-548.	4.0	47

#	Article	IF	CITATIONS
1370	Coupling of a viral K+-channel with a glutamate-binding-domain highlights the modular design of ionotropic glutamate-receptors. Communications Biology, 2019, 2, 75.	2.0	7
1371	Lipid Bilayer Experiments with Contact Bubble Bilayers for Patch-Clampers. Journal of Visualized Experiments, 2019, , .	0.2	6
1372	Lipid Bilayer Based Optofluidic Len. , 2019, , .		0
1373	Modulation of Photoinduced Transmembrane Currents in a Fullerene-Doped Freestanding Lipid Bilayer by a Lateral Bias. ACS Omega, 2019, 4, 18299-18303.	1.6	6
1374	Mechanisms of Regulation of Amyloid-Induced Permeability of Model Lipid Membranes by Polyphenols. Cell and Tissue Biology, 2019, 13, 312-320.	0.2	1
1375	Effects of H-bonds on sugar binding to chitoporin from Vibrio harveyi. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 610-618.	1.4	1
1376	A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure, 2019, 27, 268-280.e6.	1.6	41
1377	Membrane targeting cationic antimicrobial peptides. Journal of Colloid and Interface Science, 2019, 537, 163-185.	5.0	223
1378	Automated formation of black lipid membranes within a microfluidic device via confocal fluorescence feedback-controlled hydrostatic pressure manipulations. Analytical and Bioanalytical Chemistry, 2019, 411, 4605-4614.	1.9	3
1379	Virulenceâ€associated protein A from <i>Rhodococcus equi</i> is an intercompartmental pHâ€neutralising virulence factor. Cellular Microbiology, 2019, 21, e12958.	1.1	30
1380	Passive permeability assay of doxorubicin through model cell membranes under cancerous and normal membrane potential conditions. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 146, 133-142.	2.0	11
1381	The Structural Basis for Low Conductance in the Membrane Protein VDAC upon β-NADH Binding and Voltage Gating. Structure, 2020, 28, 206-214.e4.	1.6	28
1382	Single-Molecule Study on Interactions between Cyclic Nonribosomal Peptides and Protein Nanopore. ACS Applied Bio Materials, 2020, 3, 554-560.	2.3	8
1383	Real-time assay for exosome membrane fusion with an artificial lipid membrane based on enhancement of gramicidin A channel conductance. Biosensors and Bioelectronics, 2020, 150, 111918.	5.3	7
1384	Additional contributions to elastic energy of lipid membranes: Tilt-curvature coupling and curvature gradient. Physical Review E, 2020, 102, 042406.	0.8	11
1385	The mechanisms of action of water-soluble aminohexanoic and malonic adducts of fullerene C60 with hexamethonium on model lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183433.	1.4	5
1386	Application of N-methyl-D-aspartate receptor nanopore in screening ligand molecules. Bioelectrochemistry, 2020, 134, 107534.	2.4	1
1387	Non-Receptor-Mediated Lipid Membrane Permeabilization by the SARS-CoV-2 Spike Protein S1 Subunit. ACS Applied Materials & Interfaces, 2020, 12, 55649-55658.	4.0	21

#	Article	IF	CITATIONS
1388	Analysis of Membrane Protein Deinsertion-Associated Currents with Nanoneedle-Supported Bilayers to Discover Pore Formation Mechanisms. Langmuir, 2020, 36, 10012-10021.	1.6	12
1389	The Beauty of Asymmetric Membranes: Reconstitution of the Outer Membrane of Gram-Negative Bacteria. Frontiers in Cell and Developmental Biology, 2020, 8, 586.	1.8	21
1390	Transport Properties of Gramicidin A Ion Channel in a Free-Standing Lipid Bilayer Filled With Oil Inclusions. Frontiers in Cell and Developmental Biology, 2020, 8, 531229.	1.8	7
1391	Single-sulfur atom discrimination of polysulfides with a protein nanopore for improved batteries. Communications Materials, 2020, 1, .	2.9	36
1392	A Course of Hands-On Nanopore Experiments for Undergraduates: Single-Molecule Detection with Portable Electrochemical Instruments. Journal of Chemical Education, 2020, 97, 4345-4354.	1.1	8
1393	Soluble Cyanobacterial Carotenoprotein as a Robust Antioxidant Nanocarrier and Delivery Module. Antioxidants, 2020, 9, 869.	2.2	14
1394	Recent Advances in Liposome-Based Molecular Robots. Micromachines, 2020, 11, 788.	1.4	18
1395	Single-channel properties, sugar specificity, and role of chitoporin in adaptive survival of Vibrio cholerae type strain O1. Journal of Biological Chemistry, 2020, 295, 9421-9432.	1.6	6
1396	Kanamycin Uptake into <i>Escherichia coli</i> Is Facilitated by OmpF and OmpC Porin Channels Located in the Outer Membrane. ACS Infectious Diseases, 2020, 6, 1855-1865.	1.8	38
1397	Electroosmosis Dominates Electrophoresis of Antibiotic Transport Across the Outer Membrane Porin F. Biophysical Journal, 2020, 118, 2844-2852.	0.2	11
1398	Possible Mechanisms of Toxicity of Local Aminoamide Anesthetics: Lipid-Mediated Action of Ropivacaine. Cell and Tissue Biology, 2020, 14, 218-227.	0.2	0
1399	Influence of disulfide bonds in human beta defensin-3 on its strain specific activity against Gram-negative bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183273.	1.4	17
1400	COSMO <i>perm:</i> Mechanistic Prediction of Passive Membrane Permeability for Neutral Compounds and Ions and Its pH Dependence. Journal of Physical Chemistry B, 2020, 124, 3343-3354.	1.2	26
1401	1,3-Thiazine, 1,2,3,4-Dithiadiazole, and Thiohydrazide Derivatives Affect Lipid Bilayer Properties and Ion-Permeable Pores Induced by Antifungals. Frontiers in Cell and Developmental Biology, 2020, 8, 535.	1.8	4
1402	Alkaloids Modulate the Functioning of Ion Channels Produced by Antimicrobial Agents via an Influence on the Lipid Host. Frontiers in Cell and Developmental Biology, 2020, 8, 537.	1.8	15
1403	Recessed Ag/AgCl Microelectrode-Supported Lipid Bilayer for Nanopore Sensing. Analytical Chemistry, 2020, 92, 10856-10862.	3.2	17
1404	Rapid lipid bilayer membrane formation on Parylene coated apertures to perform ion channel analyses. Biomedical Microdevices, 2020, 22, 32.	1.4	6
1405	Discovery of Amphamide, a Drug Candidate for the Second Generation of Polyene Antibiotics. ACS Infectious Diseases, 2020, 6, 2029-2044.	1.8	17

#	Article	IF	CITATIONS
1406	Effect of polyelectrolyte structure on formation of supported lipid bilayers on polyelectrolyte multilayers prepared using the layer-by-layer method. Journal of Colloid and Interface Science, 2020, 569, 211-218.	5.0	3
1407	Crowding-Induced DNA Translocation through a Protein Nanopore. Analytical Chemistry, 2020, 92, 3827-3833.	3.2	18
1408	Comparing Current Noise in Biological and Solid-State Nanopores. ACS Nano, 2020, 14, 1338-1349.	7.3	119
1409	Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features. Journal of Biological Chemistry, 2020, 295, 4224-4236.	1.6	21
1410	Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations. Communications Chemistry, 2020, 3, .	2.0	17
1411	Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels. Chemical Record, 2020, 20, 730-742.	2.9	22
1412	Crystallization at droplet interfaces for the fabrication of geometrically programmed synthetic magnetosomes. Soft Matter, 2020, 16, 5819-5826.	1.2	1
1413	Single-entity electrochemistry at confined sensing interfaces. Science China Chemistry, 2020, 63, 589-618.	4.2	38
1414	Membrane/Water Partitioning and Permeabilities of Perfluoroalkyl Acids and Four of their Alternatives and the Effects on Toxicokinetic Behavior. Environmental Science & Technology, 2020, 54, 5051-5061.	4.6	36
1415	Physicochemical and Electrochemical Aspects of the Functioning of Biological Membranes. Russian Journal of Physical Chemistry A, 2020, 94, 471-476.	0.1	0
1416	Single-molecule conformational dynamics of viroporin ion channels regulated by lipid-protein interactions. Bioelectrochemistry, 2021, 137, 107641.	2.4	9
1417	Influence of Neuronal Morphology on the Shape of Extracellular Recordings With Microelectrode Arrays: A Finite Element Analysis. IEEE Transactions on Biomedical Engineering, 2021, 68, 1317-1329.	2.5	10
1418	Nanopore Technology. Methods in Molecular Biology, 2021, , .	0.4	1
1420	Strategies for enzymological studies and measurements of biological molecules with the cytolysin A nanopore. Methods in Enzymology, 2021, 649, 567-585.	0.4	3
1421	Design and Development of Software and Hardware Modules of Bioimpedance System Using LTSpice. Lecture Notes in Electrical Engineering, 2021, , 187-199.	0.3	0
1422	Specific adsorption of trivalent cations in biological nanopores determines conductance dynamics and reverses ionic selectivity. Physical Chemistry Chemical Physics, 2021, 23, 1352-1362.	1.3	4
1423	Simultaneous detection of multiple proteases using a non-array nanopore platform. Nanoscale, 2021, 13, 13658-13664.	2.8	6
1424	Combining in vitro translation with nanodisc technology and functional reconstitution of channels in planar lipid bilayers. Methods in Enzymology, 2021, 652, 293-318.	0.4	3

#	Article	IF	CITATIONS
1427	Simulated auditory fiber myelination heterogeneity desynchronizes population responses to electrical stimulation limiting inter-aural timing difference representation. Journal of the Acoustical Society of America, 2021, 149, 934-947.	0.5	7
1428	The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chemical Reviews, 2021, 121, 5597-5631.	23.0	31
1429	Loss of Chloride Channel 6 (CLC-6) Affects Vascular Smooth Muscle Contractility and Arterial Stiffness via Alterations to Golgi Calcium Stores. Hypertension, 2021, 77, 582-593.	1.3	9
1430	Tamoxifen inhibits the anion channel induced by Staphylococcus aureus α-hemolysin: electrophysiological and docking analysis. Research, Society and Development, 2021, 10, e13010212326.	0.0	2
1431	Rapid fabrication of teflon apertures by controlled high voltage pulses for formation of free standing planar lipid bilayer membrane. Biomedical Microdevices, 2021, 23, 12.	1.4	2
1432	Is the Membrane Lipid Matrix a Key Target for Action of Pharmacologically Active Plant Saponins?. International Journal of Molecular Sciences, 2021, 22, 3167.	1.8	8
1433	Advances in Artificial Bilayer Lipid Membranes as a Novel Biosensing Platform: From Drug-screening to Self-assembled Devices. Chemistry Letters, 2021, 50, 418-425.	0.7	9
1434	The Effects of Dicyclohexylcarbamimidoyl Oximes on the Properties of Model Lipid Membranes. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2021, 15, 167-174.	0.3	0
1435	Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology. Membranes, 2021, 11, 319.	1.4	10
1436	Water Pores in Planar Lipid Bilayers at Fast and Slow Rise of Transmembrane Voltage. Membranes, 2021, 11, 263.	1.4	7
1437	Artificial Cell Membrane Sensors with Membrane Proteins. Vacuum and Surface Science, 2021, 64, 162-167.	0.0	0
1438	Insertion state of modular protein nanopores into a membrane. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183570.	1.4	3
1439	Constructing ion channels from water-soluble α-helical barrels. Nature Chemistry, 2021, 13, 643-650.	6.6	59
1440	Why Do Tethered-Bilayer Lipid Membranes Suit for Functional Membrane Protein Reincorporation?. Applied Sciences (Switzerland), 2021, 11, 4876.	1.3	8
1441	Hydrodynamic shear dissipation and transmission in lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
1442	Hydrophobic Gating and 1/f Noise of the Anthrax Toxin Channel. Journal of Physical Chemistry B, 2021, 125, 5466-5478.	1.2	4
1443	Stable polymer bilayers for protein channel recordings at high guanidinium chloride concentrations. Biophysical Journal, 2021, 120, 1537-1541.	0.2	13
1444	The geometry of diphtheria toxoid CRM197 channel assessed by thiazolium salts and nonelectrolytes.	0.2	О

#	Article	IF	CITATIONS
1445	Probing the physiological roles of the extracellular loops of chitoporin from Vibrio campbellii. Biophysical Journal, 2021, 120, 2124-2137.	0.2	3
1446	Transport mechanisms of SARS-CoV-E viroporin in calcium solutions: Lipid-dependent Anomalous Mole Fraction Effect and regulation of pore conductance. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183590.	1.4	13
1447	Tuning the Diameter, Stability, and Membrane Affinity of Peptide Pores by DNA-Programmed Self-Assembly. ACS Nano, 2021, 15, 11263-11275.	7.3	17
1448	Neutron reflectometry study of the interface between two immiscible electrolyte solutions: Effects of electrolyte concentration, applied electric field, and lipid adsorption Electrochimica Acta, 2021, 384, 138336.	2.6	4
1450	Silver Nanoneedle Probes Enable Sustained DC Current, Single-Channel Resistive Pulse Nanopore Sensing. Analytical Chemistry, 2021, 93, 11568-11575.	3.2	5
1451	Nanopore sensing: A physical-chemical approach. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183644.	1.4	27
1452	Enabling High Structural Specificity to Lipidomics by Coupling Photochemical Derivatization with Tandem Mass Spectrometry. Accounts of Chemical Research, 2021, 54, 3873-3882.	7.6	26
1453	Teaching an old dog new tricks: a lipid membraneâ€based electric immunosensor for realâ€time probing of the spike S 1 protein subunit from SARS oVâ€2. Proteomics, 2021, , 2100047.	1.3	3
1454	Parallel Recordings of Transmembrane hERG Channel Currents Based on Solvent-Free Lipid Bilayer Microarray. Micromachines, 2021, 12, 98.	1.4	4
1455	Efficient Lipid Bilayer Formation by Dipping Lipid-Loaded Microperforated Sheet in Aqueous Solution. Micromachines, 2021, 12, 53.	1.4	2
1456	Lateral voltage as a new input for artificial lipid bilayer systems. Faraday Discussions, 2021, 233, 244-256.	1.6	2
1459	Mathematical Modeling of Transport of Lipid-Soluble Ions and Ion-Carrier Complexes Through Lipid Bilayer Membranes. Advances in Chemical Physics, 0, , 99-137.	0.3	25
1461	Electrical properties of polymerized, planar, bimolecular membranes. , 1987, , 134-141.		7
1462	Nanopores: Generation, Engineering, and Single-Molecule Applications. , 2009, , 293-339.		11
1463	Stochastic Detection of Terrorist Agents and Biomolecules in a Biological Channel. , 2011, , 313-334.		2
1464	Charge Transport Across Lipid Bilayer Membranes: Lipophilic Ions, Ion Carriers and Channels. , 1987, , 197-217.		2
1465	Membranes. , 1984, , 1-69.		3
1466	Reconstitution of Membrane Molecular Mechanisms in Bilayer Lipid Membranes and Patch-Clamp Bilayers. Sub-Cellular Biochemistry, 1989, 14, 97-143.	1.0	4

# 1467	ARTICLE Reconstitution of Acetylcholine Receptors into Planar Lipid Bilayers. Sub-Cellular Biochemistry, 1989, 14, 339-362.	IF 1.0	CITATIONS 6
1468	The Application of Planar Lipid Bilayers to the Study of Plant Ion Channels. , 1992, , 119-133.		3
1469	Functional, Conformational, and Molecular Modelling Studies of Voltage-Sensitivity and Selectivity of Synthetic Peptides Derived from Ion Channels. , 1996, , 41-62.		2
1470	Channel Protein Engineering. , 1990, , 1-31.		9
1471	On the Nature of the Lipid—Protein Interactions in Biological Membranes. , 1976, , 229-244.		4
1472	Reconstitution of Membrane Transport Functions. , 1979, , 1-31.		5
1473	Incorporation of Transport Molecules into Black Lipid Membranes. , 1979, , 215-245.		2
1474	The Molecular Basis of Neurotransmission: Structure and Function of the Nicotinic Acetylcholine Receptor. , 1985, , 335-401.		17
1475	From Brain to Bilayer. , 1986, , 273-290.		2
1476	The Physical Nature of Planar Bilayer Membranes. , 1986, , 3-35.		44
1477	Gating of Batrachotoxin-Activated Sodium Channels in Lipid Bilayers. , 1986, , 363-383.		10
1478	The Sarcoplasmic Reticulum Potassium Channel. , 1986, , 469-482.		4
1479	Incorporation of Ion Channels by Fusion. , 1986, , 141-153.		11
1480	The Reconstituted Acetylcholine Receptor. , 1986, , 157-204.		35
1481	Analysis of Macrophage Differentiation and Function with Monoclonal Antibodies. , 1984, 13, 1-31.		9
1482	Reconstitution of Muscle Calcium Channel Function in Bilayer Membranes. , 1993, , 99-140.		1
1483	Lipids, Oligomers, and Proteins. , 1993, , 7-49.		2
1484	Rhodopsin in Cell Membranes and the Process of Phototransduction. , 1976, , 365-405.		9

#	Article	IF	CITATIONS
1485	Polycationic Probe-Guided Nanopore Single-Molecule Counter for Selective miRNA Detection. Methods in Molecular Biology, 2017, 1632, 255-268.	0.4	4
1486	Nanotechnology with S-layer Proteins. Methods in Molecular Biology, 2020, 2073, 195-218.	0.4	7
1487	Nanopore Single-Molecule Detection of Circulating MicroRNAs. Methods in Molecular Biology, 2013, 1024, 255-268.	0.4	13
1488	Single Channel Analysis of Membrane Proteins in Artificial Bilayer Membranes. Methods in Molecular Biology, 2013, 1033, 345-361.	0.4	11
1489	Channels formed by M2 peptides of a putative glutamate receptor subunit of locust. , 1993, 63, 241-249.		4
1490	Permeability Properties of Unmodified Lipid Bilayer Membranes. , 1978, , 369-446.		7
1491	Polyene Antibiotics: Nystatin, Amphotericin B, and Filipin. , 1979, , 313-340.		13
1492	Rhodopsin in Experimental Membranes: An Approach to Elucidate Its Role in the Process of Phototransduction. , 1975, , 316-338.		3
1493	Bilayer Dynamics Studies Using Capacitance Relaxation. , 1975, , 104-120.		2
1494	Studies on the Gramicidin Channel. Proceedings in Life Sciences, 1977, , 179-201.	0.5	8
1495	Optical Spectroscopy of Monolayers, Multilayer Assemblies, and Single Model Membranes. Molecular Biology, Biochemistry, and Biophysics, 1981, 31, 172-198.	0.1	3
1496	Electrostatic Potentials of Bilayer Lipid Membranes: Basic Principles and Analytical Applications. Springer Series on Chemical Sensors and Biosensors, 2004, , 255-291.	0.5	13
1497	Effect of Novobiocin on Cation Channel Formation and Enhancement of Salt Taste. , 1994, , 104-107.		2
1498	Modulation of Ionophore Properties by Chemical Modifications of Synthetic Alamethicin Analogues. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1988, , 67-76.	0.2	2
1499	Functional reconstitution of membrane proteins in planar lipid bilayer membranes. , 1986, , 97-128.		2
			2
1500	Physics of DNA Threading through a Nanometer Pore and Applications to Simultaneous Multianalyte Sensing. , 2002, , 141-163.		8
1500 1501	Physics of DNA Threading through a Nanometer Pore and Applications to Simultaneous Multianalyte		

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1503	Long-Range Order in Biomembranes. Advances in Lipid Research, 1977, 15, 1-60.		1.8	155
1504	Functional and Orientational Features of Protein Molecules in Reconstituted Lipid Memb Advances in Lipid Research, 1985, 21, 281-428.	ranes.	1.8	16
1505	lonophores and Ion Transport Across Natural Membranes. Current Topics in Bioenergetic 147-177.	s, 1979, 9,	2.7	11
1506	Comparison of α-Toxin of Staphylococcus aureus and Aerolysin for Formation of Ion-Perr Channels. Methods in Neurosciences, 1992, , 1-14.	meable	0.5	1
1507	LIPID-PROTEIN ASSEMBLY AND THE RECONSTITUTION OF BIOLOGICAL MEMBRANES. , 1	974, , 591-622.		12
1508	ARTIFICIAL LIPID MEMBRANES AS POSSIBLE TOOLS FOR THE STUDY OF ELEMENTARY PHREACTIONS. , 1974, , 645-659.	IOTOSYNTHETIC		1
1509	Membrane Potential of Phospholipid Bilayer and Biological Membranes. Progress in Surfa Membrane Science, 1976, 10, 117-252.	ice and	0.9	20
1510	Prospects for Atomic Resolution Electron Microscopy in Membranology. Progress in Surf. Membrane Science, 1976, 11, 227-340.	ace and	0.9	3
1511	Molecular mechanisms of gossypol action on lipid membranes Journal of Biological Cher 259, 9607-9615.	mistry, 1984,	1.6	63
1512	Comparison of the macroscopic and single channel conductance properties of colicin E1 COOH-terminal tryptic peptide Journal of Biological Chemistry, 1983, 258, 9908-9912.	and its	1.6	72
1513	Interaction with phospholipid bilayers, ion channel formation, and antimicrobial activity c amphipathic alpha-helical model peptides of various chain lengths Journal of Biological (1991, 266, 20218-20222.		1.6	83
1514	Formation of cation channels in planar lipid bilayers by brefeldin A Journal of Biological (1991, 266, 18443-18445.	Chemistry,	1.6	15
1515	The ninth component of human complement (C9). Functional activity of the b fragment. Biological Chemistry, 1986, 261, 9629-9636.	. Journal of	1.6	22
1516	Direct measurement of the electrogenicity of the H+-ATPase from thermophilic bacteriun reconstituted in planar phospholipid bilayers Journal of Biological Chemistry, 1986, 261		1.6	45
1517	Membrane damage by hemolytic viruses, toxins, complement, and other cytotoxic agent mechanism blocked by divalent cations Journal of Biological Chemistry, 1986, 261, 930		1.6	204
1518	Steady State Kinetics of Proton Translocation Catalyzed by Thermophilic F0F1-ATPase Re Planar Bilayer Membranes. Journal of Biological Chemistry, 1989, 264, 6092-6096.	constituted in	1.6	31
1519	CD4+ lipid bilayers. A model for human immunodeficiency virus type 1 coat protein bindi Biological Chemistry, 1991, 266, 11433-11435.	ng. Journal of	1.6	2
1520	Measurement of steady-state Ca2+ pump current caused by purified Ca2(+)-ATPase of sa reticulum incorporated into a planar bilayer lipid membrane Journal of Biological Chemis 265, 2488-2491.	arcoplasmic stry, 1990,	1.6	19

	Сіт	ation Report	
#	Article	IF	CITATIONS
1521	Effect of membrane potential on divalent cation transport catalyzed by the "electroneutral― ionophores A23187 and ionomycin. Journal of Biological Chemistry, 1989, 264, 19630-19636.	1.6	66
1522	Biochemical and Functional Characterization of a Membrane-associated Pore-forming Protein from the Pathogenic Ameboflagellate Naegleria fowleri. Journal of Biological Chemistry, 1989, 264, 1077-1083.	1.6	43
1523	A voltage-gated anion channel from the electric organ of Torpedo californica Journal of Biological Chemistry, 1979, 254, 10161-10166.	1.6	179
1524	11. Lipid Model Membranes. Methods in Experimental Physics, 1982, , 513-543.	0.1	4
1525	Artificial ion channels. Advances in Supramolecular Chemistry, 1997, , 163-210.	1.8	17
1526	Cell Surface Models on Polymer Supports – From Artificial Membranes to Native Cells. Behavior Research Methods, 2005, 2, 95-120.	2.3	1
1527	Purification, characterization and sequence analysis of Omp50,a new porin isolated from Campylobacter jejuni. Biochemical Journal, 2000, 352, 637-643.	1.7	32
1529	A Major Outer Membrane Protein of <i>Rahnella aquatilis</i> Functions as a Porin and Root Adhesin. Journal of Bacteriology, 1998, 180, 909-913.	1.0	21
1530	An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. Journal of Virology, 1994, 68, 7115-7123.	1.5	109
1531	Characterization of the ion channels formed by poliovirus in planar lipid membranes. Journal of Virology, 1997, 71, 507-511.	1.5	79
1532	Crystalline Bacterial Cell Surface Layers (S-Layers). , 2005, , .		5
1534	Substrate Specificity within a Family of Outer Membrane Carboxylate Channels. PLoS Biology, 2012, 10 e1001242.), 2.6	107
1535	How β-Lactam Antibiotics Enter Bacteria: A Dialogue with the Porins. PLoS ONE, 2009, 4, e5453.	1.1	83
1536	The Interaction of Dipole Modifiers with Polyene-Sterol Complexes. PLoS ONE, 2012, 7, e45135.	1.1	21
1537	Dynamic Response of Model Lipid Membranes to Ultrasonic Radiation Force. PLoS ONE, 2013, 8, e771	15. 1.1	69
1538	Measurement of Ensemble TRPV1 Ion Channel Currents Using Droplet Bilayers. PLoS ONE, 2015, 10, e0141366.	1.1	2
1539	Pore-forming activity of new conjugate antibiotics based on amphotericin B. PLoS ONE, 2017, 12, e0188573.	1.1	21
1540	Single-molecule study of full-length NaChBac by planar lipid bilayer recording. PLoS ONE, 2017, 12, e0188861.	1.1	5

	C	TATION REPORT	
#	Article	IF	Citations
1541	Ion Channels on Silicon. E-Journal of Surface Science and Nanotechnology, 2005, 3, 184-189.	0.1	5
1542	Periphery Decorated and Core Initiated Neutral and Polyanionic Borane Large Molecules: Forthcoming and Promising Properties for Medicinal Applications. Current Medicinal Chemistry, 2019, 26, 5036-50	g <u>1.2</u> 76. ^{1.2}	29
1543	Mechanistic aspects of maltotriose-conjugate translocation to the Gram-negative bacteria cytoplasm Life Science Alliance, 2019, 2, e201800242.	. 1.3	11
1544	Investigation of Channel-Forming Activity of Polyene Macrolide Antibiotics in Planar Lipid Bilayers in the Presence of Dipole Modifiers. Acta Naturae, 2014, 6, 67-79.	1.7	15
1545	Modifiers of the Dipole Potential of Lipid Bilayers. Acta Naturae, 2015, 7, 70-79.	1.7	18
1546	The Mechanisms of Action of Triindolylmethane Derivatives on Lipid Membranes. Acta Naturae, 2019 38-45.	, 11, 1.7	5
1547	Two-Dimensional Correlation Analysis of Sum-Frequency Vibrational Spectra of Langmuir Monolayers. Journal of the Optical Society of Korea, 2014, 18, 558-563.	0.6	2
1548	The lipid organisation of the cell membrane. Grasas Y Aceites, 2000, 51, .	0.3	2
1549	Development and application of bio-inspired and biomimetic microfluidics. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 178301.	0.2	3
1550	Allosteric signalling in the outer membrane translocation domain of PapC usher. ELife, 2014, 3, .	2.8	18
1551	Cooperative regulation by G proteins and Na+ of neuronal GIRK2 K+ channels. ELife, 2016, 5, .	2.8	42
1552	Imaging Cu2+ binding to charged phospholipid membranes by high-throughput second harmonic wide-field microscopy. Journal of Chemical Physics, 2021, 155, 184704.	1.2	3
1553	Copper-Containing Nanoparticles and Organic Complexes: Metal Reduction Triggers Rapid Cell Death via Oxidative Burst. International Journal of Molecular Sciences, 2021, 22, 11065.	1.8	9
1554	Plant Alkaloids Inhibit Membrane Fusion Mediated by Calcium and Fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 Fusion Peptides. Biomedicines, 2021, 9, 1434.	1.4	12
1556	Properties of Heterologously and Lipid Bilayer Reconstituted Nicotinic Acetylcholine Receptors. Handbook of Experimental Pharmacology, 2000, , 359-378.	0.9	0
1557	The patch-clamp on-chip technology. , 2002, , 29-40.		0
1558	The Early Receptor Potential and its Analog in Bacteriorhodopsin Membranes. , 2003, , .		0
1559	Crystalline Bacterial Cell Surface Layers (S-Layers): A Versatile Self-Assembly System. , 2005, , 597-63	0	1

#	Article	IF	CITATIONS
1561	Strategies for Integrating Membrane Proteins in Biomembranes. Biological and Medical Physics Series, 2011, , 251-271.	0.3	0
1562	Cell Membrane Biology and Juxtacrine Signal Conversion. , 2014, , 1-25.		Ο
1563	Effect of Pressure, Surface Tension and Rest Potential on Osteo Intra Organelle Nanoporation in an Advanced Micro Chip. Journal of Cell Science & Therapy, 2014, 05, .	0.3	0
1564	The composition and structure of excitable nerve membrane. , 1977, , 172-205.		2
1565	Membranes and Cell Coats. , 1977, , 252-300.		0
1566	The Anatomy of Biological Interfaces. , 1978, , 1-26.		2
1567	Transport Processes in Membranes: A Consideration of Membrane Potential across Thick and Thin Membranes. , 1979, 6, 401-494.		6
1568	ELECTRICAL AND PHOTOELECTRICAL TRANSPORT PROPERTIES OF LANGMUIR–BLODGETT FILMS AND A DISCUSSION OF POSSIBLE DEVICE APPLICATIONS. , 1980, , 135-171.		0
1569	The Anatomy of Biological Interfaces. , 1980, , 1-26.		0
1570	The Lipid Bilayer: A Model System for Biological Membranes. , 1980, , 377-390.		1
1571	A NOVEL CONCEPT OF MEMBRANE RECONSTITUTION APPLIED TO ACETYLCHOLINE RECEPTOR FROM TORPEDO AND MATRIX PROTEIN FROM ESCHERICHIA COLI. , 1980, , 291-298.		0
1573	Reconstitution of the Acetylcholine Receptor in Lipid Vesicles and in Planar Lipid Bilayers. , 1982, , 331-338.		Ο
1574	The Anatomy of Biological Interfaces. , 1986, , 3-24.		0
1575	Theory of Stabilization of Amphiphilic Films Due to Surface Interaction Induced Order. , 1986, , 995-1004.		0
1576	Electrical Properties of Ionic Channels Formed by Helix Pomatia Hemocyanin in Planar Lipid Bilayers. , 1986, , 361-364.		0
1578	The Cholinergic Ligand Binding Material of Axonal Membranes. Advances in Behavioral Biology, 1986, , 439-446.	0.2	0
1579	The Anatomy of Biological Interfaces. , 1987, , 3-24.		0
1580	Membrane Proteins. , 1987, , 65-133.		1

#	Article	Citations
1581	Internal Electric Fields Generated by Surface Charges and Induced by Visible Light in Bacteriorhodopsin Membranes. , 1987, , 161-186.	1
1582	Cytolytic Pore-Forming Proteins. , 1988, , 9-43.	0
1584	Chemically Driven Phase Separation in Black Lipid Membranes. , 1990, , 241-248.	0
1585	Reconstitution of H+ATPase into Planar Phospholipid Bilayers and Its Kinetic Analysis. , 1990, , 233-240.	0
1586	Control of Water Permeability by Divalent Cations. , 1992, , 347-356.	0
1588	Mechanical Properties of Lipid Bilayers and Protein-Lipid Interactions. , 1999, , 235-238.	0
1589	Design and Synthesis of Apoptosis-Inducing Small Protein (SGP) Seibutsu Butsuri, 1999, 39, 386-389. 0.0	0
1591	Biomimetic Gustatory Membrane-Based Taste Sensors. , 2015, , 265-287.	Ο
1593	4.ä≌å·¥ç″èfžè†œä½œè£½ãïã,ĩãf³ã,ºãf«ã,ªãf³ãfãf£ãfãf«è∽æ,¬. Electrochemistry, 2015, 83, 1096-1100. 0.6	0
1594	Bioderived Smart Materials. , 2016, , 238-251.	Ο
1595	Gating Dynamics of the Potassium Channel Pore \hat{a} , 2017, .	1
1596	O NANOPORO PROTEICO UNITÃRIO DA α-HEMOLISINA DETECTA POLIVINILÃŁCOOL?. , 0, , .	Ο
1597	A Statistical Approach of Thermal Transport at Nanoscales: From Solid-State to Biological Applications. , 2018, , 1-28.	0
1598	NANOPORO DA ALFATOXINA NA DETECÃ \ddagger Ã f O DE PESTICIDA DA CLASSE DOS ORGANOESTÃ,NICOS. , 0, , .	Ο
1599	Ion Channel Formation in Bilayer Lipid Membranes. , 2018, , 278-287.	0
1600	COMPLEXIDADE DE LEMPEL-ZIV NA ANÃLISE DO PARTICIONAMENTO DO POLIETILENOGLICOL NO NANOPORO DE ALFA-HEMOLISINA. , 0, , .	Ο
1601	Label-free dynamic lipid membrane potential imaging. , 2019, , .	0
1602	SOLVENTES VERDES? TALVEZ NÃO: UM ESTUDO SOBRE A INFLUÊNCIA DOS LÃQUIDOS IÔNICOS IMIDAZÓLICOS EM BICAMADAS LIPÃDICAS. , 0, , .	Ο

#	Article	IF	Citations
1603	THE LIPID BILAYER COMPOSITION INFLUENCES ON INTERACTION OF POLYANIONS WITH ALPHA-HEMOLYSIN CHANNEL. , 0, , .		0
1604	ANĂLISE DA MEMĂ"RIA DE LONGO ALCANCE NO PROCESSO CINÉTICO DO CANAL IÔNICO FORMADO POR GRAMICIDINA A. , 0, , .		0
1606	Fundamentals of Biological Nanopore Electrochemistry. RSC Detection Science, 2020, , 9-43.	0.0	0
1608	Single Ion-Channel Analysis in Droplet Interface Bilayer. Methods in Molecular Biology, 2021, 2186, 187-195.	0.4	2
1609	Dielectric Properties of Phosphatidylcholine Membranes and the Effect of Sugars. Membranes, 2021, 11, 847.	1.4	11
1610	Model Photoresponsive Membranes. , 1983, , 337-354.		1
1611	A Statistical Approach of Thermal Transport at Nanoscales: From Solid-State to Biological Applications. , 2020, , 887-915.		0
1613	Capacitance extraction method for a free-standing bilayer lipid membrane formed over an aperture in a nanofabricated silicon chip. Japanese Journal of Applied Physics, 2020, 59, SIIK02.	0.8	0
1614	The ability of carbon nanoparticles to increase transmembrane current of cations coincides with impaired synaptic neurotransmission. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183817.	1.4	5
1615	Synthetic antibacterial peptides derived from insect defensin isolated from a beetle, Allomyrina dichotoma. , 1999, , 691-692.		0
1616	Assembly Modulation of Channel-Forming Peptides. , 2002, , 87-104.		0
1619	Nanopore Enzymology to Study Protein Kinases and Their Inhibition by Small Molecules. Methods in Molecular Biology, 2021, 2186, 95-114.	0.4	0
1620	Design and Creation of Functional Membrane-Interacting Peptides. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 1058-1065.	0.0	1
1621	Frequency response of alternating currents through the Staphylococcus aureus alpha-hemolysin ion channel. Bioelectromagnetics, 2001, 22, 487-93.	0.9	4
1625	An ion-channel forming protein produced by Entamoeba histolytica. EMBO Journal, 1982, 1, 801-4.	3.5	52
1626	Reconstitution of highly purified saxitoxin-sensitive Na+-channels into planar lipid bilayers. EMBO Journal, 1984, 3, 509-15.	3.5	15
1627	Purification, characterization and sequence analysis of Omp50,a new porin isolated from Campylobacter jejuni. Biochemical Journal, 2000, 352 Pt 3, 637-43.	1.7	20
1628	Investigation of channel-forming activity of polyene macrolide antibiotics in planar lipid bilayers in the presence of dipole modifiers. Acta Naturae, 2014, 6, 67-79.	1.7	6

#	Article	IF	CITATIONS
1629	Modifiers of the Dipole Potential of Lipid Bilayers. Acta Naturae, 2015, 7, 70-9.	1.7	3
1630	Effect of the cholesterol on electroporation of planar lipid bilayer. Bioelectrochemistry, 2022, 144, 108004.	2.4	7
1631	Synthetic Cell as a Platform for Understanding Membrane-Membrane Interactions. Membranes, 2021, 11, 912.	1.4	12
1632	Phosphodiesterase Type 5 Inhibitors Greatly Affect Physicochemical Properties of Model Lipid Membranes. Membranes, 2021, 11, 893.	1.4	3
1633	Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Frontiers in Physiology, 2021, 12, 798102.	1.3	14
1634	Dynorphin A induces membrane permeabilization by formation of proteolipidic pores. Insights from electrophysiology and computational simulations. Computational and Structural Biotechnology Journal, 2022, 20, 230-240.	1.9	4
1635	Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nature Communications, 2022, 13, 52.	5.8	49
1636	Studying the Mechanics of Membrane Permeabilization through Mechanoelectricity. ACS Applied Materials & Interfaces, 2022, 14, 6120-6130.	4.0	3
1638	Probing protein nanopores with poly(ethylene glycol)s. Proteomics, 2022, 22, e2100055.	1.3	4
1639	Simulations reveal that antimicrobial BP100 induces local membrane thinning, slows lipid dynamics and favors water penetration. RSC Advances, 2022, 12, 4573-4588.	1.7	4
1640	Electrodeâ€supported and freeâ€standing bilayer lipid membranes: Formation and uses in molecular electrochemistry. Electrochemical Science Advances, 0, , .	1.2	2
1641	Functional activity of peptide ion channels in tethered bilayer lipid membranes: Review. Electrochemical Science Advances, 2022, 2, .	1.2	5
1642	Microcavity volume control on a tip of Ag/AgCl electrodes for stable channel current measurements of biological nanopores. Analyst, The, 2022, 147, 1191-1198.	1.7	3
1643	Correlation between structure and function in phosphatidylinositol lipid–dependent Kir2.2 gating. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114046119.	3.3	3
1644	Silicon Nitride-Based Micro-Apertures Coated with Parylene for the Investigation of Pore Proteins Fused in Free-Standing Lipid Bilayers. Membranes, 2022, 12, 309.	1.4	3
1645	Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells, 2022, 11, 921.	1.8	7
1646	Solution Structures of Bacillus anthracis Protective Antigen Proteins Using Small Angle Neutron Scattering and Protective Antigen 63 Ion Channel Formation Kinetics. Toxins, 2021, 13, 888.	1.5	1
1648	A Singleâ€Molecule Insight into the Ionic Strengthâ€dependent, Cationic Peptide Nucleic Acidsâ€Oligonucleotides Interactions. Chemistry - an Asian Journal, 2022, 17, .	1.7	5

#	Article	IF	CITATIONS
1649	Water as a contrast agent to quantify surface chemistry and physics using second harmonic scattering and imaging: A perspective. Applied Physics Letters, 2022, 120, .	1.5	9
1651	Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner. ACS Nano, 2022, 16, 7701-7712.	7.3	6
1659	Characterization of H+/OHâ^' currents in phospholipid vesicles. Journal of Bioenergetics and Biomembranes, 1987, 19, 443-455.	1.0	15
1660	Fifty Years of Research on Protonophores: Mitochondrial Uncoupling As a Basis for Therapeutic Action. , 2022, 14, 4-13.		20
1661	The application of single molecule nanopore sensing for quantitative analysis. Chemical Society Reviews, 2022, 51, 3862-3885.	18.7	28
1662	Investigation of the Electrical properties of Phosphatidylserine Lipid Bilayer Membranes. , 2022, , .		0
1663	Experimental Investigations on the Conductance of Lipid Membranes under Differential Hydrostatic Pressure. Membranes, 2022, 12, 479.	1.4	1
1664	Impact of cholesterol and sphingomyelin on intrinsic membrane permeability. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183953.	1.4	5
1665	Historical Perspective of Pore-Forming Activity Studies of Voltage-Dependent Anion Channel (Eukaryotic or Mitochondrial Porin) Since Its Discovery in the 70th of the Last Century. Frontiers in Physiology, 2021, 12, 734226.	1.3	6
1666	Electrically controlling and optically observing the membrane potential of supported lipid bilayers. Biophysical Journal, 2022, 121, 2624-2637.	0.2	3
1667	Structural Organization and Properties of Membrane Lipids. , 2001, , 43-63.		0
1668	Cell Membranes and Model Membranes. , 2001, , 65-79.		0
1669	The Dependence of the Channel-Forming Ability of Lantibiotics on the Lipid Composition of the Membranes. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2022, 16, 144-150.	0.3	0
1670	Membrane disruptive action of cationic antiâ \in bacterial peptide B1CTcu3. ChemBioChem, 0, , .	1.3	2
1671	Modeling of SGLT1 in Reconstituted Systems Reveals Apparent Ion-Dependencies of Glucose Uptake and Strengthens the Notion of Water-Permeable Apo States. Frontiers in Physiology, 0, 13, .	1.3	3
1672	A chip-based array for high-resolution fluorescence characterization of free-standing horizontal lipid membranes under voltage clamp. Lab on A Chip, 2022, 22, 2902-2910.	3.1	4
1673	3D Artificial Cell Membranes as Versatile Platforms for Biological Applications. Biochip Journal, 0, , .	2.5	1
1674	Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids. Journal of Physical Chemistry B, 2022, 126, 5842-5854.	1.2	4

# 1675	ARTICLE Chip platforms with synthetic lipid bilayers for electrophysiological analyses of pore proteins and extracellular vesicles. Elektrotechnik Und Informationstechnik, 0, , .	IF 0.7	CITATIONS
1676	Probing the Hepatitis B Virus E-Antigen with a Nanopore Sensor Based on Collisional Events Analysis. Biosensors, 2022, 12, 596.	2.3	3
1677	Effect of solid support and membrane tension on adsorption and lateral interaction of amphipathic peptides. Journal of Chemical Physics, 2022, 157, .	1.2	1
1678	Systemization Technology for Molecular Robots. , 2022, , 59-115.		0
1680	Enzymology on an Electrode and in a Nanopore: Analysis Algorithms, Enzyme Kinetics, and Perspectives. BioNanoScience, 0, , .	1.5	5
1681	Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials. Membranes, 2022, 12, 906.	1.4	4
1682	Single-channel characterization of the chitooligosaccharide transporter chitoporin (SmChiP) from the opportunistic pathogen Serratia marcescens. Journal of Biological Chemistry, 2022, 298, 102487.	1.6	0
1683	New Aspects of Bilayer Lipid Membranes for the Analysis of Ion Channel Functions. Membranes, 2022, 12, 863.	1.4	4
1684	Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma. Journal of Materials Chemistry B, 2022, 10, 9794-9815.	2.9	8
1685	Chromone-Containing Allylmorpholines Influence Ion Channels in Lipid Membranes via Dipole Potential and Packing Stress. International Journal of Molecular Sciences, 2022, 23, 11554.	1.8	1
1686	Lipid Microenvironment Modulates the Pore-Forming Ability of Polymyxin B. Antibiotics, 2022, 11, 1445.	1.5	3
1687	Hybrid bilayer membranes as platforms for biomimicry and catalysis. Nature Reviews Chemistry, 2022, 6, 862-880.	13.8	9
1688	Interaction of Clostridium perfringens Epsilon Toxin with the Plasma Membrane: The Role of Amino Acids Y42, Y43 and H162. Toxins, 2022, 14, 757.	1.5	0
1689	The P. aeruginosa effector Tse5 forms membrane pores disrupting the membrane potential of intoxicated bacteria. Communications Biology, 2022, 5, .	2.0	4
1690	Triplin: Functional Probing of Its Structure and the Dynamics of the Voltage-Gating Process. International Journal of Molecular Sciences, 2022, 23, 13765.	1.8	1
1691	Gapless Chipâ€inâ€Carrier Integration and Injectable Ag/AgClâ€Epoxy Reference Electrode for Bilayer Lipid Membrane Sensor. IEEJ Transactions on Electrical and Electronic Engineering, 0, , .	0.8	0
1692	Surface-Functionalized Polystyrene Nanoparticles Alter the Transmembrane Potential via Ion-Selective Pores Maintaining Global Bilayer Integrity. Langmuir, 2022, 38, 14837-14849.	1.6	5
1693	Discovery of the Potentiator of the Pore-Forming Ability of Lantibiotic Nisin: Perspectives for Anticancer Therapy. Membranes, 2022, 12, 1166.	1.4	6

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1694	SARS-CoV-2 accessory protein 7b forms homotetramers in detergent. Virology Journal,	2022, 19, .	1.4	1
1696	Pore Formation by Amphipathic Peptides in Closed Membranes. Biochemistry (Moscow Series A: Membrane and Cell Biology, 2022, 16, 328-337.	ν) Supplement	0.3	2
1697	Semisynthetic Amides of Polyene Antibiotic Natamycin. ACS Infectious Diseases, 2023,	, 9, 42-55.	1.8	3
1699	Biophysical quantification of unitary solute and solvent permeabilities to enable transla membrane science. Journal of Membrane Science, 2022, , 121308.	ition to	4.1	2
1700	Semisynthetic Amides of Amphotericin B and Nystatin A1: A Comparative Study of In V Activity/Toxicity Ratio in Relation to Selectivity to Ergosterol Membranes. Antibiotics, 2		1.5	9
1701	Biphasic concentration patterns in ionic transport under nanoconfinement revealed in and time-dependent properties. Journal of Chemical Physics, 2023, 158, .	steady-state	1.2	1
1702	Evaluation of Cell-Free Synthesized Human Channel Proteins for In Vitro Channel Resea Membranes, 2023, 13, 48.	ırch.	1.4	4
1703	Dynamic modelling and analysis of a biological circular membrane. International Journa Engineering Science, 2023, 188, 103864.	l of	2.7	3
1704	The Cytoplasmic Domain of the SARS-CoV-2 Envelope Protein Assembles into a β-Shee Bilayers. Journal of Molecular Biology, 2023, 435, 167966.	t Bundle in Lipid	2.0	4
1705	Erythrocyte Membrane Biophysical Changes Mediated by Pooled Immunoglobulin G an Electrokinetic and Lipid Peroxidation Studies. Membranes, 2023, 13, 281.	d Hematin:	1.4	0
1706	Alphatoxin Nanopore Detection of Aflatoxin, Ochratoxin and Fumonisin in Aqueous Sol 2023, 15, 183.	lution. Toxins,	1.5	0
1707	3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Com Membranes, 2023, 13, 309.	pounds.	1.4	1
1708	Out-of-plane deformability and its coupling with electrostatics in biomembranes. Emerg Life Sciences, 2023, 7, 111-124.	ging Topics in	1.1	0
1709	The Specific Effect of Grapefruit Seed, Sea-Buckthorn Leaves, and Chaga Extracts on th Model Lipid Membranes. Cell and Tissue Biology, 2023, 17, 96-104.	e Properties of	0.2	4
1710	Ca ²⁺ /Calmodulin-Dependent Protein Kinase II Disrupts the Voltage Deper Voltage-Dependent Anion Channel on the Lipid Bilayer Membrane. Journal of Physical C 2023, 127, 3372-3381.	idency of the Chemistry B,	1.2	2
1711	Revealing the single-channel characteristics of OprD (OccAB1) porins from hospital str Acinetobacter baumannii. European Biophysics Journal, 2023, 52, 131-143.	ains of	1.2	1
1712	How the physical properties of bacterial porins match environmental conditions. Physic Chemical Physics, 2023, 25, 12712-12722.	al Chemistry	1.3	3
1713	Function Investigations and Applications of Membrane Proteins on Artificial Lipid Mem International Journal of Molecular Sciences, 2023, 24, 7231.	branes.	1.8	7

#	Article	IF	CITATIONS
1716	Probe-Type Artificial Cell Membranes Formed with Nanopore-Modified Gold Needles. , 2023, , .		0
1742	y following the revision total hip arthroplasty. MRS Advances, 0, min ratio and radiation-induced lymphopenia—prognostic biomarker for carcinoma esophagus.	0.5	0