On the Exospheric Temperature of Hydrogen-Dominate

Journals of the Atmospheric Sciences 29, 214-218

DOI: 10.1175/1520-0469(1972)029<0214:otetoh>2.0.co;2

Citation Report

#	Article	IF	Citations
1	Energetics of thermospheric eddy transport. Journal of Geophysical Research, 1974, 79, 2533-2534.	3.3	48
2	The atmosphere of Titan. Reviews of Geophysics, 1974, 12, 435-446.	23.0	8
3	Molten Earth and the origin of prebiological molecules. Origins of Life and Evolution of Biospheres, 1975, 6, 15-21.	0.6	3
4	Instability of a highly reducing atmosphere on the primitive Earth. Precambrian Research, 1976, 3, 463-470.	2.7	13
5	The atmosphere of Io. Icarus, 1976, 29, 493-507.	2.5	6
6	Soft electrons as a possible heat source for Jupiter's thermosphere. Planetary and Space Science, 1977, 25, 817-821.	1.7	52
7	The origin of the atmospheres of the earth and the planets. Chinese Astronomy, 1979, 3, 92-104.	0.2	O
8	Non-Maxwellian effects associated with the thermal escape of a planetary atmosphere. Planetary and Space Science, 1979, 27, 739-751.	1.7	23
9	Formation of the planets. New Astronomy Reviews, 1980, 24, 335-354.	0.3	4
10	Accretional heating as the major cause of compositional differences among meteorite parent bodies, the Moon, and Earth. Icarus, 1980, 43, 215-221.	2.5	4
11	Dissipation of the Primordial Terrestrial Atmosphere Due to Irradiation of the Solar EUV. Progress of Theoretical Physics, 1980, 64, 1968-1985.	2.0	77
12	The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus. lcarus, 1981, 48, 150-166.	2.5	473
13	Blow-off of planetary protoatmospheres and of the protoplanetary nebula. Physics of the Earth and Planetary Interiors, 1982, 29, 252-260.	1.9	6
14	Modern exospheric theories and their observational relevance. Reviews of Geophysics, 1983, 21, 75-124.	23.0	110
15	Chapter 1 Vertical Structure of an Atmosphere. International Geophysics, 1987, 36, 1-70.	0.6	0
16	Kuiper prize lecture: Escape of atmospheres, ancient and modern. Icarus, 1990, 85, 1-20.	2.5	36
17	Discrete velocity model for an escaping single-component atmosphere. Planetary and Space Science, 1994, 42, 409-419.	1.7	8
18	Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating. Astrophysical Journal, 2003, 598, L121-L124.	4.5	473

#	Article	IF	CITATIONS
19	The effect of tidal locking on the magnetospheric and atmospheric evolution of "Hot Jupiters― Astronomy and Astrophysics, 2004, 425, 753-762.	5.1	173
20	The influence of the solar particle and radiation environment on Titan's atmosphere evolution. Advances in Space Research, 2005, 36, 241-250.	2.6	54
21	Atmospheric and water loss from early Venus. Planetary and Space Science, 2006, 54, 1425-1444.	1.7	120
22	Physical and chemical aeronomy of HD 209458b. Planetary and Space Science, 2007, 55, 1426-1455.	1.7	294
23	A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars. Space Science Reviews, 2007, 129, 207-243.	8.1	110
24	Mass loss from "Hot Jupitersâ€â€"Implications for CoRoT discoveries, Part II: Long time thermal atmospheric evaporation modeling. Planetary and Space Science, 2008, 56, 1260-1272.	1.7	80
25	Evolution of the Solar/Stellar Radiation and Plasma Environment. SpringerBriefs in Astronomy, 2013, , 15-24.	1.6	0
26	Probing the blow-off criteria of hydrogen-rich  super-Earths'. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1247-1256.	4.4	93
27	Thermal escape from extrasolar giant planets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130089.	3.4	31
28	Atmospheric Escape and the Evolution of Close-In Exoplanets. Annual Review of Earth and Planetary Sciences, 2019, 47, 67-90.	11.0	160
29	Strange messenger: A new history of hydrogen on Earth, as told by Xenon. Geochimica Et Cosmochimica Acta, 2019, 244, 56-85.	3.9	109
30	Atmospheric Escape Processes and Planetary Atmospheric Evolution. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027639.	2.4	58
31	A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars. Space Sciences Series of ISSI, 2007, , 207-243.	0.0	4
32	Molten Earth and the Origin of Prebiological Molecules. , 1974, , 15-21.		0
33	The Ionosphere and Upper Atmosphere of Venus. , 1975, , 385-399.		2
34	The Three Regimes of Atmospheric Evaporation for Super-Earths and Sub-Neptunes. Astrophysical Journal, 2023, 943, 11.	4.5	4