Studies of tunnel MOS diodes I. Interface effects in silic

Journal Physics D: Applied Physics 4, 1589-1601 DOI: 10.1088/0022-3727/4/10/319

Citation Report

#	Article	IF	CITATIONS
1	Studies of tunnel MOS diodes II. Thermal equilibrium considerations. Journal Physics D: Applied Physics, 1971, 4, 1602-1611.	1.3	116
2	Background energy level spectroscopy in GaP using thermal release of trapped space charge in Schottky barriers. Applied Physics Letters, 1972, 21, 350-352.	1.5	35
3	Conductance associated with interface states in MOS tunnel structures. Solid-State Electronics, 1972, 15, 993-998.	0.8	33
4	The effect of an interfacial layer on minority carrier injection in forward-biased silicon Schottky diodes. Solid-State Electronics, 1973, 16, 365-374.	0.8	98
5	The Surface Oxide Transistor (SOT). Solid-State Electronics, 1973, 16, 213-219.	0.8	33
6	Metal-germanium Schottky barriers. Solid-State Electronics, 1973, 16, 1383-1389.	0.8	62
7	Imref behaviour in metal - semiconductor barriers. Journal Physics D: Applied Physics, 1973, 6, L37-L39.	1.3	3
8	Equilibriumâ€ŧoâ€nonequilibrium transition in MOS (surface oxide) tunnel diode. Journal of Applied Physics, 1974, 45, 4934-4943.	1.1	48
9	Determination of surface state density in tunnel MOS devices from current-voltage characteristic. Solid-State Electronics, 1974, 17, 763-765.	0.8	16
10	Potential barriers to electron tunnelling in ultra-thin films of SiO2. Solid State Communications, 1974, 14, 1011-1014.	0.9	49
11	An 8% efficient layered Schottkyâ€barrier solar cell. Journal of Applied Physics, 1974, 45, 3913-3915.	1.1	62
12	Characterization of the interface states at a Ag/Si interface from capacitance measurements. Journal of Applied Physics, 1974, 45, 3079-3084.	1.1	67
14	Polycrystalline silicon solar cells on low cost foreign substrates. Solar Energy, 1975, 17, 229-235.	2.9	38
15	Thermally-induced changes in barrier heights of aluminium contacts to p- and n-type silicon. Solid State Communications, 1975, 16, 87-89.	0.9	26
16	On the direct currents through interface states in metal-semiconductor contacts. Solid-State Electronics, 1975, 18, 881-883.	0.8	29
17	Correlations between interfacial oxides and resistance changes for W contacts on heavily doped Si-Ge. Thin Solid Films, 1975, 27, 263-271.	0.8	3
18	In-depth Auger analysis of aluminium-silicon interfacial reactions. Thin Solid Films, 1975, 28, 265-268.	0.8	14
19	Temperature dependence of current flows in nondegenerate MIS tunnel diodes. Journal of Applied Physics, 1975, 46, 5179-5184.	1.1	14

#	Article	IF	CITATIONS
20	The role of the interfacial layer in metalâ^'semiconductor solar cells. Journal of Applied Physics, 1975, 46, 1286-1289.	1.1	137
21	A 15% efficient antireflectionâ€coated metalâ€oxideâ€semiconductor solar cell. Applied Physics Letters, 1975, 27, 95-98.	1.5	148
22	An Alpâ€silicon MOS photovoltaic cell. Journal of Applied Physics, 1975, 46, 3982-3987.	1.1	87
23	A note on Levine's model of Schottky barriers. Journal of Applied Physics, 1975, 46, 2809-2809.	1.1	18
24	Electrical characteristics of metal/Siâ€Ge contacts. Journal of Applied Physics, 1975, 46, 4904-4920.	1.1	1
25	MISâ€Schottky theory under conditions of optical carrier generation in solar cells. Applied Physics Letters, 1976, 29, 51-53.	1.5	105
26	Operation of ITO/Si heterojunction solar cells. Applied Physics Letters, 1976, 29, 682-684.	1.5	32
27	Aluminum—Silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Transactions on Electron Devices, 1976, 23, 538-544.	1.6	137
28	A theoretical description of tunneling MIS device transport. Physica Status Solidi A, 1976, 37, K105-K110.	1.7	8
29	Effects of interfacial oxide layers on the performance of silicon Schottkyâ€barrier solar cells. Applied Physics Letters, 1976, 28, 97-98.	1.5	106
30	Lowâ€voltage tunnelâ€injection blue electroluminescence in ZnS MIS diodes. Journal of Applied Physics, 1976, 47, 2129-2133.	1.1	20
31	Collection velocity of excess minority carriers at metalâ€semiconductor contacts in solar cells. Journal of Applied Physics, 1976, 47, 4964-4967.	1.1	20
32	Openâ€circuit voltage of MIS silicon solar cells. Journal of Applied Physics, 1976, 47, 3248-3251.	1.1	93
33	Electrical characteristics of Au/Ti-(n-type) InP Schottky diodes. Journal Physics D: Applied Physics, 1977, 10, 1323-1328.	1.3	34
34	Temperature anomalies of Schottkyâ€barrier diodes onnâ€type silicon. Journal of Applied Physics, 1977, 48, 4413-4414.	1.1	5
35	Theory of the Schottky barrier solar cell. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1977, 354, 101-118.	1.5	25
36	Interface state density in Au-nGaAs Schottky diodes. Solid-State Electronics, 1977, 20, 125-132.	0.8	35
37	Characteristics of Cr-SiO2-nSi tunnel diodes. Solid-State Electronics, 1977, 20, 143-152.	0.8	59

#	Article	IF	Citations
38	Photovoltaic properties of MIS-Schottky barriers. Solid-State Electronics, 1977, 20, 971-976.	0.8	111
39	Carrier transport mechanisms in the V2O5-n-Si system. Thin Solid Films, 1977, 42, 17-32.	0.8	5
40	Barrier height modification in silicon Schottky (MIS) solar cells. IEEE Transactions on Electron Devices, 1977, 24, 453-457.	1.6	35
41	Technology of GaAs metal—Oxide—Semiconductor solar cells. IEEE Transactions on Electron Devices, 1977, 24, 476-483.	1.6	52
42	Model calculations for metal-insulator-semiconductor solar cells. Solid-State Electronics, 1977, 20, 741-751.	0.8	42
43	Rectification properties of CdS Schottky barrier diodes with evaporated Au/Ti as blocking contact. Physica Status Solidi A, 1977, 42, 615-619.	1.7	10
44	Silicon solar cells for terrestrial applications. Journal of Materials Science, 1977, 12, 602-615.	1.7	1
45	The influence of surface states on the electrical characteristics of tunneling MIS Schottky barriers. Physica Status Solidi A, 1978, 46, 185-190.	1.7	7
46	Study of the surface barrier of the metal–n-CdTe contact. Physica Status Solidi A, 1978, 47, 123-130.	1.7	34
47	Correlation between interface states and MIS silicon solar cell performances. Physica Status Solidi A, 1978, 48, 137-145.	1.7	8
48	The reversely biased MIS tunneling Schottky barrier. Application to photodetection. Physica Status Solidi A, 1978, 49, 603-608.	1.7	5
49	MIS diodes on amorphous silicon. Solid-State Electronics, 1978, 21, 489-491.	0.8	9
50	On the formation of interfaces in real GaP-Au Schottky barriers. Acta Physica Academiae Scientiarum Hungaricae, 1978, 44, 49-54.	0.1	4
51	SnO2/Si solar cells—heterostructure or Schottkyâ€barrier or MISâ€ŧype device. Journal of Applied Physics, 1978, 49, 3490-3498.	1.1	121
52	Title is missing!. Journal Physics D: Applied Physics, 1978, 11, 1341-1350.	1.3	18
53	Properties of GaN tunneling MIS lightâ€emitting diodes. Journal of Applied Physics, 1978, 49, 2953-2957.	1.1	16
54	Photovoltaic effects of metalfree and zinc phthalocyanines. II. Properties of illuminated thinâ€film cells. Journal of Chemical Physics, 1978, 69, 3341-3349.	1.2	125
55	Planarized solidâ€state epitaxial growth of Si and its effect on Schottky barrier diodes. Applied Physics Letters, 1978, 32, 177-179.	1.5	6

D

#	Article	IF	CITATIONS
56	Recent progress in thin-film solar cells. Advances in Physics, 1978, 27, 365-385.	35.9	14
57	Conversion photovoltaÃ ⁻ que dans Cu2O. Revue De Physique Appliquée, 1979, 14, 231-236.	0.4	26
58	The interfacial layer in MIS amorphous silicon solar cells. Journal of Applied Physics, 1979, 50, 548-550.	1.1	11
59	Structure, photovoltaic properties, and angleâ€ofâ€incidence correlations of electronâ€beamâ€deposited SnO2/nâ€5i solar cells. Journal of Applied Physics, 1979, 50, 8070-8074.	1.1	42
60	Efficient indium tin oxide/polycrystalline silicon solar cells. Applied Physics Letters, 1979, 35, 863-865.	1.5	33
61	Theory of metal-oxide-semiconductor solar cells. Solid-State Electronics, 1979, 22, 581-587.	0.8	42
62	Theory of switching in p-n-insulator (tunnel)-metal devices. Solid-State Electronics, 1979, 22, 181-192.	0.8	69
63	Electrical characteristics of GaAs MIS Schottky diodes. Solid-State Electronics, 1979, 22, 621-631.	0.8	137
64	MIS-diode as a low-energy X- and γ-ray spectrometer. Nuclear Instruments & Methods, 1979, 160, 115-119.	1.2	1
65	Tunneling in ultrathin SiO2 layers on silicon: Comments on dispersion relations for electrons and holes. Solid State Communications, 1979, 31, 877-879.	0.9	6
66	A Method for Determining Interfacial Parameters of MIS Schottky Barriers. Physica Status Solidi A, 1979, 54, 421-427.	1.7	7
67	The SIS tunnel emitter: A theory for emitters with thin interface layers. IEEE Transactions on Electron Devices, 1979, 26, 1771-1776.	1.6	210
68	Material reactions and barrier height variations in sintered Alî—,InP Schottky diodes. Solid-State Electronics, 1979, 22, 857-863.	0.8	10
69	Schottky barrier height: A design parameter for device applications. Solid-State Electronics, 1979, 22, 865-873.	0.8	17
70	Siî—,SiO2 interface state spectroscopy using MOS tunneling structures. Solid-State Electronics, 1979, 22, 809-817.	0.8	32
71	Barrier height of evaporatedâ€manganese contacts to silicon. Journal of Applied Physics, 1979, 50, 7250-7253.	1.1	2
72	Photocurrent and photovoltage mechanisms in silicon Schottky barrier and MOS solar cells. , 1979, , .		2
73	Theoretical efficiency of SnO2/Si solar cells. Journal of <u>Applied Physics, 1979, 50, 3454-3458.</u>	1.1	37

		EPORT	
#	Article	IF	CITATIONS
74	Metal-Semiconductor Contacts with Thin Interfacial Films. IETE Journal of Research, 1980, 26, 118-122.	1.8	0
75	Multiplication effects in polysilicon MIS diodes. Solid-State Electronics, 1980, 23, 515-516.	0.8	9
76	Recombination in the space-charge region of Schottky barrier solar cells. Solid-State Electronics, 1980, 23, 41-47.	0.8	36
77	Theoretical performance of back-illuminated thin film MIS schottky barrier solar cells. Physica Status Solidi A, 1980, 57, 691-696.	1.7	5
78	Efficiency of Schottky barrier solar cells. Physica Status Solidi A, 1980, 58, 343-348.	1.7	6
79	The mercury–indium phosphide diode. Physica Status Solidi A, 1980, 60, 215-223.	1.7	13
80	Photon-induced degradation in crystalline silicon Schottky barrier solar cells. Solar Cells, 1980, 2, 55-63.	0.6	7
81	Aluminum-natural oxide-p type silicon (MIS) solar cells. Solar Energy Materials and Solar Cells, 1980, 4, 81-87.	0.4	3
82	Photovoltaic response of alumina M-I-S Schottky structures. Solar Energy Materials and Solar Cells, 1980, 2, 447-459.	0.4	2
83	Asymmetry in the SiO2 tunneling barriers to electrons and holes. Journal of Applied Physics, 1980, 51, 2153.	1.1	95
84	Characteristics of MOS solar cells built on (n-type) InP substrates. IEEE Transactions on Electron Devices, 1980, 27, 631-634.	1.6	17
85	Spray-deposited ITO—Silicon SIS heterojunction solar cells. IEEE Transactions on Electron Devices, 1980, 27, 725-730.	1.6	105
86	Metal-Semiconductor Schottky-Barrier Diodes. , 1980, , 85-136.		2
87	Schottky barrier at a Mo-GaAs contact. International Journal of Electronics, 1980, 48, 511-517.	0.9	8
88	Blue-Emitting S+-Implanted An-ZnS Schottky Barrier Diodes. Japanese Journal of Applied Physics, 1980, 19, 939-947.	0.8	12
89	Admittance measurements of Siâ€SiO2interface states under optical illumination. Journal of Applied Physics, 1980, 51, 5880-5888.	1.1	30
90	Electronic processes in SnO2―(nâ€ŧype) InP heterojunctions. Journal of Applied Physics, 1980, 51, 1650-1654.	1.1	7
91	Metalâ€insulatorâ€semiconductor solar cells using amorphous Si:F:H alloys. Applied Physics Letters, 1980, 37, 826-828.	1.5	59

#	Article	IF	CITATIONS
92	Photoemission measurements of interface barrier energies for tunnel oxides on silicon. Applied Physics Letters, 1980, 36, 933-935.	1.5	38
93	An analytical model of a backwall MIS Schottky barrier solar cell. Journal of Applied Physics, 1980, 51, 2914.	1.1	5
94	Capacitance studies on amorphous silicon Schottky barrier diodes. Journal of Non-Crystalline Solids, 1980, 35-36, 587-592.	1.5	80
95	Electron transport across aluminum/ultrathin silicon oxide/phosphorus implanted silicon barriers. Journal of Applied Physics, 1980, 51, 4913-4918.	1.1	10
96	Cr-MIS solar cells using thin epitaxial silicon grown on poly-silicon substrates. IEEE Electron Device Letters, 1981, 2, 271-274.	2.2	5
97	Non-uniformities in ultra-thin oxide layers and their effect on the properties of tunnel MOS, MOM, and SOS devices. Physica Status Solidi A, 1981, 67, 305-311.	1.7	7
98	Effect of temperature on electrical and photoelectrical properties of silicon MIS solar cells. Physica Status Solidi A, 1981, 67, 313-323.	1.7	2
99	Modelling electrical behaviour of nonuniform Alî—,Si Schottky diodes. Solid-State Electronics, 1981, 24, 897-904.	0.8	19
100	Current transport in an ion-implanted diode. Solid-State Electronics, 1981, 24, 929-934.	0.8	9
101	A pinhole model for metal-insulator-semiconductor solar cells. Solid-State Electronics, 1981, 24, 1067-1070.	0.8	11
102	The influence of surface preparation on rectification in aluminum—polycrystalline silicon solar cells. Journal of Power Sources, 1981, 7, 191-194.	4.0	1
103	The change in short-circuit current density with insulator layer thickness in MIS solar cells. Solar Cells, 1981, 3, 263-267.	0.6	2
104	Effects of double-exponential current-voltage characteristics on the performance of solar cells. Solar Cells, 1981, 5, 67-73.	0.6	1
105	Theoretical efficiency of S(p+â^'n)IS solar cells. Solar Cells, 1981, 3, 1-8.	0.6	0
106	Efficiency improvement of an mis solar cell by interface charges and surface states. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1981, 101, 145-153.	0.2	0
107	Currentâ€voltage characteristics of AlxGa1â^xAs Schottky barriers andpâ€njunctions. Journal of Applied Physics, 1981, 52, 5202-5206.	1.1	9
108	Experimental study and electrical model of MIS n-InP structures prepared by oxidation in acid medium. Journal Physics D: Applied Physics, 1981, 14, 1331-1342.	1.3	5
109	Photovoltaic Effect. Advances in Electronics and Electron Physics, 1981, 56, 163-217.	0.6	17

#	Article	IF	CITATIONS
110	Effect of hydrogen on the diode properties of reactively sputtered amorphous silicon Schottky barrier structures. Applied Physics Letters, 1981, 39, 612-614.	1.5	12
111	An evaluation of potentially lowâ€cost silicon substrates for metalâ€insulatorâ€semiconductor solar cells. Journal of Applied Physics, 1981, 52, 1597-1599.	1.1	5
112	Response of Schottky barrier solar cells at higher temperatures. Journal Physics D: Applied Physics, 1981, 14, 1495-1503.	1.3	1
113	Pd–thinâ€SiO2–Si diode. I. Isothermal variation of H2â€induced interfacial trapping states. Journal of Applied Physics, 1982, 53, 1091-1099.	1.1	71
114	Capacitance spectroscopy of localized states at metalâ€semiconductor interfaces. I. Theory. Journal of Applied Physics, 1982, 53, 6289-6299.	1.1	33
115	On the measurement of barrier height in metalâ€insulatorâ€semiconductor (GaAs) structures by internal photoemission technique. Journal of Applied Physics, 1982, 53, 1820-1822.	1.1	4
116	Mechanism of openâ€circuit voltage enhancement in metalâ€insulatorâ€semiconductor GaAs solar cells. Applied Physics Letters, 1982, 40, 43-45.	1.5	10
117	The electrical characteristics of degenerate InP Schottky diodes with an interfacial layer. Journal of Applied Physics, 1982, 53, 6906-6910.	1.1	39
118	Image force effects in metalâ€oxideâ€semiconductor solar cells. Journal of Applied Physics, 1982, 53, 1734-1736.	1.1	5
119	An experimental study of Ti-pSi MIS type Schottky barriers. Journal Physics D: Applied Physics, 1982, 15, L7-L10.	1.3	8
120	Electrical properties of Au/n-CdTe Schottky diodes. Journal Physics D: Applied Physics, 1982, 15, 901-910.	1.3	16
121	Stability Analysis of Cr-MIS Solar Cells. IEEE Transactions on Reliability, 1982, R-31, 276-280.	3.5	7
122	The electrical and photovoltaic properties of tunnel metalâ€oxideâ€semiconductor devices built onnâ€InP substrates. Journal of Applied Physics, 1982, 53, 749-753.	1.1	33
123	Are interface states consistent with Schottky barrier measurements?. Applied Physics Letters, 1982, 41, 285-287.	1.5	47
124	Interfacial oxide layer mechanisms in the generation of electricity and hydrogen by solar photoelectrochemical cells. Solar Energy, 1982, 28, 451-460.	2.9	5
125	A new approach to the determination of MS-barrier heights from photoelectric data and/or an alternative way to determine the value of the Richardson constant. Solid-State Electronics, 1982, 25, 989-993.	0.8	6
126	On the open-circuit voltage of a Schottky-barrier MIS solar cell. Solid-State Electronics, 1982, 25, 1205-1206.	0.8	5
127	UPS and Schottky barrier study of TiO2 electrochemical anodes. Solar Energy Materials and Solar Cells, 1982, 7, 183-202.	0.4	3

#	Article	IF	CITATIONS
128	Gate formation in GaAs MESFET's using ion-beam etching technology. IEEE Transactions on Electron Devices, 1982, 29, 1522-1529.	1.6	17
129	InP Schottky contacts with increased barrier height. Solid-State Electronics, 1982, 25, 381-387.	0.8	72
130	l–V characteristics of tunnel MOS structures with silicon oxide obtained in RF oxygen plasma. Solid-State Electronics, 1982, 25, 781-789.	0.8	11
131	Surface photovoltage measurements and Fermi level pinning: comments on "development and confirmation of the unified model for Schottky barrier formation and MOS interface states on III-V compounds― Thin Solid Films, 1982, 89, L27-L33.	0.8	11
132	Study of MIS silicon solar cells by ESCA and AES. Solar Energy Materials and Solar Cells, 1982, 7, 291-298.	0.4	6
133	A modified expression for the tunnelling exponent in Schottky barriers. Solar Cells, 1982, 5, 301-304.	0.6	2
134	Temperature and voltage dependence of the barrier height in SnO2/Si solar cells. Physica Status Solidi A, 1982, 70, 623-630.	1.7	4
135	Electrical Characteristics of the InSb Schottky Diode. Physica Status Solidi A, 1982, 73, 157-164.	1.7	18
136	On the Location of the Interface Fermi Level in Metal–Semiconductor Schottky-Barrier Contacts. Physica Status Solidi A, 1982, 73, 551-558.	1.7	4
137	A conduction model for semiconductor-grain-boundary-semiconductor barriers in polycrystalline-silicon films. IEEE Transactions on Electron Devices, 1983, 30, 137-149.	1.6	115
138	Current transport across a grain boundary in polycrystalline semiconductors. Solid-State Electronics, 1983, 26, 549-557.	0.8	13
139	A Mechanism for the Effect of Doping on the Silicon Native Oxide Thickness. Physica Status Solidi A, 1983, 79, 313-322.	1.7	10
140	Transport properties of a Pd/insulator/a-Si:H Schottky diode for hydrogen detection. Sensors and Actuators, 1983, 4, 349-356.	1.8	15
141	Electroluminescence in GaP/Langmuir-Blodgett film metal/insulator/semiconductor diodes. Thin Solid Films, 1983, 99, 283-290.	0.8	38
142	Deep level transient spectroscopy of interface and bulk trap states in InP metal/oxide/semiconductor structures. Thin Solid Films, 1983, 103, 141-153.	0.8	21
143	A silicon phototransistor with a MIS tunnel junction emitter. IEEE Electron Device Letters, 1983, 4, 291-293.	2.2	2
144	Interfacial stability of SnO2/nâ€&i and In2O3:Sn/nâ€&i heterojunction solar cells. Journal of Applied Physics, 1983, 54, 2489-2494.	1.1	25
145	Effects of hydrogen absorption in Pd-insulator-a-Si:H diodes. Journal of Non-Crystalline Solids, 1983, 59-60, 1195-1198.	1.5	1

#	Article	IF	CITATIONS
146	Influence of semiconductor barrier tunneling on the currentâ€voltage characteristics of tunnel metalâ€oxideâ€semiconductor diodes. Journal of Applied Physics, 1983, 54, 5880-5886.	1.1	22
147	Effects of surface preparation on the properties of metal/CdTe junctions. Journal of Applied Physics, 1983, 54, 5982-5989.	1.1	42
148	Temperature dependence of the electrical characteristics in Auâ€nâ€ŧype InP Schottky diodes. Journal of Applied Physics, 1983, 54, 7020-7024.	1.1	12
149	A reevaluation of the meaning of capacitance plots for Schottkyâ€barrierâ€ŧype diodes. Journal of Applied Physics, 1983, 54, 1966-1975.	1.1	124
150	Saturated photocurrent method for measurement of the opticalâ€absorption coefficient in a semiconductor. Journal of Applied Physics, 1983, 54, 4218-4220.	1.1	2
151	The influence of hydrogen ion bombardment on the photovoltaic properties of Cu/Cu ₂ O schottky barrier solar cells. Radiation Effects, 1983, 76, 87-92.	0.4	7
152	Surface effects on metal/CdTe junctions and CdTe heterojunctions. Journal Physics D: Applied Physics, 1983, 16, 2391-2404.	1.3	28
153	JUNCTIONS. , 1983, , 105-209.		5
154	OTHER PHOTOVOLTAIC CELLS. , 1983, , 464-504.		1
155	Devices using fluorinated material. , 1984, , 245-283.		4
156	Interface effects in titanium and hafnium Schottky barriers on silicon. Applied Physics Letters, 1984, 44, 895-897.	1.5	52
157	Chemical cleaning of InP surfaces: Oxide composition and electrical properties. Journal of Applied Physics, 1984, 55, 1139-1148.	1.1	73
158	Metalâ€amorphous siliconâ€silicon tunnel rectifier. Applied Physics Letters, 1984, 44, 1144-1146.	1.5	3
159	Current-voltage characteristics of GaAs metal-insulator-semiconductor solar cells under illumination. Solar Cells, 1984, 12, 277-283.	0.6	3
160	Two-carrier conduction in MOS tunnel—Oxides Il—Theory. Solid-State Electronics, 1984, 27, 1131-1139.	0.8	14
161	Current multiplication in MIS structures. Solid-State Electronics, 1984, 27, 1-11.	0.8	14
162	Effects of interfacial charge on the electron affinity, work function, and electrical characteristics of thinly oxidized semiconductorâ€insulatorâ€semiconductor and metalâ€insulatorâ€semiconductor devices. Journal of Applied Physics, 1984, 55, 2990-2994.	1.1	20
163	New model for slow current drift in InP metalâ€insulatorâ€semiconductor fieldâ€effect transistors. Applied Physics Letters, 1984, 44, 453-455.	1.5	28

#	Article	IF	Citations
164	Chapter 11 Ambient Sensors. Semiconductors and Semimetals, 1984, , 209-237.	0.4	2
165	Interface States at Au/Gaas Schottky Contacts. Materials Research Society Symposia Proceedings, 1985, 54, 394.	0.1	3
166	Silicide-Silicon Interface States. Materials Research Society Symposia Proceedings, 1985, 54, 485.	0.1	0
167	The Characteristics of thin-film gallium phosphide MOS structures with a tunnel transparent native anodic oxide. Physica Status Solidi A, 1985, 88, 355-363.	1.7	0
168	Influence ot Humidity on Electrical Properties of a MOS Structure with an Ultrathin Dielectric Film. Physica Status Solidi A, 1985, 89, 699-702.	1.7	1
169	Determination of tunneling transmission probability through thin oxide layer in a tunnel MIS system. Applications of Surface Science, 1985, 22-23, 1011-1018.	1.0	1
170	Electronic properties of polycrystalline ceramic cadmium sulphide. Solid-State Electronics, 1985, 28, 1077-1087.	0.8	0
171	Characterization of interface states at Ni/nCdF2 Schottky barrier type diodes and the effect of CdF2 surface preparation. Solid-State Electronics, 1985, 28, 223-232.	0.8	203
172	Application of the DPC method to Schottky-barrier photodiode with interfacial layer. IEEE Transactions on Electron Devices, 1985, 32, 711-712.	1.6	0
173	Characteristics of the RuO2-n-GaAs Schottky barrier. Journal Physics D: Applied Physics, 1985, 18, 731-738.	1.3	7
174	Schottkyâ€barrier heights at granularâ€metal/Si interface. Journal of Applied Physics, 1985, 57, 2953-2955.	1.1	1
175	Determination of aluminumâ€silicon dioxide and siliconâ€silicon dioxide barrier heights in a metalâ€tunnel insulatorâ€silicon system. Journal of Applied Physics, 1985, 57, 1256-1260.	1.1	4
176	Properties of Au/oxide/InP metalâ€interfacial layerâ€semiconductor junctions. Journal of Applied Physics, 1985, 58, 1876-1885.	1.1	6
177	Gold/Ga0.85Al0.15Sb Schottky diodes. Journal of Applied Physics, 1985, 58, 3211-3216.	1.1	4
178	The effect of an interfacial oxide layer on the Schottky barrier height of Erâ€6i contact. Journal of Applied Physics, 1985, 58, 1330-1334.	1.1	15
179	Schottky barrier height variations on the polar (111) faces ofnâ€GaP. Journal of Applied Physics, 1985, 58, 4621-4625.	1.1	2
180	Organicâ€onâ€GaAs contact barrier diodes. Journal of Applied Physics, 1985, 58, 867-870.	1.1	28
181	Evaluation of interface potential barrier heights between ultrathin silicon oxides and silicon. Journal of Applied Physics, 1985, 58, 1597-1600.	1.1	69

#	Article	IF	CITATIONS
182	Current transport and structural model for Liâ€diffused CdTe lowâ€resistance contacts. Journal of Applied Physics, 1985, 58, 880-889.	1.1	8
183	Emitter resistance of arsenic- and phosphorus-doped polysilicon emitter transistors. IEEE Electron Device Letters, 1985, 6, 516-518.	2.2	48
184	Interface-State Measurements at Schottky Contacts: A New Admittance Technique. Physical Review Letters, 1986, 57, 1080-1083.	2.9	111
185	Semiconductor analysis using organicâ€onâ€inorganic contact barriers. I. Theory of the effects of surface states on diode potential and ac admittance. Journal of Applied Physics, 1986, 59, 513-525.	1.1	65
186	Schottky barrier heights of Hg, Cd, and Zn onnâ€ŧype InP(100). Applied Physics Letters, 1986, 48, 1796-1798.	1.5	17
187	Inversion criteria for the metalâ€insulatorâ€semiconductor tunnel structures. Journal of Applied Physics, 1986, 60, 1080-1086.	1.1	2
188	Low Frequency <i>C-V</i> Characteristics of MIS-Schottky Barrier Diodes. IETE Journal of Research, 1986, 32, 69-72.	1.8	0
189	Analysis of characteristics of silicon metal/insulator/semiconductor tunnel diodes with d.cplasma-grown oxide. Thin Solid Films, 1986, 136, 173-180.	0.8	8
190	Image forces and MIS Schottky barriers. Solid-State Electronics, 1986, 29, 873-875.	0.8	7
191	On the condition of inversion in an MIS tunnel structure. Solid-State Electronics, 1986, 29, 991-994.	0.8	3
192	Schottky diode analysis for evaluation of RIE effects on silicon surfaces. Solid-State Electronics, 1986, 29, 607-611.	0.8	12
193	Conduction mechanisms in Pd/SiO2/n-Si Schottky diode hydrogen detectors. Solid-State Electronics, 1986, 29, 89-97.	0.8	28
194	On the minority-carrier quasi-Fermi level in metal-oxide-semiconductor tunnel structures. Solid-State Electronics, 1986, 29, 339-353.	0.8	9
195	Surface barrier (n) solar cells: optimization of the fabrication process. Solar Cells, 1986, 17, 167-181.	0.6	3
196	diagram as a useful method of investigating the interfacial layer effects in schottky barrier solar cells: The example of Cu/Cu2O photovoltaic junctions. Solar Cells, 1986, 18, 129-137.	0.6	7
198	On the current transport mechanism in a metal—insulator—semiconductor (MIS) diode. Solid-State Electronics, 1986, 29, 555-560.	0.8	188
199	Schottky Contacts on n-InP Surface Treated by Plasma-Induced Oxygen Radicals. Japanese Journal of Applied Physics, 1986, 25, 1691-1696.	0.8	50
200	Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces. Physical Review B, 1986, 33, 1146-1159.	1.1	140

#	Article	IF	CITATIONS
201	Semiconductor analysis using organicâ€onâ€inorganic contact barriers. II. Application to InPâ€based compound semiconductors. Journal of Applied Physics, 1986, 60, 2406-2418.	1.1	54
202	Study of Auâ€nâ€type GaAs Schottky contacts on a singleâ€crystal part of largeâ€grained polycrystalline GaAs. Journal of Applied Physics, 1986, 59, 2507-2510.	1.1	3
203	Measurement of interface states in palladium silicon diodes. Journal of Applied Physics, 1986, 60, 3611-3615.	1.1	10
204	The diode quality factor of solar cells under illumination. Journal Physics D: Applied Physics, 1986, 19, 483-492.	1.3	24
206	A simple technique for measuring the interfaceâ€state density of the Schottky barrier diodes using the currentâ€voltage characteristics. Journal of Applied Physics, 1987, 61, 299-304.	1.1	53
207	Effect of Ar+ion bombardment on the electrical characteristics of Al/nâ€Si contacts. Journal of Applied Physics, 1987, 61, 2566-2570.	1.1	12
208	Effect of interface states on the electrical properties of W, WSix, and WAlxSchottky contacts on GaAs. Journal of Applied Physics, 1987, 62, 4812-4820.	1.1	19
209	A study of the chemical oxide/InP interface by deepâ€level transient spectroscopy. Journal of Applied Physics, 1987, 62, 3857-3859.	1.1	14
210	Grain Boundary Characterization in Polysilicon by Light Beam Induced Current Topography and Image Processing. Materials Research Society Symposia Proceedings, 1987, 106, 89.	0.1	4
211	Large barrier tunnel metal-insulator-semiconductor structures. Semiconductor Science and Technology, 1987, 2, 94-101.	1.0	4
212	The effects of oxygen in Au–CdSe schottky diodes. Physica Status Solidi A, 1987, 100, 681-691.	1.7	6
213	Effects of interfacial states on the capacitance-voltage characteristics of Pd/SiO2/n-Si Schottky diodes. Solid-State Electronics, 1987, 30, 1005-1012.	0.8	8
214	A simple interfacial-layer model for the nonideal I-V and C-V characteristics of the Schottky-barrier diode. Solid-State Electronics, 1987, 30, 383-390.	0.8	103
215	Distortion of low-temperature voltage-current characteristics in Schottky barrier diodes. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1987, 30, 116-118.	0.0	1
216	Temperature-dependent study of the interfacial resistances in polysilicon-emitter contacts. IEEE Transactions on Electron Devices, 1988, 35, 1494-1500.	1.6	4
218	Characteristics of Mg-Zn8P2: Cd contacts. Physica Status Solidi A, 1988, 106, 551-555.	1.7	3
221	Hot hole creation due to impact excitation in the metal electrode of a forward biased MIS structure. Solid-State Electronics, 1988, 31, 989-997.	0.8	1
222	Interface effects on Mgî—,Zn3P2 Schottky diodes. Solid-State Electronics, 1988, 31, 257-260.	0.8	18

#	Article	IF	CITATIONS
223	Characterization of Schottky barrier diodes by means of modulation technique. Journal of Applied Physics, 1988, 63, 1597-1602.	1.1	12
224	Dependence of the electrical characteristics of organicâ€onâ€inorganic semiconductor contact barrier diodes on organic thinâ€film composition. Journal of Applied Physics, 1988, 63, 442-446.	1.1	28
225	Evaluation of the interface state energy distribution from Schottkylâ€Vcharacteristics. Journal of Applied Physics, 1988, 63, 976-978.	1.1	86
226	Direct control and characterization of a Schottky barrier by scanning tunneling microscopy. Applied Physics Letters, 1988, 52, 278-280.	1.5	55
227	Spatial and energetic distribution of Si-SiO2near-interface states. Physical Review B, 1988, 38, 13124-13132.	1.1	61
228	n–Vocdiagram and the physics of native interfacial layer of the Schottky barrier. Physica Scripta, 1988, 37, 790-794.	1.2	1
229	The influence of interface states upon the admittance of metal-semiconductor diodes. Semiconductor Science and Technology, 1988, 3, 321-338.	1.0	17
230	Energy distribution of interface states in GaAs-Cr/Au Schottky contacts obtained from l–V characteristics. , 1988, , 286-293.		2
231	Band bending and the apparent barrier height in scanning tunneling microscopy. Physical Review B, 1989, 39, 5572-5575.	1.1	73
232	Properties of ultrathin thermal nitrides in silicon Schottky barrier structures. Applied Physics Letters, 1989, 54, 638-640.	1.5	27
233	Electrical characteristics of Au/pâ€AlSb metalâ€insulatorâ€semiconductor Schottky diodes. Journal of Applied Physics, 1989, 65, 4924-4927.	1.1	4
234	Effect of metal wave function on the IV characteristics of MOS solar cell. , 0, , .		0
235	ZnO Interface Electrical Properties-Role of Oxygen Chemisorption. , 1989, , 237-263.		8
236	Effects of oxygen impurities in W films on W/GaAs Schottkyâ€barrier contacts. Journal of Applied Physics, 1989, 66, 2446-2454.	1.1	41
237	Surface photovoltage spectroscopy in hydrogenated amorphous silicon. Journal of Applied Physics, 1989, 65, 3617-3630.	1.1	4
238	Electron beam induced changes in electrical characteristics of metal-GaAs Schottky contacts. Applied Surface Science, 1989, 37, 180-188.	3.1	0
239	On the capacitance of metal/thin oxide/semiconductor structures with localized oxide states. Solid-State Electronics, 1989, 32, 337-338.	0.8	3
240	Switching characteristics of MINPN devices. Solid-State Electronics, 1989, 32, 179-189.	0.8	5

ARTICLE IF CITATIONS Combinations of evaporation and screen printing techniques for fabricating ITOâ€"TIN (Sn)-p-type 241 0.4 1 silicon solar cells. Solar Energy Materials and Solar Cells, 1989, 19, 187-198. 242 Aging effects in GaAs Schottky barrier diodes., 0,,. Brief communciation. Effect of annealing on the electrical behaviour of chromium contacts to 243 0.9 1 silicon. International Journal of Electronics, 1989, 67, 865-868. Analysis of the influence of spatially localized oxide traps on the capacitance of MIS tunnel diodes. 244 1.2 European Transactions on Telecommunications, 1990, 1, 569-577. The Influence of Inversion Surface Layers on the Evaluation of the Interface State Energy Distribution 245 1.7 16 from Schottky-Diodel–U Characteristics. Physica Status Solidi A, 1990, 122, 583-588. Very thin oxides in vlsi technology: Properties and device implications. Microelectronics Journal, 1.1 1990, 21, 21-40. Temperature dependence of I-V and C-V characteristics of Ni/n-CdF2 Schottky barrier type diodes. 247 0.8 156 Solid-State Electronics, 1990, 33, 11-19. Edge effects in Schottky diodes. Solid-State Electronics, 1990, 33, 531-536. 248 0.8 A thyristor model of switching in metalâ€ŧhin insulatorâ€semiconductorâ€semiconductor devices: The 249 7 1.1 influence of insulating layer and illumination. Journal of Applied Physics, 1990, 68, 6447-6452. Al/pâ€CuInSe2metalâ€semiconductor contacts. Journal of Applied Physics, 1990, 68, 156-160. 1.1 NonidealJâ€Vcharacteristics and interface states of anaâ€6i:H Schottky barrier. Journal of Applied Physics, 251 41 1.1 1990, 68, 2858-2867. Heterojunction diodes formed using thin-film C containing polycrystalline diamond and Si. IEEE 2.2 Electron Device Letters, 1990, 11, 33-35. Mechanism of carrier transport in highly efficient solar cells having indium tin oxide/Si junctions. 253 1.1 181 Journal of Applied Physics, 1991, 69, 1736-1743. Barrier inhomogeneities at Schottky contacts. Journal of Applied Physics, 1991, 69, 1522-1533. 254 1.1 1,446 A modified conductance technique for the determination of series resistance of MIS tunnel diodes. 255 0.8 11 Solid-State Electronics, 1991, 34, 1455-1456. A new method to fabricate Au/n-type InP Schottky contacts with an interfacial layer. Solid-State Electronics, 1991, 34, 527-531. Effect of pre-oxidation HF treatment on the tunnel oxide (SiOx) grown at high pressure. Thin Solid 257 0.8 1 Films, 1991, 205, 227-232. Analysis of Si Schottky Barrier Characteristics Based on a New Interfacial Layer Model. Japanese 19 Journal of Applied Physics, 1991, 30, 19-26.

#	Article	IF	CITATIONS
259	Effects of Phosphine-Plasma Treatment on Characteristics of Au/n-InP Schottky Junctions. Japanese Journal of Applied Physics, 1991, 30, L1439-L1442.	0.8	10
260	The dielectric constant measurement of CdIn2Te4. Journal of Applied Physics, 1991, 70, 4472-4475.	1.1	8
261	Thermal stability of molybdenum–silicon nitride–silicon Schottky diodes. Journal of Applied Physics, 1991, 69, 3149-3153.	1.1	4
262	Simulation of currentâ€voltage characteristics of Tiâ€W/nSi Schottky diodes using defects parameters extracted from deep level transient spectroscopy. Journal of Applied Physics, 1991, 69, 3357-3359.	1.1	6
263	Fabrication and electrical characterization of NbN-interfacial layer-Si contact diodes. IEEE Transactions on Magnetics, 1991, 27, 3276-3279.	1.2	0
264	Influence of surface states on current-voltage characteristics of M-I-pSi solar cells. Journal Physics D: Applied Physics, 1992, 25, 100-105.	1.3	12
265	Tunnel oxides in AlSiOx/p-Si diodes by high pressure, low temperature oxidation of Si(100) and Si(111). Semiconductor Science and Technology, 1992, 7, 154-159.	1.0	4
266	Tunneling through thin oxide interface layers ina‧i:H Schottky diodes. Journal of Applied Physics, 1992, 71, 4399-4404.	1.1	20
267	Doping profiles studied by scanning tunneling spectroscopy. Applied Physics Letters, 1992, 60, 1715-1716.	1.5	8
268	A New Approach to Temperature Dependent Ideality Factors in Schottky Contacts. Materials Research Society Symposia Proceedings, 1992, 260, 359.	0.1	15
269	Photoconductivity and Carrier Transport in Porous Silicon. Materials Research Society Symposia Proceedings, 1992, 283, 353.	0.1	4
270	Theory of Porous Silicon Injection Electroluminescence. Materials Research Society Symposia Proceedings, 1992, 283, 383.	0.1	3
271	Studies of the photovoltaic behaviour of indium tin oxide (ITO)/silicon junctions prepared by the reactive thermal evaporation technique. Semiconductor Science and Technology, 1992, 7, 324-327.	1.0	18
272	Visible electroluminescence from porous siliconnpheterojunction diodes. Applied Physics Letters, 1992, 60, 2514-2516.	1.5	222
273	Electron transport at metal-semiconductor interfaces: General theory. Physical Review B, 1992, 45, 13509-13523.	1.1	1,345
274	A study of the Au/WSe2 interface. Surface Science, 1992, 273, L419-L424.	0.8	5
275	Properties of noble-metal/silicon junctions. Materials Science and Engineering Reports, 1992, 8, 271-367.	5.8	41
276	Electrical properties of polycrystalline chalcopyrite AgInS2films. Journal of Applied Physics, 1992, 71, 3414-3418.	1.1	38

#	Article	IF	CITATIONS
277	Parameter extraction from non-ideal Câ^'V characteristics of a Schottky diode with and without interfacial layer. Solid-State Electronics, 1992, 35, 835-841.	0.8	148
278	Simple interface-layer model for the nonideal characteristics of the Schottky-barrier diode. Solid-State Electronics, 1992, 35, 1013-1015.	0.8	56
279	Determination of the density of Si-metal interface states and excess capacitance caused by them. Physica B: Condensed Matter, 1992, 179, 285-294.	1.3	75
280	On the inhomogeneity of Schottky barriers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1992, 14, 266-280.	1.7	91
281	A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices. IEEE Transactions on Electron Devices, 1992, 39, 2771-2780.	1.6	60
282	Optical characterization of the electrical properties of processed GaAs. Applied Surface Science, 1993, 63, 143-152.	3.1	27
283	High frequency capacitance-voltage characteristics of MOS tunnel diodes in presence of interface states and fixed oxide charges. Solid-State Electronics, 1993, 36, 1641-1644.	0.8	3
284	High barrier height Au/n-type InP Schottky contacts with a POxNyHz interfacial layer. Solid-State Electronics, 1993, 36, 339-344.	0.8	84
285	Characterization of a defect layer at a Schottky barrier interface by current and capacitance measurements. Solid-State Electronics, 1993, 36, 785-789.	0.8	21
286	Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid-State Electronics, 1993, 36, 605-610.	0.8	228
287	Transport processes in Au/n-InP and Au/oxide/n-InP devices treated in oxygen multipolar plasma. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 20, 157-161.	1.7	6
288	Barrier height reduction due to metal wave function penetration in MOS solar cells. Solar Energy Materials and Solar Cells, 1993, 28, 329-333.	3.0	1
289	Functional dependence of open-circuit voltage on interface parameters and doping concentration of MIS solar cells. Physica Status Solidi A, 1993, 140, 587-592.	1.7	6
290	A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices: a solar cell application. IEEE Transactions on Electron Devices, 1993, 40, 1446-1454.	1.6	35
291	Effect of oxide thickness on the properties of metal-insulator-organic semiconductor photovoltaic cells. IEEE Transactions on Electron Devices, 1993, 40, 75-81.	1.6	10
292	Variation in the effective richardson constant of metal—GaAs and Metal—InP contacts due to the effect of processing parameters. Physica Status Solidi A, 1993, 140, 189-194.	1.7	17
293	Barrier height enhancement of Schottky junctions formed on phosphidized InGaAs. , 0, , .		0
294	Effect of deep-level impurities on the open-circuit voltage of an MIS solar cell. Semiconductor Science and Technology, 1993, 8, 1605-1610.	1.0	3

#	Article	IF	CITATIONS
295	Solar cells. Critical Reviews in Solid State and Materials Sciences, 1993, 18, 261-326.	6.8	29
296	Barrier Heights of Schottky Junctions on n-InP Treated with Phosphine Plasma. Japanese Journal of Applied Physics, 1993, 32, L1196-L1199.	0.8	27
297	Internal Photoemission and X-Ray Photoelectron Spectroscopic Studies of Sulfur-Passivated GaAs. Japanese Journal of Applied Physics, 1993, 32, 921-929.	0.8	41
298	Schottky Barrier Height of Phosphidized InGaAs. Japanese Journal of Applied Physics, 1993, 32, L239-L242.	0.8	9
299	Barrier Height of InP Schottky Diodes Prepared by Means of UV Oxidation. Japanese Journal of Applied Physics, 1993, 32, 699-703.	0.8	13
300	On the current mechanism in reverseâ€biased amorphousâ€silicon Schottky contacts. I. Zero bias barrier heights and current transport mechanism. Journal of Applied Physics, 1993, 74, 2572-2580.	1.1	12
301	Increases in photovoltage of â€~â€~indium tin oxide/silicon oxide/matâ€ŧexturednâ€silicon'' junction solar cells by silicon preoxidation and annealing processes. Journal of Applied Physics, 1993, 74, 4756-4761.	1.1	62
302	Observation of surface charge screening and Fermi level pinning on a synthetic, boronâ€doped diamond. Journal of Applied Physics, 1993, 74, 4015-4019.	1.1	20
303	Analysis of GaAs Schottky/tunnel metal–insulator–semiconductor diode characteristics based on an interfacial layer model. Journal of Applied Physics, 1993, 73, 1272-1278.	1.1	6
304	Bias dependence of Schottky barrier height in GaAs from internal photoemission and currentâ€voltage characteristics. Journal of Applied Physics, 1993, 74, 3977-3982.	1.1	19
305	Solid/gas-interactions of Surface-doped Oxides: C-V, I-V, XPS, UPS, and ELS Studies on Pt/TiO2 and Pd/SnO2 (110). Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 363-368.	0.9	16
306	Schottky Contacts Formed on Phosphidized InGaAs. Materials Research Society Symposia Proceedings, 1993, 300, 231.	0.1	0
307	A New Method for the Simultaneous Analysis of I-V/T and C-V/T Measurements of an Au/P-Inp Epitaxial Schottky Diode. Materials Research Society Symposia Proceedings, 1993, 318, 507.	0.1	2
308	Barrier height enhancement of Au Schottky junctions on phosphine-plasma treated n-AllnAs. Electronics Letters, 1994, 30, 359-361.	0.5	0
309	Analysis of InP Schottky/tunnel metal-insulator-semiconductor diode characteristics with a conductance technique. Journal Physics D: Applied Physics, 1994, 27, 1014-1019.	1.3	14
310	The Influence of Oxidation Temperature and Gate Metal on the Electrical Properties of InP Metal-Insulator-Semiconductor Tunnel Diodes. Japanese Journal of Applied Physics, 1994, 33, 6095-6098.	0.8	5
311	Direct Spectroscopic Evidence of Bias-Induced Shifts of Semiconductor Band Edges for Metal-Insulator-Semiconductor Diodes. Japanese Journal of Applied Physics, 1994, 33, L754-L756.	0.8	10
312	High frequency capacitance behavior of metalâ€oxideâ€semiconductor tunnel structures. Journal of Applied Physics, 1994, 75, 7922-7930.	1.1	3

#	Article	IF	CITATIONS
313	Comment on â€~ã€~Currentâ€voltage characteristics and interface state density of GaAs Schottky barrier'' [Appl. Phys. Lett.62, 2560 (1993)]. Applied Physics Letters, 1994, 65, 511-512.	м 1.5	2
314	Evaluation of the interface state density from light induced effects onl–U characteristics of Schottky diodes. Physica Status Solidi A, 1994, 143, 457-461.	1.7	2
316	The mechanism of the oxygen annealing in gold surface barriers on CdSxSe1â^'x devices. Solar Energy Materials and Solar Cells, 1994, 33, 177-182.	3.0	7
317	Energy distribution of interface state charge density in Cu-nSi Schottky diode with thin interfacial oxide layer. Applied Surface Science, 1994, 78, 233-238.	3.1	7
318	Effect of localized states on the current-voltage characteristics of metal-semiconductor contacts with thin interfacial layer. Solid-State Electronics, 1994, 37, 1759-1762.	0.8	57
319	Metal-insulator-semiconductor Schottky-type diodes of doped thiophene oligomers. Synthetic Metals, 1994, 65, 45-53.	2.1	50
320	Improved barrier height of Schottky junctions formed on phosphidized AlInAs. , 0, , .		1
321	Spectroscopic Characterization of Nanoscale Modification of Passivated Si(100) Surface by STM. Materials Research Society Symposia Proceedings, 1994, 332, 549.	0.1	0
322	Capacitance-voltage characteristics of Schottky barrier diode in the presence of deep-level impurities and series resistance. Applied Surface Science, 1995, 89, 205-209.	3.1	25
323	Interpreting the nonideal reverse bias C-V characteristics and importance of the dependence of Schottky barrier height on applied voltage. Physica B: Condensed Matter, 1995, 205, 41-50.	1.3	150
324	Fowler-Nordheim tunneling of carriers in MOS transistors: Two-dimensional simulation of gate current employing FIELDAY. Solid-State Electronics, 1995, 38, 807-814.	0.8	7
325	Annealing effect on the characteristics of MTIS solar cells. Solid-State Electronics, 1995, 38, 1929-1932.	0.8	5
326	Current transport in Schottky barriers prepared by ion beam sputtering. Solid-State Electronics, 1995, 38, 1923-1928.	0.8	31
327	Analysis of contact degradation at the CdTeâ€electrode interface in thin film CdTeâ€CdS solar cells. Journal of Applied Physics, 1995, 78, 4538-4542.	1.1	49
328	A double metal structure Pt/Al/nâ€InP diode. Journal of Applied Physics, 1995, 78, 291-294.	1.1	14
329	Effects of hydrogen on Er/p-type Si Schottky-barrier diodes. Physical Review B, 1995, 51, 7878-7881.	1.1	12
330	Electrical characterization of the rectifying contact between aluminium and electrodeposited poly(3-methylthiophene). Journal Physics D: Applied Physics, 1995, 28, 2554-2568.	1.3	90
331	Enhancement of barrier height of Au/PNx/InP Schottky diodes by in situ surface treatment. Electronics Letters, 1995, 31, 1104-1105.	0.5	15

#	Article	IF	CITATIONS
332	Long-Term Instability of Lithium-Drifted Silicon Detector. Japanese Journal of Applied Physics, 1995, 34, 3065-3070.	0.8	3
333	The barrier height and interface effect of Au-n-GaN Schottky diode. Journal Physics D: Applied Physics, 1995, 28, 1169-1174.	1.3	66
334	Current-voltage characteristics of porous-silicon layers. Physical Review B, 1995, 51, 1562-1566.	1.1	66
335	Mechanism of carrier transport through a siliconâ€oxide layer for ã€^indiumâ€tinâ€oxide/siliconâ€oxide/siliconã€ solar cells. Journal of Applied Physics, 1995, 78, 3931-3939.	‰ 1.1	31
336	Emerging gallium nitride based devices. Proceedings of the IEEE, 1995, 83, 1306-1355.	16.4	557
337	Temperature dependence and effect of series resistance on the electrical characteristics of a polycrystalline diamond metalâ€insulator―semiconductor diode. Journal of Applied Physics, 1995, 78, 1101-1107.	1.1	64
338	Barrier-height non-uniformities of PtSi/Si(111) Schottky diodes. Applied Physics A: Materials Science and Processing, 1995, 61, 369-375.	1.1	5
339	MetaVInsulatorPolymer - LEDs Based on PPV. Molecular Crystals and Liquid Crystals, 1996, 283, 197-202.	0.3	20
340	Electrical conduction in platinum–gallium nitride Schottky diodes. Journal of Applied Physics, 1996, 80, 4467-4478.	1.1	115
341	Electrical conductivity and oxygen doping of vapour-deposited oligothiophene films. Synthetic Metals, 1996, 76, 133-136.	2.1	49
342	Series resistance calculation for the Metal-Insulator-Semiconductor Schottky barrier diodes. Applied Physics A: Materials Science and Processing, 1996, 62, 269-273.	1.1	64
343	The effect of shunt resistance on the electrical characteristics of Schottky barrier diodes. Journal Physics D: Applied Physics, 1996, 29, 823-829.	1.3	51
344	An ion-assisted deposition system for use in the fabrication of submicron dimension device ohmic contacts. Thin Solid Films, 1996, 272, 107-111.	0.8	2
345	Current-voltage characteristics of Schottky barrier diodes with dynamic interfacial defect state occupancy. IEEE Transactions on Electron Devices, 1996, 43, 1153-1160.	1.6	14
346	The nature of electronic states in anodic zirconium oxide films part 1: The potential distribution. Electrochimica Acta, 1996, 41, 35-45.	2.6	57
347	Effect of series resistance on the forward current-voltage characteristics of Schottky diodes in the presence of interfacial layer. Solid-State Electronics, 1996, 39, 83-87.	0.8	89
348	High barrier metallic polymer/p-type silicon Schottky diodes. Solid-State Electronics, 1996, 39, 677-680.	0.8	61
349	Capacitance technique for the determination of interface state density of metal-semiconductor contact. Solid-State Electronics, 1996, 39, 1491-1493.	0.8	42

		CITATION R	EPORT	
#	Article		IF	CITATIONS
350	Cd-based ohmic contact materials to p-ZnSe. Journal of Crystal Growth, 1996, 159, 70	Э-713.	0.7	8
351	Interface properties of structures by in-situ remote plasma processes. Applied Surface 1104-105, 428-433.	Science, 1996,	3.1	1
352	Progress and prospects of group-III nitride semiconductors. Progress in Quantum Elect 20, 361-525.	ronics, 1996,	3.5	471
353	Temperature Dependence of Threshold Voltage of Metal-Semiconductor Field Effect Tr Presence of an Uneven Distribution of Interface and Bulk States. Physica Status Solidi / 271-278.	ansistors in the A, 1996, 155,	1.7	6
354	The bias-dependence change of barrier height of Schottky diodes under forward bias by series resistance effect. Physica Scripta, 1996, 53, 118-122.	/ including the	1.2	93
355	Improvement of Open Circuit Voltage of SnO2–nSi Solar Cells. Japanese Journal of A 1997, 36, 1083-1090.	pplied Physics,	0.8	4
356	Electrical characteristics of (n)-InP MIS diodes with a interfacial layer deposited at low t Semiconductor Science and Technology, 1997, 12, 609-613.	emperature.	1.0	2
357	Relation for the nonequilibrium population of the interface states: Effects on the bias c the ideality factor. Journal of Applied Physics, 1997, 81, 2674-2681.	ependence of	1.1	40
358	Electrical properties of the Ti(SiGe)2/Si0.89Ge0.11/Si(001) contact system. Journal of <i>I</i> 1997, 82, 1716-1722.	Applied Physics,	1.1	3
359	Control of stability and current-voltage characteristics in amorphous hydrogenated sili thin film diodes. Journal of Applied Physics, 1997, 82, 1711-1715.	con nitride	1.1	2
360	A self-consistent technique for the analysis of the temperature dependence of currentá capacitance–voltage characteristics of a tunnel metal-insulator-semiconductor struc of Applied Physics, 1997, 82, 5217-5226.	i€"voltage and ture. Journal	1.1	94
361	MIS tunnel admittance with an inhomogeneous dielectric. International Journal of Elect 83, 571-580.	rronics, 1997,	0.9	9
362	The growth and characterization of a-sexithienyl–based light–emitting diodes. Phil Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 76	osophical 53-773.	1.6	18
363	Electron Transfer at the n-InP Poly(Pyrrole) Interface. Materials Research Society Sym Proceedings, 1997, 488, 707.	posia	0.1	0
365	Effects of surface treatments and metal work functions on electrical properties atp-Gal interfaces. Journal of Applied Physics, 1997, 81, 1315-1322.	N/metal	1.1	213
366	Improvement of ã€^indium-tin-oxide/silicon oxide/n-Si〉 junction solar cell character treatment. Journal of Applied Physics, 1997, 81, 7630-7634.	istics by cyanide	1.1	49
367	Influence of preparation procedure on the characteristics of Schottky barriers fabricate MBE GaSb. Materials Science and Engineering B: Solid-State Materials for Advanced Te 44, 24-27.	d in situ on chnology, 1997,	1.7	5
368	Effect of interface states on the dc characteristics of short channel metal-semiconduct effect transistor. Applied Surface Science, 1997, 119, 369-373.	or field	3.1	2

#	Article	IF	CITATIONS
369	Dependence of electrical properties on work functions of metals contacting to p-type GaN. Applied Surface Science, 1997, 117-118, 373-379.	3.1	33
370	Characteristics of metallic polymer and Au Schottky contacts on cleaved surfaces of InSe(:Er). Solid-State Electronics, 1997, 41, 924-926.	0.8	9
371	On the Minimum in the Forward Capacitance in MIS Tunnel Diodes. Physica Status Solidi A, 1997, 160, 127-132.	1.7	33
372	Au/CdS Schottky Diode Fabricated with Nanocrystalline CdS Layer. Physica Status Solidi A, 1997, 163, 433-443.	1.7	13
373	A Generalized Theory of Electrical Characteristics of Schottky Barriers for Amorphous Materials. Physica Status Solidi A, 1997, 164, 733-745.	1.7	3
374	Electron Tunneling at the Semiconductorâ~'Insulatorâ~'Electrolyte Interface. Photocurrent Studies of then-InPâ~'Alkanethiolâ~'Ferrocyanide System. Journal of Physical Chemistry B, 1998, 102, 9015-9028.	1.2	42
375	Optical and electronic characterization of transition layer in thin film Au-GaAs Schottky barrier. Vacuum, 1998, 50, 439-443.	1.6	1
376	Electrical characterization of Au/SiOx/n-GaAs junctions. Solid-State Electronics, 1998, 42, 229-233.	0.8	4
377	A simple approach to the capacitance technique for determination of interface state density of a metal–semiconductor contact. Solid-State Electronics, 1998, 42, 943-949.	0.8	81
378	Stability of sulfur-treated n-InP Schottky structures, studied by current–voltage measurements. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 52, 208-215.	1.7	21
379	Recent developments and progress on electrical contacts to CdTe, CdS and ZnSe with special reference to BARRIER contacts to CdTe. Progress in Crystal Growth and Characterization of Materials, 1998, 36, 249-290.	1.8	64
380	Thermal treatment of the MIS and intimate Ni/n-LEC GaAs Schottky barrier diodes. Applied Surface Science, 1998, 135, 350-356.	3.1	17
381	Ohmic contacts formed by electrodeposition and physical vapor deposition on p-GaN. Applied Physics Letters, 1998, 73, 3402-3404.	1.5	17
382	Temperature Dependence of the Ideality Factor of Ba1-xKxBiO3/Nb-doped SrTiO3All-Oxide-Type Schottky Junctions. Japanese Journal of Applied Physics, 1998, 37, 4737-4746.	0.8	59
383	Thermal stability of Cr-Ni-Co alloy Schottky contacts on MBE -GaAs. Semiconductor Science and Technology, 1998, 13, 776-780.	1.0	6
384	The Effect of Thermal Anealing on the Series Resistance of Nearly Ideal and Ideal Ti/n-GaAs Schottky Diodes. Physica Scripta, 1998, 58, 636-639.	1.2	5
385	Ni and Ni silicide Schottky contacts on n-GaN. Journal of Applied Physics, 1998, 84, 881-886.	1.1	57
386	Imaging the depletion zone in a Si lateral pn junction with scanning tunneling microscopy. Applied Physics Letters, 1998, 72, 3314-3316.	1.5	15

#	Article	IF	Citations
387	Control of performance and stability of thin film diodes using chromium nitride contacts. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2678-2682.	0.9	1
388	Electrical study of the Au/InSb/InP system. Semiconductor Science and Technology, 1999, 14, 266-270.	1.0	7
389	Effects of interface states on the non-stationary transport properties of Schottky contacts and metal-insulator-semiconductor tunnel diodes. Journal Physics D: Applied Physics, 1999, 32, 64-71.	1.3	13
390	Effect of pre-oxidation surface preparation on the growth of ultrathin oxides of silicon. Semiconductor Science and Technology, 1999, 14, 705-709.	1.0	7
391	Effect of preoxidation treatment on thel-VandC-Vcharacteristics of Si/SiO2/Al MIS diodes. Semiconductor Science and Technology, 1999, 14, 528-531.	1.0	0
392	Current transport and the role of barrier inhomogeneities at the high barrier n-InP poly(pyrrole) interface. Journal of Applied Physics, 1999, 86, 6431-6441.	1.1	109
393	Characterization of GaAs Surfaces Treated with Remote PH3 Plasma. Japanese Journal of Applied Physics, 1999, 38, L295-L297.	0.8	2
394	The effect of thermal treatment on the characteristic parameters of Ni/-, Ti/- and NiTi alloy/n-GaAs Schottky diodes. Solid-State Electronics, 1999, 43, 521-527.	0.8	19
395	Effects of octa decyl thiol (ODT) treatment on the gallium arsenide surface and interface state density. Thin Solid Films, 1999, 342, 20-29.	0.8	16
396	Electrical and gated photoluminescence intensity studies on Schottky and oxidized Schottky structures. Thin Solid Films, 1999, 342, 136-141.	0.8	11
397	Dependence of thermal annealing on the density distribution of interface states in Ti/n-GaAs(Te) Schottky diodes. Applied Surface Science, 1999, 152, 57-62.	3.1	8
398	Effect of air humidity on the metal-oxide-semiconductor tunnel structures' capacitance. Sensors and Actuators B: Chemical, 1999, 57, 51-55.	4.0	9
399	Electrochemical tuning of indium phosphideâ^£poly(acetylene) interfaces. Inorganica Chimica Acta, 1999, 294, 207-213.	1.2	21
400	Study of carrier transport in metal/porous silicon/Si structures. Journal of Applied Physics, 1999, 86, 6911-6914.	1.1	34
401	Ideal GaAs Schottky contacts fabricated byin situ photoelectrochemical etching and electrodeposition. Electronics and Communications in Japan, 1999, 82, 13-20.	0.2	2
402	Schottky junctions on phosphidized compound semiconductors. Electronics and Communications in Japan, 1999, 82, 9-15.	0.2	0
403	Tunnel diodes fabricated from CdSe nanocrystal monolayers. Applied Physics Letters, 1999, 74, 317-319.	1.5	46
404	On The Experimental Forward Capacitance-Voltage Characteristics of Schottky Barrier Diodes. Journal for Manufacturing Science and Production, 1999, 2, 145-150.	0.1	0

#	Article	IF	CITATIONS
405	The effects of the time-dependent and exposure time to air on Au/epilayer n-Si Schottky diodes. EPJ Applied Physics, 1999, 6, 89-94.	0.3	24
406	Effect of thermal annealing on Co/n-LEC GaAs (Te) Schottky contacts. Solid State Communications, 2000, 115, 291-295.	0.9	6
407	On the determination of interface state density in n-InP Schottky structures by current–voltage measurements. Solid-State Electronics, 2000, 44, 515-520.	0.8	24
408	Effects of thin oxide in metal–semiconductor and metal–insulator–semiconductor epi-GaAs Schottky diodes. Solid-State Electronics, 2000, 44, 1089-1097.	0.8	139
409	Characterization of the surfaces of hydrogen-passivated silicon by STM. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 71, 244-248.	1.7	1
410	Formation, geometric and electronic properties of microrelief Au–GaAs interfaces. Applied Surface Science, 2000, 166, 97-102.	3.1	7
411	Current transport in the Me-n-n + Schottky-barrier structures. Semiconductors, 2000, 34, 108-114.	0.2	1
412	Hysteresis in the <i>I</i> – <i>V</i> Tunneling Characteristics of <i>n</i> â€Type BaTiO ₃ Ceramics. Journal of the American Ceramic Society, 2000, 83, 129-34.	1.9	2
413	Determination of energetic distribution of interface states between gate metal and semiconductor in sub-micron devices from current-voltage characteristics. IEEE Transactions on Electron Devices, 2000, 47, 282-287.	1.6	12
414	Limitations of conductance to the measurement of the interface state density of MOS capacitors with tunneling gate dielectrics. IEEE Transactions on Electron Devices, 2000, 47, 601-608.	1.6	98
415	Thermally induced variation in barrier height and ideality factor of Ni/Au contacts to p-GaN. Journal of Electronic Materials, 2000, 29, 291-296.	1.0	6
416	Electrical characteristics of schottky barriers on 4H-SiC: The effects of barrier height nonuniformity. Journal of Electronic Materials, 2000, 29, 376-383.	1.0	94
417	Schottky Barriers in Cd1â^'x Znx Se Mixed Crystals With x = 0.5 and x = 0.55. , 2000, , 1940-1943.		0
418	A reverse bias, tip-insulator-semiconductor tunnel diode model accounting for the delineation of a p/p+ junction using scanning tunneling microscopy. Journal of Applied Physics, 2000, 87, 4476-4482.	1.1	1
419	Optimization of the electrical and optical properties of Sb-Sn-O thin films. Semiconductor Science and Technology, 2000, 15, 247-253.	1.0	15
420	l–VCharacteristics of Schottky/Metal-Insulator-Semiconductor Diodes with Tunnel Thin Barriers. Japanese Journal of Applied Physics, 2000, 39, 4521-4522.	0.8	12
421	On the Forward Bias Excess Capacitance at Intimate and MIS Schottky Barrier Diodes with Perfect or Imperfect Ohmic Back Contact. Physica Scripta, 2000, 61, 209-212.	1.2	58
422	Gamma radiation effect on the GaAs solar cell performance. , 0, , .		1

# 423	ARTICLE LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes. Applied Physics Letters, 2000, 77, 3096-3098.	IF 1.5	Citations 154
424	Calculation of transmission coefficients at nonideal semiconductor interfaces characterized by a spatial distribution of barrier heights. Journal of Chemical Physics, 2001, 115, 433-445.	1.2	34
425	The effect of series resistance on calculation of the interface state density distribution in Schottky diodes. International Journal of Electronics, 2001, 88, 625-633.	0.9	11
426	Effect of exponentially distributed deep levels on the current and capacitance of a MIS diode. Solid-State Electronics, 2001, 45, 315-324.	0.8	12
427	Degradation of transparent metal–insulator–semiconductor solar cells due to heating effects. Renewable Energy, 2001, 23, 483-488.	4.3	4
428	Photon-induced degradation in metal–insulator–semiconductor solar cells. Renewable Energy, 2001, 24, 529-534.	4.3	6
429	Interface states density distribution in Au/n-GaAs Schottky diodes on n-Ge and n-GaAs substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 87, 141-147.	1.7	89
430	Recent advances in Schottky barrier concepts. Materials Science and Engineering Reports, 2001, 35, 1-138.	14.8	1,041
431	Impedance spectroscopic analysis of forward biased metal oxide semiconductor tunnel diodes (MOSTD). Applied Surface Science, 2001, 175-176, 740-745.	3.1	9
432	Effect of ballistic electron transport in metal-n-GaAs-n +-GaAs Schottky-barrier structures. Semiconductors, 2001, 35, 788-795.	0.2	3
433	Energy level line-up in polymer light-emitting diodes via electroabsorption spectroscopy. IEE Proceedings: Optoelectronics, 2001, 148, 74-80.	0.8	11
434	Temperature Coefficient of Resistivity in Heavily Doped Oxygen-Rich Polysilicon. Journal of the Electrochemical Society, 2001, 148, G725.	1.3	5
435	Fowler–Nordheim conduction in polysilicon (n+)-oxide–silicon (p) structures: Limit of the classical treatment in the barrier height determination. Journal of Applied Physics, 2001, 89, 7994-8001.	1.1	29
436	Electrical characterization of TiN/a-C/Si devices grown by magnetron sputtering at room temperature. Applied Physics Letters, 2001, 78, 1682-1684.	1.5	9
437	Current transport at thep-InP poly(pyrrole) interface. Journal of Applied Physics, 2001, 90, 1001-1010.	1.1	56
438	Admittance of metal–insulator–semiconductor tunnel contacts in the presence of donor–acceptor mixed interface states and interface reaction. Journal of Applied Physics, 2001, 89, 364-373.	1.1	4
439	Barrier height enhancement in the Au/n-GaAs Schottky diodes with anodization process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 10.	1.6	32
440	Forward Bias Capacitance-Voltage Characteristics and Interface State Density of Au/n-GaAs Schottky Diodes under Hydrostatic Pressure. Physica Scripta, 2002, 65, 454-458.	1.2	2

#	Article	IF	CITATIONS
441	Tuning Charge Transport at the Interface between Indium Phosphide and a Polypyrroleâ ³ Phosphomolybdate Hybrid through Manipulation of Electrochemical Potential. Journal of Physical Chemistry B, 2002, 106, 1622-1636.	1.2	9
442	Charges and Dipoles at Semiconductor Interfaces. Materials Research Society Symposia Proceedings, 2002, 719, 1211.	0.1	0
443	Effect of isothermal annealing on CdTe and the study of electrical properties of Au–CdTe Schottky barriers. Physica B: Condensed Matter, 2002, 322, 390-396.	1.3	18
444	Current transport mechanism and l–V characteristics of titanium and indium contacts to p-type GaN. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 202-206.	1.7	0
445	Metal-insulator-semiconductor solar cell under gamma irradiation. Renewable Energy, 2002, 26, 113-120.	4.3	39
446	Highly sensitive NOx gas sensor based on a Au/n-Si Schottky diode. Sensors and Actuators B: Chemical, 2002, 84, 226-230.	4.0	16
447	Analysis and simulation of Au/InSb/InP diode C–V characteristic: modeling and experiments. Materials Science and Engineering C, 2002, 21, 291-296.	3.8	22
448	The effects of the time-dependent and exposure time to air on Au/n-GaAs schottky barrier diodes. Applied Surface Science, 2002, 191, 188-195.	3.1	11
449	Effects of mechanical stress on polycrystalline-silicon resistors. Thin Solid Films, 2002, 406, 195-199.	0.8	6
450	Electrical properties of sulfur-passivated III–V compound devices. Vacuum, 2002, 67, 81-90.	1.6	15
451	Effect of hydrogen on the properties of Pd/GaAs/InGaAs diode structures with quantum wells. Semiconductors, 2002, 36, 552-557.	0.2	0
452	A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating. Sensors and Actuators B: Chemical, 2002, 85, 10-18.	4.0	107
453	Molecular Passivation of Mercuryâ^'Silicon (p-type) Diode Junctions:  Alkylation, Oxidation, and Alkylsilation. Journal of Physical Chemistry B, 2003, 107, 7803-7811.	1.2	61
454	Alkyl Monolayer Passivated Metal-Semiconductor Diodes: 2: Comparison with Native Silicon Oxide. ChemPhysChem, 2003, 4, 335-342.	1.0	59
455	Spectroscopic and electrical properties of ultrathin SiO2 layers formed with nitric acid. Surface Science, 2003, 547, 275-283.	0.8	43
456	Investigation of degradation mechanism of Schottky diodes. Solid-State Electronics, 2003, 47, 831-834.	0.8	1
457	The energy distribution of the interface state density of Pb/p-Si Schottky contacts exposed to clean room air. Applied Surface Science, 2003, 207, 190-199.	3.1	68
458	Low-temperature current–voltage characteristics of MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky diodes. Physica B: Condensed Matter, 2003, 325, 138-148.	1.3	63

#	Article	IF	Citations
459	The investigation for various treatments of InAlGaP Schottky diodes. Optical Materials, 2003, 23, 99-102.	1.7	8
460	Contact optimization in polymer light-emitting diodes. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2649-2664.	2.4	55
461	Fluctuation model for a rough metal/semiconductor interface. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 933-938.	0.8	1
462	Effect of series resistance on the performance of high resistivity silicon Schottky diode. Applied Surface Science, 2003, 218, 337-343.	3.1	35
463	Characteristics of Schottky contacts onn-type 4H–SiC using IrO2 and RuO2. Journal of Applied Physics, 2003, 94, 6159-6166.	1.1	21
464	Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density. Journal of Applied Physics, 2003, 94, 7328-7335.	1.1	197
465	IrO2 Schottky contact on n-type 4H-SiC. Applied Physics Letters, 2003, 82, 4726-4728.	1.5	6
466	Interface states atSiO2/6Hâ^'SiC(0001)interfaces observed by x-ray photoelectron spectroscopy measurements under bias:â€, Comparison between dry and wet oxidation. Physical Review B, 2003, 67, .	1.1	39
467	Technology computer-aided design modelling of single-atom doping for fabrication of buried nanostructures. Nanotechnology, 2003, 14, 157-160.	1.3	13
468	Electrical characteristics of metal–insulator–semiconductor Schottky diodes using a photowashing treatment in Al[sub x]Ga[sub 1â ^{-*} x]As/InGaAs (X=0.75) pseudomorphic high electron mobility transistors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Science & Technology an Official Journal of the American Vacuum Science & Technology an Official Journal of the American Vacuum	1.6	7
469	Nitric acid oxidation of silicon at â^¼120°C to form 3.5-nm SiO2â^•Si structure with good electrical characteristics. Applied Physics Letters, 2004, 85, 3783-3785.	1.5	45
470	Postoxidation Annealing Treatments to Improve Si/Ultrathin SiO[sub 2] Characteristics Formed by Nitric Acid Oxidation. Journal of the Electrochemical Society, 2004, 151, G824.	1.3	31
471	Analysis of the actual Schottky-barrier contact model in a wide temperature and bias-voltage range. Radiophysics and Quantum Electronics, 2004, 47, 688-701.	0.1	4
472	Determination of optimal insulator thickness for MISiC hydrogen sensors. Solid-State Electronics, 2004, 48, 1673-1677.	0.8	8
473	Dielectric properties in Au/SnO2/n-Si (MOS) structures irradiated under 60Co-Î ³ rays. Microelectronics Journal, 2004, 35, 731-738.	1.1	14
474	The importance of the neutral region resistance for the calculation of the interface state in Pb/p-Si Schottky contacts. Physica B: Condensed Matter, 2004, 352, 312-317.	1.3	36
475	Substrate temperature dependence of series resistance in Al/SnO2/p-Si (111) Schottky diodes prepared by spray deposition method. Applied Surface Science, 2004, 233, 5-13.	3.1	39
476	The effects of the ageing on the characteristic parameters of polyaniline/p-type Si/Al structure. Applied Surface Science, 2004, 230, 404-410.	3.1	24

#	Article	IF	CITATIONS
477	Correlation between series resistance and parameters of Al/n-Si and Al/p-Si Schottky barrier diodes. Applied Surface Science, 2004, 236, 366-376.	3.1	78
478	Electron Transfer through Organic Monolayers Directly Bonded to Silicon Probed by Current Sensing Atomic Force Microscopy:Â Effect of Chain Length and Applied Force. Journal of Physical Chemistry B, 2004, 108, 17129-17135.	1.2	58
479	Electrical characteristics of AlxGa1â^'xN Schottky diodes prepared by a two-step surface treatment. Journal of Applied Physics, 2004, 96, 3286-3295.	1.1	31
480	Current-voltage-temperature analysis of inhomogeneous Au/n-GaAs Schottky contacts. EPJ Applied Physics, 2005, 31, 79-86.	0.3	26
481	On the role of the interface charge in non-ideal metal–semiconductor contacts. Applied Surface Science, 2005, 250, 63-69.	3.1	4
482	Electronic and interface state density distribution properties of Ag/p-Si Schottky diode. Applied Surface Science, 2005, 252, 1966-1973.	3.1	48
483	Ti/p-Si Schottky barrier diodes with interfacial layer prepared by thermal oxidation. Physica B: Condensed Matter, 2005, 364, 133-141.	1.3	55
484	Analysis of l–V characteristics on Au/n-type GaAs Schottky structures in wide temperature range. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 122, 133-139.	1.7	83
485	Effects of 60Co Î ³ -ray irradiation on the electrical characteristics of Au/n-GaAs (MS) structures. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 555, 260-265.	0.7	60
486	Density of interface states, excess capacitance and series resistance in the metal–insulator–semiconductor (MIS) solar cells. Solar Energy Materials and Solar Cells, 2005, 85, 345-358.	3.0	79
487	Comparison of electrical parameters of Zn/p-Si and Sn/p-Si Schottky barrier diodes. Solid State Communications, 2005, 135, 500-504.	0.9	29
488	Properties of Pt/4H-SiC Schottky diodes with interfacial layer at elevated temperatures. Solid-State Electronics, 2005, 49, 585-590.	0.8	52
489	Temperature dependence of barrier heights of Au/n-type GaAs Schottky diodes. Solid-State Electronics, 2005, 49, 1052-1054.	0.8	29
490	Molecular electron transfer of protein junctions characterised by conducting atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2005, 40, 189-194.	2.5	18
491	Effect of series resistance on the performance of silicon Schottky diode in the presence of tin oxide layer. Applied Surface Science, 2005, 239, 481-489.	3.1	32
492	The energy distribution of the interface state density of SnO2/p-Si (111) heterojunctions prepared at different substrate temperatures by spray deposition method. Applied Surface Science, 2005, 246, 30-35.	3.1	48
493	The effect of interface states, excess capacitance and series resistance in the Al/SiO2/p-Si Schottky diodes. Applied Surface Science, 2005, 252, 1732-1738.	3.1	80
494	Siĩ£¿C Linked Organic Monolayers on Crystalline Silicon Surfaces as Alternative Gate Insulators. ChemPhysChem, 2005, 6, 2153-2166.	1.0	105

#	Article	IF	CITATIONS
495	Thickness dependent formation and properties of GdSi2/Si(100) interfaces. Applied Physics A: Materials Science and Processing, 2005, 81, 975-980.	1.1	2
496	Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure. Microelectronic Engineering, 2005, 81, 140-149.	1.1	170
497	Current transport in Zn/p-Si(100) Schottky barrier diodes at high temperatures. Physica B: Condensed Matter, 2005, 357, 386-397.	1.3	100
498	The effect of native oxide layer on some electronic parameters of Au/n-Si/Au–Sb Schottky barrier diodes. Physica B: Condensed Matter, 2005, 368, 58-63.	1.3	22
499	Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor. Sensors and Actuators B: Chemical, 2005, 109, 119-127.	4.0	10
500	The effect of series resistance on capacitance–voltage characteristics of Schottky barrier diodes. Solid State Communications, 2005, 135, 490-495.	0.9	88
501	Thermal stability of nitrogen in WN[sub x] barriers applied to polymetal gates. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1664.	1.6	3
502	Barrier height enhancement and stability of the Auâ^•n-InP Schottky barrier diodes oxidized by absorbed water vapor. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2436.	1.6	27
503	Electrical properties of epitaxial junctions betweenNb:SrTiO3and optimally doped, underdoped, and Zn-dopedYBa2Cu3O7â~1´. Physical Review B, 2005, 72, .	1.1	35
504	How Do Electronic Carriers Cross Si-Bound Alkyl Monolayers?. Physical Review Letters, 2005, 95, 266807.	2.9	124
505	Factors limiting the performance of CdZnTe detectors. IEEE Transactions on Nuclear Science, 2005, 52, 589-598.	1.2	64
506	Origin of Enhancement in Open-Circuit Voltage by Adding ZnO to Nanocrystalline SnO2 in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 17892-17900.	1.2	67
507	lon irradiation of inhomogeneous Schottky barriers on silicon carbide. Journal of Applied Physics, 2005, 97, 123502.	1.1	25
508	On the intersecting behaviour of experimental forward bias current–voltage (l–V) characteristics of Al/SiO2/p-Si (MIS) Schottky diodes at low temperatures. Semiconductor Science and Technology, 2006, 21, 1053-1058.	1.0	78
509	BARRIER HEIGHT VARIATIONS AND INTERFACE PROPERTIES OF PtSi/Si STRUCTURES. Surface Review and Letters, 2006, 13, 273-278.	0.5	4
510	Energy Level and Band Alignment for GaAsâ~'Alkylthiol Monolayerâ~'Hg Junctions from Electrical Transport and Photoemission Experiments. Journal of Physical Chemistry B, 2006, 110, 14363-14371.	1.2	66
511	The calculation of electronic parameters of an Ag/chitin/n-Si Schottky barrier diode. Synthetic Metals, 2006, 156, 958-962.	2.1	50
512	Frequency dependent capacitance and conductance–voltage characteristics of Al/Si3N4/p-Si(100) MIS diodes. Microelectronic Engineering, 2006, 83, 2522-2526.	1.1	68

#	Article	IF	CITATIONS
513	The determination of electronic and interface state density distributions of Au/n-type GaAs Schottky barrier diodes. Physica B: Condensed Matter, 2006, 381, 199-203.	1.3	60
514	60Co γ irradiation effects on the current–voltage (I–V) characteristics of Al/SiO2/p-Si (MIS) Schottky diodes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568, 863-868.	0.7	36
515	The determination of the conduction mechanism and extraction of diode parameters of ITO/PEDOT-PSS/POLYMER/Al heterojunction diode. Optical Materials, 2006, 28, 962-965.	1.7	13
516	Current transport mechanism in Al/Si3N4/p-Si (MIS) Schottky barrier diodes at low temperatures. Applied Surface Science, 2006, 252, 2999-3010.	3.1	116
517	The barrier height inhomogeneity in Al/p-Si Schottky barrier diodes with native insulator layer. Applied Surface Science, 2006, 252, 7749-7754.	3.1	71
518	The role of the interface insulator layer and interface states on the current-transport mechanism of Schottky diodes in wide temperature range. Microelectronic Engineering, 2006, 83, 499-505.	1.1	105
519	Characterization of current–voltage (l–V) and capacitance–voltage–frequency (C–V–f) features of Al/SiO2/p-Si (MIS) Schottky diodes. Microelectronic Engineering, 2006, 83, 582-588.	1.1	114
520	The calculation of electronic parameters of an Au/β-carotene/n-Si Schottky barrier diode. Physica B: Condensed Matter, 2006, 381, 113-117.	1.3	53
521	Electrical characterization of novel Si solar cells. Thin Solid Films, 2006, 511-512, 258-264.	0.8	17
522	On the profile of temperature dependent series resistance in Al/Si3N4/p-Si (MIS) Schottky diodes. Microelectronic Engineering, 2006, 83, 577-581.	1.1	69
523	The C–V–f and G/ω–V–f characteristics of Al/SiO2/p-Si (MIS) structures. Microelectronic Engineering, 2006, 83, 2021-2026.	1.1	49
524	Al composition dependent properties of quaternary AlInGaN Schottky diodes. Journal of Applied Physics, 2006, 99, 123702.	1.1	8
525	Interfacial characteristics of a Fe3O4â^•Nb(0.5%):SrTiO3 oxide junction. Journal of Applied Physics, 2006, 99, 08K304.	1.1	18
526	Electronic Transport and Schottky Barrier Heights of Ni/Au Contacts on n-Type GaN Surface with and without a Thin Native Oxide Layer. Japanese Journal of Applied Physics, 2006, 45, 2505-2508.	0.8	28
527	Evolution of conduction and interface states of laterally wet-oxidized AlGaAs with oxidation time. Journal of Applied Physics, 2006, 99, 023711.	1.1	5
528	Graded tunnelling barrier and oxygen concentration in thermally grown ultrathin SiOxgate oxide. Journal Physics D: Applied Physics, 2007, 40, 2143-2149.	1.3	9
529	Influence of swift heavy ion irradiation on electrical characteristics of Au/ <i>n</i> -Si (1 0 0) Schottky barrier structure. Journal Physics D: Applied Physics, 2007, 40, 6892-6897.	1.3	32
530	Evidence for the existence of a metal-insulator-semiconductor junction at the electrode interfaces of CaCu3Ti4O12 thin film capacitors. Applied Physics Letters, 2007, 91, 202903.	1.5	65

#	Article	IF	Citations
531	The behavior of the I-V-T characteristics of inhomogeneous (Niâ^•Au)–Al0.3Ga0.7Nâ^•AlNâ^•GaN heterostructures at high temperatures. Journal of Applied Physics, 2007, 102, .	1.1	74
532	Preparation, structural and electrical properties of zinc oxide grown on silicon nanoporous pillar array. Chinese Physics B, 2007, 16, 3108-3113.	1.3	3
533	Electronic and Thermoelectric Properties of Polyaniline Organic Semiconductor and Electrical Characterization of Al/PANI MIS Diode. Journal of Physical Chemistry C, 2007, 111, 1840-1846.	1.5	133
534	Forward current-voltage characteristics of an AlGaInP light-emitting diode. Journal of Applied Physics, 2007, 102, .	1.1	12
535	Effect of Doping on Electronic Transport through Molecular Monolayer Junctions. Journal of the American Chemical Society, 2007, 129, 7494-7495.	6.6	27
536	Electrical Characterization and Interface State Density Properties of the ITO/C70/Au Schottky Diode. Journal of Physical Chemistry C, 2007, 111, 1505-1507.	1.5	28
537	Quantitative Analysis of Current–Voltage Characteristics of Semiconducting Nanowires: Decoupling of Contact Effects. Advanced Functional Materials, 2007, 17, 2478-2489.	7.8	283
538	Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) Schottky diodes. Solid-State Electronics, 2007, 51, 941-949.	0.8	101
539	The obtaining of Al–Ti10W90–Si(n) Schottky diodes and investigation of their interface surface states density. Solid-State Electronics, 2007, 51, 1096-1100.	0.8	9
540	Current conduction mechanism in Al/p-Si Schottky barrier diodes with native insulator layer at low temperatures. Applied Surface Science, 2007, 253, 5056-5061.	3.1	64
541	The electrical properties of metal-oxide-semiconductor devices fabricated on the chemically etched n-InP substrate. Applied Surface Science, 2007, 253, 5961-5966.	3.1	33
542	Electrochemical impedance and solid-state electrical characterization of silicon (111) modified with ï‰-functionalized alkyl monolayers. Electrochimica Acta, 2007, 52, 2913-2919.	2.6	12
543	60Co Î ³ -ray irradiation effects on the capacitance and conductance characteristics of tin oxide films on Si. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 719-723.	0.7	8
544	Analysis of interface states and series resistance at MIS structure irradiated under 60Co Î ³ -rays. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580, 1588-1593.	0.7	15
545	The effect of series resistance and oxide layer formed by thermal oxidation on some electrical parameters of Al/SiO2/p-Si Schottky diodes. Physica B: Condensed Matter, 2007, 388, 10-15.	1.3	32
546	Simulation studies of current transport in metal–insulator–semiconductor Schottky barrier diodes. Physica B: Condensed Matter, 2007, 390, 179-184.	1.3	48
547	On the profile of frequency and voltage dependent interface states and series resistance in MIS structures. Physica B: Condensed Matter, 2007, 393, 328-335.	1.3	17
548	Gaussian distribution of inhomogeneous barrier height in Al0.24Ga0.76As/GaAs structures. Physica B: Condensed Matter, 2007, 396, 22-28.	1.3	18

#	Article	IF	CITATIONS
549	On the dielectric characteristics of Au/SnO2/n-Si capacitors. Physica B: Condensed Matter, 2007, 396, 181-186.	1.3	6
550	The barrier height distribution in identically prepared Al/p-Si Schottky diodes with the native interfacial insulator layer (SiO2). Physica B: Condensed Matter, 2007, 399, 146-154.	1.3	41
551	Analysis of frequency-dependent series resistance and interface states of In/SiO2/p-Si (MIS) structures. Physica B: Condensed Matter, 2007, 400, 149-154.	1.3	21
552	Effect of oxide thickness on the capacitance and conductance characteristics of MOS structures. Physica B: Condensed Matter, 2007, 400, 168-174.	1.3	11
553	Electronic and interface state density properties of Cu/n-Si MIS-type diode. Physica B: Condensed Matter, 2007, 394, 23-26.	1.3	6
554	Molecular control over Ag/p-Si diode by organic layer. Journal of Physics and Chemistry of Solids, 2007, 68, 1770-1773.	1.9	36
555	The current–voltage characteristics and inhomogeneous-barrier analysis of ddq/p-type Si/Al diode with interfacial layer. Physica B: Condensed Matter, 2007, 389, 306-310.	1.3	32
556	The electrical characterization of Zn(Phen)q/p-type Si/Al diode with interfacial layer by current–voltage characteristics. Physica B: Condensed Matter, 2007, 390, 151-154.	1.3	32
557	The C–V–f and G/ω–V–f characteristics of Au/SiO2/n-Si capacitors. Physica B: Condensed Matter, 2007, 391, 59-64.	1.3	34
558	Electrical transport characteristics of Sn/p-Si schottky contacts revealed from I–V–T and C–V–T measurements. Physica B: Condensed Matter, 2007, 392, 43-50.	1.3	117
559	Laterally inhomogeneous barrier analysis of the methyl violet/p-Si organic/inorganic hybrid Schottky structures. Applied Surface Science, 2008, 254, 3039-3044.	3.1	61
560	Analysis of interface states of metal–insulator–semiconductor photodiode with n-type silicon by conductance technique. Sensors and Actuators A: Physical, 2008, 147, 104-109.	2.0	40
561	Influence of electrical characteristics on the sensitivity of p-InP-based pseudo-Schottky diodes for NO2 monitoring in atmosphere. Sensors and Actuators B: Chemical, 2008, 134, 597-603.	4.0	6
562	Investigation of Ag-bulk/glassy-phase/Si heterostructures of printed Ag contacts on crystalline Si solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1011-1015.	3.0	84
563	The effect of temperature on the charge transport and transient absorption properties of K27 sensitized DSSC. Solar Energy Materials and Solar Cells, 2008, 92, 1047-1053.	3.0	25
564	Photovoltaic and electronic properties of quercetin/p-InP solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1205-1210.	3.0	72
565	Complete prevention of reaction at HfO2/Si interfaces by 1nm silicon nitride layer. Surface Science, 2008, 602, 1948-1953.	0.8	17
566	Current–voltage and capacitance–voltage characteristics of Al/p-type silicon/organic semiconductor based on phthalocyanine rectifier contact. Thin Solid Films, 2008, 516, 8793-8796.	0.8	56

#	Article	IF	Citations
567	Electrical characteristics and inhomogeneous barrier analysis of aniline green/p-Si heterojunctions. Journal of Materials Science: Materials in Electronics, 2008, 19, 986-991.	1.1	17
568	Electronic Current Transport through Molecular Monolayers: Comparison between Hg/Alkoxy and Alkyl Monolayer/Si(100) Junctions. Advanced Materials, 2008, 20, 3931-3936.	11.1	43
569	Dielectric studies of metal/n-GaN/metal Schottky contact in the radio frequency range. Journal of Crystal Growth, 2008, 310, 3992-3997.	0.7	2
570	On the temperature dependence of series resistance and interface states in Al/SiO2/p-Si (MIS) Schottky diodes. Microelectronic Engineering, 2008, 85, 289-294.	1.1	21
571	The interface states analysis of the MIS structure as a function of frequency. Microelectronic Engineering, 2008, 85, 542-547.	1.1	9
572	Analysis of electrical characteristics of Au/SiO2/n-Si (MOS) capacitors using the high–low frequency capacitance and conductance methods. Microelectronic Engineering, 2008, 85, 2256-2260.	1.1	78
573	The profile of temperature and voltage dependent series resistance and the interface states in (Ni/Au)/Al0.3Ga0.7N/AlN/GaN heterostructures. Microelectronic Engineering, 2008, 85, 2316-2321.	1.1	25
574	Effects of illumination and 60Co \hat{l}^3 -ray irradiation on the electrical characteristics of porous silicon solar cells. Renewable Energy, 2008, 33, 286-292.	4.3	17
575	Synthesis of n-type boron phosphide films and formation of Schottky diode: Al/n-BP/Sb. Applied Surface Science, 2008, 254, 3540-3547.	3.1	9
576	γ-Irradiation-induced changes at the electrical characteristics of Sn/p–Si Schottky contacts. Vacuum, 2008, 82, 789-793.	1.6	22
577	Characterization of interface states at Au/SnO2/n-Si (MOS) structures. Vacuum, 2008, 82, 1203-1207.	1.6	35
578	Analysis of temperature dependent electrical characteristics of Au/n-GaAs/GaAs structures in a wide temperature range. Vacuum, 2008, 83, 276-281.	1.6	16
579	DNA-based organic-on-inorganic semiconductor Schottky structures. Applied Surface Science, 2008, 254, 5175-5180.	3.1	34
580	Investigation of diode parameters using l–V and C–V characteristics of In/SiO2/p-Si (MIS) Schottky diodes. Physica B: Condensed Matter, 2008, 403, 2690-2697.	1.3	21
581	Analysis of frequency- and temperature-dependent interface states in PtSi/p-Si Schottky diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 179-182.	1.7	19
582	Electron irradiation effects on the Schottky diode characteristics of p-Si. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 621-624.	0.6	18
583	Analysis of interface states and series resistance of MIS Schottky diodes using the current–voltage (I–V) characteristics. Microelectronic Engineering, 2008, 85, 233-237.	1.1	61
584	The frequency and voltage dependent electrical characteristics of Al–TiW–Pd2Si/n-Si structure using I–V, C–V and G/ω–V measurements. Microelectronic Engineering, 2008, 85, 365-370	1.1	24

#	Article	IF	CITATIONS
585	Electrical and photovoltaic properties of a n-Si/chitosan/Ag photodiode. Microelectronic Engineering, 2008, 85, 1826-1830.	1.1	37
586	Analysis of interface states and series resistance of Ag/SiO2/n-Si MIS Schottky diode using current–voltage and impedance spectroscopy methods. Microelectronic Engineering, 2008, 85, 646-653.	1.1	36
587	Photosensitivity and Schottky barrier height in Au-n-GaAs structures. Technical Physics, 2008, 53, 134-139.	0.2	4
588	Nanoscale Electrical and Structural Characterization of Gold/Alkyl Monolayer/Silicon Diode Junctions. Journal of Physical Chemistry C, 2008, 112, 9081-9088.	1.5	39
589	Determination of electronic properties of Al/p-Si/composite organic semiconductor (MIOS) junction barrier by current–voltage and capacitance–voltage methods. Synthetic Metals, 2008, 158, 108-112.	2.1	25
590	lâ^`V Characteristics of Metalâ^`Oxideâ^'ZnSe Nanowire Structure. Journal of Physical Chemistry C, 2008, 112, 18644-18650.	1.5	10
591	The double Gaussian distribution of barrier heights in Al/TiO2/p-Si (metal-insulator-semiconductor) structures at low temperatures. Journal of Applied Physics, 2008, 104, .	1.1	94
592	Gaussian distribution of inhomogeneous barrier height in Al/SiO2/p-Si Schottky diodes. Journal of Applied Physics, 2008, 103, .	1.1	73
593	Metal oxide semiconductor UV sensor. , 2008, , .		1
594	The distribution of the barrier height in Al–TiW–Pd ₂ Si/n-Si Schottky diodes from <i>I</i> – <i>V</i> – <i>T</i> measurements. Semiconductor Science and Technology, 2008, 23, 035003.	1.0	20
595	Gamma irradiation-induced changes at the electrical characteristics of organic-based schottky structures. Journal Physics D: Applied Physics, 2008, 41, 135103.	1.3	31
596	Correlation of magnetoresistance and lateral photovoltage in Co3Mn2O/SiO2/Si metal–oxide–semiconductor structure. New Journal of Physics, 2008, 10, 093006.	1.2	28
597	The influence of series resistance and interface states on intersecting behavior of <i>l–V</i> characteristics of Al/TiO ₂ /p-Si (MIS) structures at low temperatures. Semiconductor Science and Technology, 2008, 23, 105014.	1.0	62
598	Physical origin of colossal dielectric constant in CaCu3Ti4O12 thin film by Pulsed Laser Deposition. Materials Research Society Symposia Proceedings, 2008, 1073, 1.	0.1	0
599	Fabrication and electrical properties of organic-on-inorganic Schottky devices. Journal of Physics Condensed Matter, 2008, 20, 215210.	0.7	21
600	A novel position-sensitive detector based on metal–oxide–semiconductor structures of Co–SiO ₂ –Si. New Journal of Physics, 2008, 10, 033018.	1.2	30
601	Electrical characterization of organic-on-inorganic semiconductor Schottky structures. Journal of Physics Condensed Matter, 2008, 20, 045215.	0.7	25
602	Characterization of plasma etching induced interface states at Tiâ^•p-SiGe Schottky contacts. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 705-709.	0.9	7

	Сітаті	on Report	
#	Article	IF	Citations
603	DNA-modified indium phosphide Schottky device. Applied Physics Letters, 2008, 92, 212106.	1.5	30
604	Dielectric performance of diamond-like carbon nanofilms deposited by electron-beam-induced deposition. , 2008, , .		0
605	Giant lateral photovoltaic effect observed in TiO2 dusted metal-semiconductor structure of Ti/TiO2/Si. Applied Physics Letters, 2009, 95, .	1.5	32
606	Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures. Journal of Applied Physics, 2009, 106, .	1.1	54
607	Investigation of temperature dependent dc current transport mechanism on Au/poly(4-vinyl) Tj ETQq0 0 C	rgBT /Overlock I	10 Tf 50 582

608	THE EFFECT OF NANO AND MICRO POROSITY ON THE SCHOTTRY BARKIER HEIGHT AND IDEALITY FACTOR IN THE I–V CHARACTERISTICS OF PtSi/p - Si IR DETECTOR. Modern Physics Letters B, 2009, 23, 765-771.	1.0	1
609	Impedance and Interface Properties of Al/Methyl-Red/p-InP Solar Cell. International Journal of Photoenergy, 2009, 2009, 1-7.	1.4	7
610	Thermal annealing behaviour of Al/Ni/Au multilayer on n-GaN Schottky contacts. Chinese Physics B, 2009, 18, 1618-1621.	0.7	11
611	Photosensitive Metal–Insulator–Semiconductor Devices with Stepped Insulating Layer. Electrochemical and Solid-State Letters, 2009, 12, H453.	2.2	3
612	Analytical modelling and experimental studies of SIS tunnel solar cells. Journal Physics D: Applied Physics, 2009, 42, 115302.	1.3	9
613	Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts. Journal of Physics Condensed Matter, 2009, 21, 335802.	0.7	85
614	Physical aspects of colossal dielectric constant material CaCu3Ti4O12 thin films. Journal of Applied Physics, 2009, 105, .	1.1	32
615	Ultrathin SiO2 layer with an extremely low leakage current density formed in high concentration nitric acid. Journal of Applied Physics, 2009, 105, .	1.1	30
616	Electrical characteristics of Al/polyindole Schottky barrier diodes. I. Temperature dependence. Journal of Applied Polymer Science, 2009, 113, 2955-2961.	1.3	31
617	Evaluation of Schottky barrier parameters of Pd/Pt Schottky contacts on n-InP (100) in wide temperature range. Superlattices and Microstructures, 2009, 45, 22-32.	1.4	16
618	The effects of preparation temperature on the main electrical parameters of Al/TiO2/p-Si (MIS) structures by using sol–gel method. Journal of Sol-Gel Science and Technology, 2009, 50, 28-34.	1.1	36
619	Electrical characteristics and inhomogeneous barrier analysis of Au–Be/p-InSe:Cd Schottky barrier diodes. Microelectronic Engineering, 2009, 86, 106-110.	1.1	10
620	A detailed study of current–voltage characteristics in Au/SiO2/n-GaAs in wide temperature range. Microelectronics Reliability, 2009, 49, 904-911.	0.9	53

#	Article	IF	CITATIONS
621	The dependence of barrier height on temperature for Pd Schottky contacts on ZnO. Physica B: Condensed Matter, 2009, 404, 4402-4405.	1.3	34
622	Effects of chemical treatment on barrier height and ideality factors of Au/GaN Schottky diodes. Physica B: Condensed Matter, 2009, 404, 4415-4418.	1.3	29
623	Electrical and photovoltaic properties of Cr/Si Schottky diodes. International Journal of Hydrogen Energy, 2009, 34, 5208-5212.	3.8	42
624	Tunnelling through diamond-like carbon nanofilms deposited by electron-beam-induced deposition. Thin Solid Films, 2009, 517, 6520-6526.	0.8	6
625	Electrical characteristics of Au/n-GaAs Schottky barrier diodes with and without SiO2 insulator layer at room temperature. Vacuum, 2009, 83, 1060-1065.	1.6	35
626	Analysis of surface states and series resistance in Au/n-Si Schottky diodes with insulator layer using current–voltage and admittance–voltage characteristics. Vacuum, 2009, 84, 363-368.	1.6	55
627	Electrical characterization of current conduction in Au/TiO2/n-Si at wide temperature range. Materials Science in Semiconductor Processing, 2009, 12, 224-232.	1.9	33
628	Extraction of electronic parameters of Schottky diode based on an organic semiconductor methyl-red. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 631-634.	1.3	77
629	Narrow-band metal-oxide-semiconductor photodetector. Applied Physics Letters, 2009, 94, .	1.5	8
630	Analysis of the series resistance and interface state densities in metal semiconductor structures. Journal of Physics: Conference Series, 2009, 153, 012054.	0.3	15
631	Electrical Characteristics of Co/n-Si Schottky Barrier Diodes Using <i>I</i> – <i>V</i> and <i>C</i> – <i>V</i> Measurements. Chinese Physics Letters, 2009, 26, 067301.	1.3	10
632	Mechanisms of Charge Transport through Monolayer-Modified Polycrystalline Gold Electrodes in the Absence of Redox-Active Moieties. Journal of Physical Chemistry C, 2009, 113, 4687-4705.	1.5	9
633	Room-temperature interface state analysis of Au/Poly(4-vinyl phenol)/p-Si structure. Synthetic Metals, 2009, 159, 1880-1884.	2.1	28
634	The distribution of barrier heights in MIS type Schottky diodes from current–voltage–temperature (l–V–T) measurements. Journal of Alloys and Compounds, 2009, 479, 893-897.	2.8	67
635	Study of Gaussian distribution of inhomogeneous barrier height for n-InSb/p-GaAs heterojunction prepared by flash evaporation. Journal of Alloys and Compounds, 2009, 481, 427-433.	2.8	41
636	The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using l–V characteristics. Journal of Alloys and Compounds, 2009, 484, 405-409.	2.8	93
637	Examination by interfacial layer and inhomogeneous barrier height model of temperature-dependent I–V characteristics in Co/p-InP contacts. Journal of Alloys and Compounds, 2009, 484, 870-876.	2.8	34
638	The analysis of lateral distribution of barrier height in identically prepared Co/n-Si Schottky diodes. Journal of Alloys and Compounds, 2009, 486, 343-347.	2.8	20
	CITATION R	EPORT	
-----	--	-------------	--------------
#	Article	IF	CITATIONS
639	Direct observation of lateral photovoltaic effect in nano-metal-films. Optics Express, 2009, 17, 21712.	1.7	71
640	Photo-electric characteristics of HgCdTe tunnel MIS photo-detectors. Semiconductor Science and Technology, 2009, 24, 025003.	1.0	3
641	Analysis of current-voltage characteristics of Fe/MgO/GaAs junctions using self-consistent field modeling. Physical Review B, 2009, 80, .	1.1	7
642	BN/ZnO heterojunction diodes with apparently giant ideality factors. Journal of Applied Physics, 2009, 106, .	1.1	61
643	Temperature dependence of the electrical and interface states of the Sn/Rhodamine-101/p-Si Schottky structures. Synthetic Metals, 2009, 159, 347-351.	2.1	32
644	Silicon Schottky barrier photodiodes with a thin AlN nucleation layer. Microelectronics International, 2009, 26, 41-44.	0.4	11
645	The role of 60Co Î ³ -ray irradiation on the interface states and series resistance in MIS structures. Radiation Physics and Chemistry, 2010, 79, 457-461.	1.4	16
646	The effects of annealing on Au/pyronine-B/MD n-InP Schottky structure. Journal of Physics and Chemistry of Solids, 2010, 71, 1398-1403.	1.9	21
647	Investigation of Trap States in AlInN/AIN/GaN Heterostructures by Frequency-Dependent Admittance Analysis. Journal of Electronic Materials, 2010, 39, 2681-2686.	1.0	29
648	Electrical and interface state density properties of polyaniline–poly-3-methyl thiophene blend/p-Si Schottky barrier diode. Solid State Sciences, 2010, 12, 706-711.	1.5	49
649	Molecules on Si: Electronics with Chemistry. Advanced Materials, 2010, 22, 140-159.	11.1	207
650	The effect of gamma irradiation on electrical characteristics of Au/polyvinyl alcohol (Co,) Tj ETQq1 1 0.784314 rg	gBT_/Overlo	ock 10 Tf 50
651	Nitric acid oxidation of Si (NAOS) method for low temperature fabrication of SiO2/Si and SiO2/SiC structures. Applied Surface Science, 2010, 256, 5744-5756.	3.1	39
652	Ultrahigh (100%) barrier modification of n-InP Schottky diode by DNA biopolymer nanofilms. Microelectronic Engineering, 2010, 87, 648-651.	1.1	34
653	Effect of series resistance on the electrical characteristics and interface state energy distributions of Sn/p-Si (MS) Schottky diodes. Microelectronic Engineering, 2010, 87, 1935-1940.	1.1	52
654	Electrical analysis of organic dye-based MIS Schottky contacts. Microelectronic Engineering, 2010, 87, 2482-2487.	1.1	57
655	The effects of surface states and series resistance on the performance of Au/SnO2/n-Si and Al/SnO2/p-Si (MIS) Schottky barrier diodes. Materials Science in Semiconductor Processing, 2010, 13, 34-40.	1.9	23
656	Electrical characterization of the Al/new fuchsin/n-Si organic-modified device. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1411-1416.	1.3	49

#	Article	IF	CITATIONS
657	Electronic properties of the metal/organic interlayer/inorganic semiconductor sandwich device. Journal of Physics and Chemistry of Solids, 2010, 71, 351-356.	1.9	47
658	Hydrostatic pressure dependence of interface state density of Cd/n-type GaAs Schottky barrier diodes. Physica B: Condensed Matter, 2010, 405, 287-290.	1.3	17
659	On the temperature dependent profile of interface states and series resistance characteristics in (Ni/Au)/Al0.22Ga0.78N/AlN/GaN heterostructures. Physica B: Condensed Matter, 2010, 405, 1130-1138.	1.3	22
660	Dependency of barrier height and ideality factor on identically produced small Au/p-Si Schottky barrier diodes. Physica B: Condensed Matter, 2010, 405, 3253-3258.	1.3	22
661	Distribution of barrier heights in Au/porous GaAs Schottky diodes from current–voltage–temperature measurements. Physica B: Condensed Matter, 2010, 405, 3745-3750.	1.3	23
662	On the effects of air-exposure-time and time-dependency of Pb/p-Si Schottky diodes. Physica B: Condensed Matter, 2010, 405, 4480-4487.	1.3	2
663	A study of the rectifying behaviour of aniline green-based Schottky diode. Microelectronic Engineering, 2010, 87, 187-191.	1.1	9
664	Extraction of electronic parameters of Schottky diode based on an organic Orcein. Microelectronic Engineering, 2010, 87, 2525-2530.	1.1	44
665	Electrical characterization of the polyaniline/p-silicon and polyaniline titanium dioxide tetradecyltrimethylammonium bromide /p-silicon heterojunctions. Thin Solid Films, 2010, 518, 2216-2221.	0.8	17
666	Electrical characteristics of an organic thin copolymer/p-Si Schottky barrier diode. Thin Solid Films, 2010, 518, 4375-4379.	0.8	33
667	Influence of interface states on the temperature dependence and current–voltage characteristics of Ni/p-InP Schottky diodes. Superlattices and Microstructures, 2010, 47, 241-252.	1.4	29
668	The effect of hydrostatic pressure on the electrical characterization of Au/n - InP Schottky diodes. Superlattices and Microstructures, 2010, 47, 586-591.	1.4	17
669	Extraction of electronic parameters of Schottky diode based on an organic Indigotindisulfonate Sodium (IS). Solid State Communications, 2010, 150, 1592-1596.	0.9	25
670	Silicon MIS diodes with Cr2O3 nanofilm: Optical, morphological/structural and electronic transport properties. Applied Surface Science, 2010, 256, 4185-4191.	3.1	28
671	Low temperature fabrication of 5–10nm SiO2/Si structure using advanced nitric acid oxidation of silicon (NAOS) method. Applied Surface Science, 2010, 256, 5610-5613.	3.1	6
672	Removal of charging on SiO2/Si structure during photoelectron spectroscopy measurements by metal overlayer. Journal of Electron Spectroscopy and Related Phenomena, 2010, 176, 8-12.	0.8	3
673	The effect of insulator layer thickness on the main electrical parameters in (Ni/Au)/AlxGa1â^'xN/AlN/GaN heterostructures. Surface and Interface Analysis, 2010, 42, 803-806.	0.8	3
674	Interface state density analyzing of Au/TiO ₂ (rutile)/n–Si Schottky barrier diode. Surface and Interface Analysis, 2010, 42, 1257-1260.	0.8	22

ARTICLE IF CITATIONS Illumination effect on I-V, C-V and G/w-V characteristics of Alī£;TiWī£;Pd2Si/nï£;Si structures at room 675 0.8 7 temperature. Surface and Interface Analysis, 2010, 42, 807-811. Large Lateral Photovoltaic Effect in Metal-(Oxide-)Semiconductor Structures. Sensors, 2010, 10, 676 2.1 10155-10180. Electrical properties of safranine T/p-Si organic/inorganic semiconductor devices. EPJ Applied Physics, 677 0.3 6 2010, 50, 10401. Parameter analysis for gate metal-oxide-semiconductor structures of ion-implanted 4H silicon carbide metal-semiconductor field-effect transistors. Chinese Physics B, 2010, 19, 097106. Ultrathin SiO₂layer with a low leakage current density formed with a^1/4 100% nitric acid 679 1.3 9 vapor. Nanotechnology, 2010, 21, 115202. Characterization of ion-implanted 4H-SiC Schottky barrier diodes. Chinese Physics B, 2010, 19, 017203-5. Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing 681 0.7 4 temperatures. Chinese Physics B, 2010, 19, 057303. Film Thickness Dependence of Rectifying Properties of La 1.85 Sr 0.15 CuO 4 /Nb-SrTiO 3 Junctions. 1.3 Chinese Physics Letters, 2010, 27, 077401. Illumination effect on electrical characteristics of organic-based Schottky barrier diodes. Journal of 683 1.1 27 Applied Physics, 2010, 108, . Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces. Physical Review B, 684 1.1 2010, 82, . Effect of Base Doping Concentration on Radiation-Resistance for GaAs Sub-Cells in InGaP/GaAs/Ge. 685 4 0.8 Japanese Journal of Applied Physics, 2010, 49, 121202. Interface state density of free-standing GaN Schottky diodes. Semiconductor Science and Technology, 1.0 2010, 25, 095008. The explanation of barrier height inhomogeneities in Au/n-Si Schottky barrier diodes with organic 687 1.1 87 thin interfacial layer. Journal of Applied Physics, 2010, 108, . Current–voltage and capacitance–voltage characteristics of Fe/p-InP Schottky barriers. International Journal of Electronics, 2010, 97, 973-983. On the interface states and series resistance profiles of (Ni/Au)–Al_{0.22}Ga_{0.78}N/AlN/GaN heterostructures before and after 689 2 0.4 ⁶⁰Co (Î³-ray) irradiation. Radiation Effects and Defects in Solids, 2010, 165, 920-929. Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures. 70 Journal of Non-Crystalline Solids, 2010, 356, 1006-1011. Optical and structural properties of CuO nanofilm: Its diode application. Journal of Alloys and 691 2.8 156 Compounds, 2010, 492, 378-383. The analysis of the charge transport mechanism of n-Si/MEH-PPV device structure using forward bias 2.8 38 la€"Va€"T characteristics. Journal of Alloys and Compounds, 2010, 492, 421-426.

#	Article	IF	CITATIONS
693	The interface states and series resistance effects on the forward and reverse bias l–V, C–V and G/ω-V characteristics of Al–TiW–Pd2Si/n-Si Schottky barrier diodes. Journal of Alloys and Compounds, 2010, 503, 96-102.	2.8	48
694	A comparative study on the electrical characteristics of Au/n-Si structures with anatase and rutile phase TiO2 interfacial insulator layer. Journal of Alloys and Compounds, 2010, 505, 628-633.	2.8	40
695	Temperature and voltage dependent current-transport mechanisms in GaAs/AlGaAs single-quantum-well lasers. Journal of Alloys and Compounds, 2010, 507, 190-195.	2.8	44
696	Controlling of silicon–insulator–metal junction by organic semiconductor polymer thin film. Synthetic Metals, 2010, 160, 1551-1555.	2.1	45
697	Electrostatic and Electrochemical Nature of Liquid-Gated Electric-Double-Layer Transistors Based on Oxide Semiconductors. Journal of the American Chemical Society, 2010, 132, 18402-18407.	6.6	227
698	Electronic properties of metal-semiconductor and metal-oxide-semiconductor structures composed of carbon nanotube film on silicon. Applied Physics Letters, 2010, 97, 233105.	1.5	12
699	Coil-in-Coil Carbon Nanocoils: 11 Gram-Scale Synthesis, Single Nanocoil Electrical Properties, and Electrical Contact Improvement. ACS Nano, 2010, 4, 781-788.	7.3	58
700	Silver Schottky contacts to a-plane bulk ZnO. Journal of Applied Physics, 2010, 108, .	1.1	32
701	ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors. Journal Physics D: Applied Physics, 2010, 43, 415103.	1.3	75
702	GaAs metal–oxide–semiconductor device with titanium dioxide as dielectric layer: effect of oxide thickness on the device performance. Journal Physics D: Applied Physics, 2011, 44, 155104.	1.3	17
703	The forward bias current density–voltage–temperature (<i>J–V–T</i>) characteristics of Al–SiO ₂ –pSi (MIS) Schottky diodes. International Journal of Electronics, 2011, 98, 699-712.	0.9	3
704	Some aspects of electronic properties of Schottky barrier photo detector. , 2011, , .		0
705	Characterization of the Electrical Properties of Individual p-Si Microwire/Polymer/n-Si Microwire Assemblies. Journal of Physical Chemistry C, 2011, 115, 24945-24950.	1.5	15
706	Electrical Characterization of Si Microwires and of Si Microwire/Conducting Polymer Composite Junctions. Journal of Physical Chemistry Letters, 2011, 2, 675-680.	2.1	17
707	About the determination of the Schottky barrier height with the C-V method. Journal of Applied Physics, 2011, 109, 073714.	1.1	18
708	Non-idealities in Graphene/p-silicon Schottky-barrier Solar Cells. Materials Research Society Symposia Proceedings, 2011, 1322, 89.	0.1	0
709	Integrated freestanding single-crystal silicon nanowires: conductivity and surface treatment. Nanotechnology, 2011, 22, 055704.	1.3	9
710	Temperature dependent admittance spectroscopy of GaAs/AlGaAs single-quantum-well laser diodes (SQWLDs). Journal of Alloys and Compounds, 2011, 509, 2897-2902.	2.8	12

#	Article	IF	CITATIONS
711	Multiple-barrier distribution behavior of Mo/p-GaTe fabricated with sputtering. Journal of Alloys and Compounds, 2011, 509, 7317-7323.	2.8	10
712	Electrical characterization of Au/n-GaN metal–semiconductor and Au/SiO2/n-GaN metal–insulator–semiconductor structures. Journal of Alloys and Compounds, 2011, 509, 8001-8007.	2.8	75
713	Electrical characterization of a-Si:H(n)/c-Si(p) structure. Journal of Alloys and Compounds, 2011, 509, 9394-9398.	2.8	9
714	The Au/polyvinyl alcohol (Co, Zn-doped)/n-type silicon Schottky barrier devices. Synthetic Metals, 2011, 161, 474-480.	2.1	43
715	Electrical and optical properties of p-type silicon based on polypyrrole-derivative polymer. Synthetic Metals, 2011, 161, 692-697.	2.1	6
716	Temperature dependence of electronic parameters of organic Schottky diode based on fluorescein sodium salt. Synthetic Metals, 2011, 161, 881-887.	2.1	37
717	Extraction of the device parameters of Al/P3OT/ITO organic Schottky diode using J–V and C–V characteristics. Synthetic Metals, 2011, 161, 1079-1087.	2.1	30
718	Analysis of the forward and reverse bias <i>I-V</i> characteristics on Au/PVA:Zn/n-Si Schottky barrier diodes in the wide temperature range. Journal of Applied Physics, 2011, 109, .	1.1	48
719	Temperature dependence of current density and admittance in metal-insulator-semiconductor junctions with molecular insulator. Journal of Applied Physics, 2011, 110, 083708.	1.1	15
720	Silicon Solar Cells: Structural Properties of Ag-Contacts/Si-Substrate. , 0, , .		4
721	A detailed analysis of current-voltage characteristics of Au/perylene-monoimide/n-Si Schottky barrier diodes over a wide temperature range. Journal of Applied Physics, 2011, 110, .	1.1	53
722	Effects of temperature on series resistance determination of electrodeposited Cr/n-Si/Au–Sb Schottky		0.4
	Structures. Microelectronic Engineering, 2011, 86, 2997-5002.	1.1	34
723	Laterally inhomogeneous barrier analysis of identically prepared Cd/CdS/n-Si/Au–Sb structures by SILAR method. Microelectronics Reliability, 2011, 51, 2179-2184.	0.9	34 6
723 724	 Structures. Microelectronic Engineering, 2011, 86, 2997-3002. Laterally inhomogeneous barrier analysis of identically prepared Cd/CdS/n-Si/Au–Sb structures by SILAR method. Microelectronics Reliability, 2011, 51, 2179-2184. On the profile of frequency and voltage dependent interface states and series resistance in (Ni/Au)/Al0.22Ga0.78N/AlN/GaN heterostructures by using current–voltage (l–V) and admittance spectroscopy methods. Microelectronics Reliability, 2011, 51, 2153-2162. 	1.1 0.9 0.9	6 17
723 724 725	Laterally inhomogeneous barrier analysis of identically prepared Cd/CdS/n-Si/Au–Sb structures by SILAR method. Microelectronics Reliability, 2011, 51, 2179-2184. On the profile of frequency and voltage dependent interface states and series resistance in (Ni/Au)/Al0.22Ga0.78N/AlN/GaN heterostructures by using current–voltage (l–V) and admittance spectroscopy methods. Microelectronics Reliability, 2011, 51, 2153-2162. Effects of ageing on the electrical characteristics of Cd/CdS/n-Si/Au–Sb structure deposited by SILAR method. Journal of Physics and Chemistry of Solids, 2011, 72, 1506-1514.	1.1 0.9 0.9 1.9	6 17 17
 723 724 725 726 	Structures: Microelectronic Engineering, 2011, 66, 2997-5002. Laterally inhomogeneous barrier analysis of identically prepared Cd/CdS/n-Si/Au–Sb structures by SILAR method. Microelectronics Reliability, 2011, 51, 2179-2184. On the profile of frequency and voltage dependent interface states and series resistance in (Ni/Au)/Al0.22Ga0.78N/AlN/GaN heterostructures by using current–voltage (l–V) and admittance spectroscopy methods. Microelectronics Reliability, 2011, 51, 2153-2162. Effects of ageing on the electrical characteristics of Cd/CdS/n-Si/Au–Sb structure deposited by SILAR method. Journal of Physics and Chemistry of Solids, 2011, 72, 1506-1514. Forward and reverse bias current–voltage characteristics of Au/n-Si Schottky barrier diodes with and without SnO2 insulator layer. Physica B: Condensed Matter, 2011, 406, 4119-4123.	1.1 0.9 0.9 1.9	34 6 17 17 49
 723 724 725 726 727 	Structures, Microelectronic Engineering, 2011, 86, 2997-3002. Laterally inhomogeneous barrier analysis of identically prepared Cd/CdS/n-Si/Auâ€"Sb structures by SILAR method. Microelectronics Reliability, 2011, 51, 2179-2184. On the profile of frequency and voltage dependent interface states and series resistance in (Ni/Au)/Al0.22Ga0.78N/AlN/GaN heterostructures by using currentâ€"voltage (lâ€"V) and admittance spectroscopy methods. Microelectronics Reliability, 2011, 51, 2153-2162. Effects of ageing on the electrical characteristics of Cd/CdS/n-Si/Auâ€"Sb structure deposited by SILAR method. Journal of Physics and Chemistry of Solids, 2011, 72, 1506-1514. Forward and reverse bias currentâ€"voltage characteristics of Au/n-Si Schottky barrier diodes with and without SnO2 insulator layer. Physica B: Condensed Matter, 2011, 406, 4119-4123. Electrical characteristics of Au/n-GaAs structures with thin and thick SiO2 dielectric layer. Semiconductors, 2011, 45, 1286-1290.	1.1 0.9 0.9 1.9 1.3 0.2	34 6 17 17 49 2

ARTICLE IF CITATIONS Electrical characterization and fabrication of organic/inorganic semiconductor heterojunctions. 729 1.1 10 Applied Physics A: Materials Science and Processing, 2011, 103, 89-96. The analysis of l–V characteristics of Schottky diodes by thermionic emission with a Gaussian 28 distribution of barrier height. Microelectronics Reliability, 2011, 51, 360-364. Electrical characterization of MS and MIS structures on AlGaN/AlN/GaN heterostructures. 731 0.9 43 Microelectronics Reliability, 2011, 51, 370-375. Anomalous Peak in the Forward-Bias C–V Plot and Temperature-Dependent Behavior of Au/PVA (Ni,Zn-doped)/n-Si(111) Structures. Journal of Electronic Materials, 2011, 40, 157-164. Development of ultraâ€thin tunneling oxides and Si/SiO₂ nanostructures for the application in silicon solar cells. Physica Status Solidi (A) Applications and Materials Science, 2011, 733 0.8 4 208, 612-615. On the energy distribution profile of interface states obtained by taking into account of series resistance in Al/TiO2/pâ \in Si (MIS) structures. Physica B: Condensed Matter, 2011, 406, 771-776. 734 1.3 Temperature dependent current–voltage (l–V) characteristics of Au/n-Si (111) Schottky barrier diodes 735 with PVA(Ni,Zn-doped) interfacial layer. Materials Science in Semiconductor Processing, 2011, 14, 1.9 57 139-145. The electrical characteristics of Al/p-InP Schottky contacts. Microelectronic Engineering, 2011, 88, 1.1 10 109-112. Characterization of atom and ion-induced "internal―electron emission by thin film tunnel junctions. 737 0.6 10 Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1185-1189. l–V characteristics of vanadium-flavonoid complexes based Schottky diodes. Physica B: Condensed 1.3 Matter, 2011, 406, 3011-3017. Improved electrical parameters of vacuum annealed Ni/4H-SiC (0001) Schottky barrier diode. Physica B: 739 1.3 34 Condensed Matter, 2011, 406, 3030-3035. Hydrogen sensing performances of Pt/i-ZnO/GaN metal–insulator–semiconductor diodes. Sensors and 740 4.0 Actuators B: Chemical, 2011, 157, 460-465. Hydrostatic pressure effect on the electrical properties of Al/conducting polymer (P3DMTPT)/p-Si/Al 741 1.4 3 structure. Superlattices and Microstructures, 2011, 49, 124-131. Analysis of current–voltage and capacitance–voltage-frequency characteristics in Al/p-Si Schottky diode with the polythiophene-SiO2 nanocomposite interfacial layer. Thin Solid Films, 2011, 519, 742 0.8 6004-6009. Pd/InAlN Schottky diode with low reverse current by sulfide treatment. Applied Physics Letters, 2011, 743 1.5 5 99, 183504. Accurate surface potential determination in Schottky diodes by the use of a correlated current and 744 capacitance voltage measurements. Application to n-InP. Journal of Semiconductors, 2011, 32, 104002. Fabrication and electrical characterization of pyrrole–aniline copolymer-based Schottky diodes. 745 1.0 19 Semiconductor Science and Technology, 2011, 26, 055011. Metal-induced gap states modeling of metal-Ge contacts with and without a silicon nitride ultrathin 746 1.1 interfacial layer. Journal of Applied Physics, 2011, 109, .

#	Article	IF	CITATIONS
747	Gaussian distribution of Schottky barrier heights on SnO2 nanowires. Materials Research Society Symposia Proceedings, 2011, 1406, .	0.1	1
748	Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator. Journal of Semiconductors, 2011, 32, 124001.	2.0	3
749	Electrical Properties of Pt/n-Ge Schottky Contact Modified Using Copper Phthalocyanine (CuPc) Interlayer. Journal of the Electrochemical Society, 2011, 159, H33-H37.	1.3	31
750	Electrical characterization of n-type Al0.30Ga0.70N Schottky diodes. Journal of Applied Physics, 2011, 109, .	1.1	55
751	EFFECT OF SURFACE PASSIVATION ON CAPACITANCE–VOLTAGE CHARACTERISTICS OF Sn/p-Si SCHOTTKY CONTACTS. International Journal of Modern Physics B, 2011, 25, 531-542.	1.0	2
752	Poole-Frenkel Conduction in Cu/Nano-SnO2/Cu Arrangement. Journal of Nanomaterials, 2011, 2011, 1-4.	1.5	8
753	A Physics-Based Effective Mobility Model for Polycrystalline Silicon Thin Film Transistor Considering Discontinuous Energy Band at Grain Boundaries. Japanese Journal of Applied Physics, 2011, 50, 094302.	0.8	0
754	Investigation of deep-level defects in conductive polymer on n-type 4H- and 6H-silicon carbide substrates using I-V and deep level transient spectroscopy techniques. Journal of Applied Physics, 2012, 112, .	1.1	14
755	Comparative Study of Temperature Dependent Barrier Heights of Pd/ZnO Schottky Diodes Grown along Zn- and O-Faces. Key Engineering Materials, 0, 510-511, 265-270.	0.4	3
757	Two states phenomenon in the current behavior of metal-oxide-semiconductor capacitor structure with ultra-thin SiO2. Applied Physics Letters, 2012, 101, 073506.	1.5	17
758	Synthesis and local electrical characterization of ZnO microwalls grown on cracked GaN/Si(111) by aqueous method. Applied Physics Letters, 2012, 101, .	1.5	2
759	Epitaxial NiO gate dielectric on AlGaN/GaN heterostructures. Applied Physics Letters, 2012, 100, 063511.	1.5	42
760	On the energy distribution of interface states and their relaxation time profiles in Al/pentacene/p-GaAs heterojunction diode. Journal of Applied Physics, 2012, 111, 034508.	1.1	15
761	Photoassisted Fowler-Nordheim-like tunneling from passivated GaAs microcantilevers. Physical Review B, 2012, 85, .	1.1	1
762	Investigation of the inhomogeneous barrier height of an Au/Bi ₄ Ti ₃ O ₁₂ /n-Si structure through Gaussian distribution of barrier height. Chinese Physics B, 2012, 21, 128502.	0.7	17
763	Silver Schottky contacts to Zn-polar and O-polar bulk ZnO grown by pressurized melt-growth method. Semiconductor Science and Technology, 2012, 27, 035010.	1.0	6
764	Current density-voltage analyses and interface characterization in Ag/DNA/p-InP structures. Journal of Applied Physics, 2012, 111, 044503.	1.1	14
765	Morphological, microstructural and electrical examinations on ZnO film on p-Si wafer. Journal of Materials Science: Materials in Electronics, 2012, 23, 1971-1979.	1.1	6

	Сітат	ION REPORT	
# 766	ARTICLE Electrical characterization of a pre-ceramic polymer modified Ag/poly(hydridocarbyne)/p-Si Schottky barrier diode Journal of Materials Science: Materials in Electronics, 2012, 23, 2282-2288	IF 1.1	CITATIONS
767	Effects of interface states and series resistance on electrical properties of Al/nanostructure CdO/p-GaAs diode. Journal of Alloys and Compounds, 2012, 541, 462-467.	2.8	37
768	Interface state effects in GaN Schottky diodes. Thin Solid Films, 2012, 522, 345-351.	0.8	32
769	The temperature dependent ideality factor effect on I–V characteristics of Schottky diode. , 2012, , .		9
770	Analysis of the series resistance and interface states of Au/Si ₃ N ₄ /n-Si (metal–insulator–semiconductor) Schottky diodes using <i>I</i> – <i>V</i> characteristics in a wide temperature range. Physica Scripta, 2012, 86, 035802.	1.2	39
771	Controlling Space Charge of Oxide-Free Si by in Situ Modification of Dipolar Alkyl Monolayers. Journal of Physical Chemistry C, 2012, 116, 11434-11443.	1.5	22
772	Some electrical and structural properties of Cd/CdS/n–Si/Au–Sb sandwich structure. Superlattices and Microstructures, 2012, 52, 416-429.	1.4	10
773	Study and modeling of the transport mechanism in a semi insulating GaAs Schottky diode. Superlattices and Microstructures, 2012, 52, 364-375.	1.4	4
774	Current transport mechanisms in Ru/Pd/n-GaN Schottky barrier diodes and deep level defect studies. Superlattices and Microstructures, 2012, 52, 484-499.	1.4	11
775	Synthesis, electrical properties and transport mechanisms of thermally vacuum evaporated CdTe nanocrystalline thin films. Solid State Communications, 2012, 152, 1644-1649.	0.9	12
776	Device characterization of organic nanostructure based on sodium copper chlorophyllin (SCC). Synthetic Metals, 2012, 161, 2700-2707.	2.1	19
777	Improvement of photoluminescence and electrical properties of porous silicon layer treated with lanthanum. Journal of Luminescence, 2012, 132, 2572-2576.	1.5	17
778	Electrical and photoconductivity properties of p-Si/P3HT/Al and p-Si/P3HT:MEH-PPV/Al organic devices: Comparison study. Microelectronic Engineering, 2012, 98, 41-57.	1.1	77
779	The illustrated brief application of defect distribution model for heterojunction device by admittance spectroscopy. Journal of Alloys and Compounds, 2012, 523, 16-21.	2.8	4
780	Analysis of electronic parameters of nanostructure copper doped cadmium oxide/p-silicon heterojunction. Journal of Alloys and Compounds, 2012, 537, 6-11.	2.8	26
781	Analysis of current–voltage and capacitance–voltage characteristics of perylene-monoimide/n-Si Schottky contacts. Current Applied Physics, 2012, 12, 1529-1535.	1.1	45
782	Investigation of current–voltage and capacitance–voltage characteristics of Ag/perylene-monoimide/n-GaAs Schottky diode. Current Applied Physics, 2012, 12, 1510-1514.	1.1	17
783	A conduction model for polysilicon thin films over a wide doping level range. EPJ Applied Physics, 2012, 57, 20101.	0.3	1

#	Article	IF	CITATIONS
784	Schottky diode properties of CuInSe2 films prepared by a two-step growth technique. Sensors and Actuators A: Physical, 2012, 185, 73-81.	2.0	37
785	Influence of illumination intensity and temperature on the electrical characteristics of an Al/p-GaAs/In structure prepared by thermal evaporation. Microelectronic Engineering, 2012, 99, 50-57.	1.1	25
786	Evaluation of the hydrostatic pressure effect on Mn/p-Si Schottky barrier diode electrical parameters and interface states. Materials Science in Semiconductor Processing, 2012, 15, 461-466.	1.9	8
787	Interface state density distribution in Au/n-ZnO nanorods Schottky diodes. IOP Conference Series: Materials Science and Engineering, 2012, 34, 012006.	0.3	27
788	Barrier height and interface characteristics of Au/Mn ₅ Ge ₃ /Ge (1 1 1) Schottky contacts for spin injection. Semiconductor Science and Technology, 2012, 27, 035014.	1.0	16
789	On the voltageâ€dependent series resistance of a planar Schottky barrier diode. International Journal of Electronics, 2012, 99, 1051-1061.	0.9	7
790	Electrical Properties of Rapidly Annealed Ir and Ir/Au Schottky Contacts on n-Type InGaN. Journal of Metallurgy, 2012, 2012, 1-9.	1.1	10
791	Influence of annealing on structural and electrical properties of double metal structure Ru/Cu contacts on nâ€ŧype InP. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 105-112.	0.8	3
792	The effects of temperature, radiation, and illumination on current–voltage characteristics of Au/PVA(Co, Znâ€doped)/n‣i Schottky diodes. Journal of Applied Polymer Science, 2012, 125, 1185-1192.	1.3	18
793	Electrical transport properties of Ru/Cu/n-InP Schottky barrier diode based on temperature-dependent I–V and C–V measurements. Indian Journal of Physics, 2012, 86, 687-695.	0.9	7
794	Effect of series resistance and interface states on the l–V, C–V and G/ω–V characteristics in Au/Bi-doped polyvinyl alcohol (PVA)/n-Si Schottky barrier diodes at room temperature. Current Applied Physics, 2012, 12, 266-272.	1.1	75
795	The effect of PVA (Bi2O3-doped) interfacial layer and series resistance on electrical characteristics of Au/n-Si (110) Schottky barrier diodes (SBDs). Current Applied Physics, 2012, 12, 525-530.	1.1	59
796	Electrical transport properties of Au/SiO2/n-GaN MIS structure in a wide temperature range. Current Applied Physics, 2012, 12, 765-772.	1.1	43
797	Electrical performance and interface states studies of undoped and Zn-doped CdO/p-Si heterojunction devices. Materials Chemistry and Physics, 2012, 132, 550-558.	2.0	34
798	The effect of gamma irradiation on electrical and dielectric properties of organic-based Schottky barrier diodes (SBDs) at room temperature. Radiation Physics and Chemistry, 2012, 81, 362-369.	1.4	25
799	Determination of contact parameters of Ni/n-GaP Schottky contacts. Microelectronics Reliability, 2012, 52, 1005-1011.	0.9	16
800	Electrical and photocurrent characteristics of Au/PVA (Co-doped)/n-Si photoconductive diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 416-420.	1.7	67
801	Electronic parameters of high barrier Au/Rhodamine-101/n-Inp Schottky diode with organic ınterlayer. Thin Solid Films, 2012, 520, 1944-1948.	0.8	38

#	Article	IF	CITATIONS
802	Effect of annealing temperature on electrical properties of Au/polyvinyl alcohol/n-InP Schottky barrier structure. Thin Solid Films, 2012, 520, 5715-5721.	0.8	34
803	Bilayer Cr/Au contacts on n-GaN. Vacuum, 2012, 86, 769-772.	1.6	1
804	Fabrication and characterization of transparent MEH-PPV/n-GaN (0001) heterojunction devices. Optical Materials, 2012, 34, 878-883.	1.7	6
805	Temperature-Dependent Current–Voltage (I–V) and Capacitance–Voltage (C–V) Characteristics of Ni/Cu/n-InP Schottky Barrier Diodes. Brazilian Journal of Physics, 2013, 43, 13-21.	0.7	18
806	Solution-processable graphene oxide as an insulator layer for metal–insulator–semiconductor silicon solar cells. RSC Advances, 2013, 3, 17918.	1.7	13
807	The interface states and series resistance analyzing of Au/SiO2/n-GaAs at high temperatures. Journal of Alloys and Compounds, 2013, 577, 143-147.	2.8	5
808	Analysis of interface states and series resistances in Au/p-InP structures prepared with photolithography technique. Indian Journal of Physics, 2013, 87, 733-740.	0.9	5
809	Barrier height enhancement of metal/semiconductor contact by an enzyme biofilm interlayer. Philosophical Magazine, 2013, 93, 2172-2181.	0.7	13
810	Controlling the electrical characteristics of Al/p-Si structures through Bi4Ti3O12 interfacial layer. Current Applied Physics, 2013, 13, 1630-1636.	1.1	18
811	Analysis of interface states and series resistance for Al/PVA:n-CdS nanocomposite metal–semiconductor and metal–insulator–semiconductor diode structures. Applied Physics A: Materials Science and Processing, 2013, 113, 491-499.	1.1	37
812	Influence of Annealing on Electrical Properties of an Organic Thin Layer-Based n-Type InP Schottky Barrier Diode. Journal of Electronic Materials, 2013, 42, 1282-1289.	1.0	12
813	Temperature-dependent current–voltage characteristics of Er-silicide Schottky contacts to strained Si-on-insulator. Journal of Alloys and Compounds, 2013, 556, 252-258.	2.8	39
814	Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nature Nanotechnology, 2013, 8, 845-852.	15.6	239
815	Systematic study of interface trap and barrier inhomogeneities using I-V-T characteristics of Au/ZnO nanorods Schottky diode. Journal of Applied Physics, 2013, 113, .	1.1	50
816	Admittance spectroscopy of CuPC-Si and CoPC-Si heterostructures. Electrochimica Acta, 2013, 104, 496-504.	2.6	9
817	Charge-controlled fixation of DNA molecules on silicon surface and electro-physical properties of Au–DNA–Si interface. Applied Surface Science, 2013, 267, 224-228.	3.1	7
818	The Richardson constant and barrier inhomogeneity at Au/Si ₃ N ₄ /n-Si (MIS) Schottky diodes. Physica Scripta, 2013, 88, 015801.	1.2	47
819	Effects of illumination on electrical parameters of Ag/n-CdO/p-Si diode. Materials Chemistry and Physics, 2013, 138, 72-77.	2.0	42

ARTICLE IF CITATIONS Analysis of interface states and series resistance in Ag/m-plane ZnO Schottky diodes. Journal of the 820 0.3 4 Korean Physical Society, 2013, 63, 2034-2038. Electrode materials and electrode-oxide interfaces in semiconductor gas sensors., 2013,, 64-113. 822 Investigation of carbon-silicon schottky diodes and their use as chemical sensors., 2013, , . 6 Electrical properties of Pt/n-type Ge Schottky contact with PEDOT:PSS interlayer. Journal of Alloys and Compounds, 2013, 549, 18-21. Two diodes model and illumination effect on the forward and reverse bias I–V and C–V characteristics of Au/PVA (Bi-doped)/n-Si photodiode at room temperature. Current Applied Physics, 824 1.1 74 2013, 13, 53-59. Electrical investigation of the Al/porous Si/p+-Si heterojunction. Physica B: Condensed Matter, 2013, 1.3 409, 10-15. Characterization of an Au/n-Si photovoltaic structure with an organic thin film. Materials Science in 826 1.9 13 Semiconductor Processing, 2013, 16, 1125-1130. Synthesis and electrical characteristics of Al/(p)PbS Schottky barrier junction. Materials Science in 1.9 Sémiconductor Processing, 2013, 16, 1918-1924. Study of spinel Li4Ti5O12 electrode reaction mechanism by electrochemical impedance spectroscopy. 828 2.6 40 Electrochimica Acta, 2013, 108, 841-851. Enhancement of electronic and charge transport properties of NiPc by potassium-tetrasulpho group. 829 1.3 14 Physica B: Condensed Matter, 2013, 413, 21-23. Analysis of electrical properties of Al/p-Si Schottky contacts with and without rubrene layer. 830 2.1 26 Synthetic Metals, 2013, 168, 16-22. Effect of annealing on the electronic parameters of Au/poly(ethylmethacrylate)/n-InP Schottky diode with organic interlayer. Current Applied Physics, 2013, 13, 1604-1610. 1.1 38 Origin of forward bias capacitance peak and intersection behavior of C and G/w of Ag/p-InP Schottky 832 1.9 20 barrier diodes. Materials Science in Semiconductor Processing, 2013, 16, 344-351. A detailed comparative study on the main electrical parameters of Au/n-Si and Au/PVA:Zn/n-Si Schottky 1.9 barrier diodes. Materials Sciénce in Semiconductor Processing, 2013, 16, 1865-1872. Effect of high current density on the admittance response of interface states in ultrathin MIS tunnel 834 0.8 5 junctions. Solid-State Electronics, 2013, 80, 142-151. Laplace deep level transient spectroscopy of electron traps in epitaxial metalorganic chemical vapor 1.1 deposition grown n-GaSb. Journal of Applied Physics, 2013, 113, 024505. The effect of series resistance and interface states on the frequency dependent C–V and G/w–V 836 characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes. Current Applied Physics, 2013, 13, 1.1 72 1225-1230. Metal-semiconductor-metal photodetectors based on graphene/<i>p</i>-type silicon Schottky 1.5 191 junctions. Applied Physics Letters, 2013, 102, .

#	Article	IF	CITATIONS
838	Investigation of the Interfaces in Schottky Diodes Using Equivalent Circuit Models. ACS Applied Materials & Interfaces, 2013, 5, 6951-6958.	4.0	25
839	Temperature-dependent current–voltage characteristics of Se Schottky contact to n-type Ge. Thin Solid Films, 2013, 546, 63-68.	0.8	38
840	The electrical characterization of Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode by current–voltage characteristics. Physica B: Condensed Matter, 2013, 415, 77-81.	1.3	27
841	Fabrication and electrical characterization of Al/diazo compound containing polyoxy chain/p-Si device structure. Physica B: Condensed Matter, 2013, 412, 64-69.	1.3	2
842	Effects of interfacial oxide layer in P3HT/n-Si organic/inorganic heterojunction diodes on their carrier transport properties. Microelectronic Engineering, 2013, 104, 130-134.	1.1	18
843	Electrical properties of Au/perylene-monoimide/p-Si Schottky diode. Journal of Alloys and Compounds, 2013, 577, 30-36.	2.8	46
844	Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Current Applied Physics, 2013, 13, 1150-1156.	1.1	60
845	Electrical and structural properties of Ir/Ru Schottky rectifiers on n-type InGaN at different annealing temperatures. Superlattices and Microstructures, 2013, 56, 64-76.	1.4	26
846	Electrical anisotropy properties of ZnO nanorods analyzed by conductive atomic force microscopy. Applied Surface Science, 2013, 265, 176-179.	3.1	12
847	Rethinking Transition Voltage Spectroscopy within a Generic Taylor Expansion View. ACS Nano, 2013, 7, 695-706.	7.3	58
848	Electronic properties of Al/p-Si/C70/Au MIS-type diode. Superlattices and Microstructures, 2013, 59, 123-132.	1.4	17
849	Photovoltaic characterization of n-CdTe/p-CdMnTe/GaAs diluted magnetic diode. Current Applied Physics, 2013, 13, 537-543.	1.1	39
850	Effect of annealing temperature on the electrical properties of Au/Ta2O5/n-GaN metal–insulator–semiconductor (MIS) structure. Applied Physics A: Materials Science and Processing, 2013, 113, 713-722.	1.1	15
851	Optical and electrical properties of porous silicon impregnated with Congo Red dye. Journal of Applied Physics, 2013, 114, .	1.1	17
852	Introduction to High-k Gate Stacks. Springer Series in Advanced Microelectronics, 2013, , 1-45.	0.3	1
853	Current-Voltage and Capacitance-Voltage Characteristics of Pd Schottky Diodes Fabricated on ZnO Grown along Zn- and O-Faces. Applied Mechanics and Materials, 2013, 313-314, 270-274.	0.2	1
854	The C — V and G /ï‰â€" V Electrical Characteristics of 60 Co γ-Ray Irradiated Al/Si 3 N 4 /p-Si (MIS) Structures. Chinese Physics Letters, 2013, 30, 077306.	1.3	13
855	On the Voltage and Frequency Distribution of Dielectric Properties and ac Electrical Conductivity in Al/SiO ₂ /p-Si (MOS) Capacitors. Chinese Physics Letters, 2013, 30, 017301.	1.3	21

#	Article	IF	CITATIONS
856	Comparative study of the electrical properties of Au/n-Si (MS) and Au/Si ₃ N ₄ /n-Si (MIS) Schottky diodes. Chinese Physics B, 2013, 22, 068402.	0.7	41
857	THE EFFECT OF ETCHING TIME ON RECTIFYING CHARACTERISTIC IN SnO ₂ /p- Si AND SnO ₂ /p- PoSi HETEROJUNCTION SCHOTTKY DIODES. Modern Physics Letters B. 2013. 27. 1350051.	1.0	2
858	Multidimensional SPM applied for nanoscale conductance mapping. Journal of Materials Research, 2013, 28, 3311-3321.	1.2	8
859	Electrical Properties and Interface States of Rare-Earth Metal Ytterbium Schottky Contacts to p-Type InP. Materials Transactions, 2013, 54, 2173-2179.	0.4	17
860	Growth and interface properties of Au Schottky contact on ZnO grown by molecular beam epitaxy. Journal of Physics: Conference Series, 2013, 439, 012031.	0.3	9
861	Temperature Dependency of Schottky Barrier Parameters of Ti Schottky Contacts to Si-on-Insulator. Materials Transactions, 2013, 54, 1655-1660.	0.4	28
862	F4-TCNQ concentration dependence of the current—voltage characteristics in the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) Schottky barrier diode. Chinese Physics B, 2014, 23, 117306.	0.7	2
863	Electrical characteristics of Au/PVA (x-doped)/n-Si: Comparison study on the effect of dopant type in PVA. Fibers and Polymers, 2014, 15, 2253-2259.	1.1	2
864	Single Gaussian distribution of barrier height in Al/PS–ZnPc/p-Si type Schottky barrier diode in temperature range of 120–320ÂK. Journal of Materials Science: Materials in Electronics, 2014, 25, 4391-4397.	1.1	11
865	ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode. Bulletin of Materials Science, 2014, 37, 1563-1568.	0.8	32
866	Electrical and dielectric properties and intersection behavior of G/ω-V plots for Al/Co-PVA/p-Si (MPS) structures at temperatures below room temperature. Journal of the Korean Physical Society, 2014, 65, 2082-2089.	0.3	20
867	Improvement in electrical performance of half-metallic Fe ₃ O ₄ /GaAs structures using pyrolyzed polymer film as buffer layer. Philosophical Magazine, 2014, 94, 2678-2691.	0.7	9
868	Interface States of Fe3O4/Si Interfacial Structure and Effect of Magnetic Field. Journal of Electronic Materials, 2014, 43, 4357-4363.	1.0	11
869	Analysis of temperature dependent current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal/insulator/semiconductor) type Schottky barrier diodes. Journal of Applied Physics, 2014, 116, .	1.1	68
870	Gaussian distribution of inhomogeneous barrier height in Au/n-Si (111) Schottky barrier diodes at low temperatures. Materials Science in Semiconductor Processing, 2014, 27, 145-149.	1.9	6
871	Investigation of electrical and photovoltaic properties of Au/poly(propylene glycol)-b-polystyrene/n-Si diode at various illumination intensities. Philosophical Magazine, 2014, 94, 925-932.	0.7	15
872	Capacitance/Conductance–Voltage–Frequency Characteristics of \${m Au}/{m PVC}+{m TCNQ}/{m p}hbox{-}{m Si}\$ Structures in Wide Frequency Range. IEEE Transactions on Electron Devices, 2014, 61, 584-590.	1.6	28
873	Electrical properties of Au/Bi0.5Na0.5TiO3-BaTiO3/n-GaN metal–insulator–semiconductor (MIS) structure. Semiconductor Science and Technology, 2014, 29, 075001.	1.0	18

#	Article	IF	CITATIONS
874	Pt/n-GaN metal-semiconductor and Pt/HfO2/n-GaN metal-insulator-semiconductor Schottky diodes. Materials Research Society Symposia Proceedings, 2014, 1736, 7.	0.1	0
875	Temperature dependence of current-and capacitance–voltage characteristics of an Au/4H-SiC Schottky diode. Superlattices and Microstructures, 2014, 76, 394-412.	1.4	39
876	Temperature-Dependent Current-Voltage Characteristics in ZnO Based Schottky Diodes. Advanced Materials Research, 0, 894, 391-395.	0.3	0
877	Improvement of Minority Carrier Lifetime and Si Solar Cell Characteristics by Nitric Acid Oxidation Method. ECS Journal of Solid State Science and Technology, 2014, 3, Q137-Q141.	0.9	5
878	Sensitivity Enhancement of Metal-Oxide-Semiconductor Tunneling Photodiode with Trapped Electrons in Ultra-Thin SiO ₂ Layer. ECS Journal of Solid State Science and Technology, 2014, 3, Q37-Q41.	0.9	8
879	Investigation of temperature dependent electrical properties of Ni/Al0.26Ga0.74N Schottky barrier diodes. Thin Solid Films, 2014, 564, 367-374.	0.8	19
880	Electrical characteristics of β-Ga2O3 thin films grown by PEALD. Journal of Alloys and Compounds, 2014, 593, 190-195.	2.8	49
881	Electrical properties and conduction mechanism of an organic-modified Au/NiPc/n-InP Schottky barrier diode. Applied Physics A: Materials Science and Processing, 2014, 116, 1379-1387.	1.1	24
882	Characterization of Laser-Doped Localized p-n Junctions for High Efficiency Silicon Solar Cells. IEEE Transactions on Electron Devices, 2014, 61, 1943-1949.	1.6	12
883	Carrier-selective contacts for Si solar cells. Applied Physics Letters, 2014, 104, .	1.5	168
884	Temperature and voltage dependences of dielectric properties and ac electrical conductivity in Au/PVC+TCNQ/p-Si structures. Materials Science in Semiconductor Processing, 2014, 28, 37-42.	1.9	27
885	Electrical properties and the role of inhomogeneities at the polyvinyl alcohol/nâ€inp schottky barrier interface. Journal of Applied Polymer Science, 2014, 131, .	1.3	19
886	Electrical and structural properties of rapidly annealed rare-earth metal Er Schottky contacts on p-type InP. Superlattices and Microstructures, 2014, 65, 206-218.	1.4	13
887	Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy and Environmental Science, 2014, 7, 45-102.	15.6	346
888			
	The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 2014, 1, .	5.5	931
889	The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 2014, 1, . Current-transport mechanisms in gold/polypyrrole/n-silicon Schottky barrier diodes in the temperature range of 110–360K. Materials Science in Semiconductor Processing, 2014, 28, 66-71.	5.5 1.9	931 15
889 890	The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 2014, 1, . Current-transport mechanisms in gold/polypyrrole/n-silicon Schottky barrier diodes in the temperature range of 110–360K. Materials Science in Semiconductor Processing, 2014, 28, 66-71. Electrical characterization of Ni/Al0.09Ga0.91N Schottky barrier diodes as a function of temperature. Materials Science in Semiconductor Processing, 2014, 28, 127-134.	5.5 1.9 1.9	931 15 10

#	Article	IF	CITATIONS
892	Effect of thermal annealing on electrical and structural properties of Ni/Au/n-GaN Schottky contacts. Microelectronic Engineering, 2014, 130, 62-68.	1.1	17
893	Effects of PCBM concentration on the electrical properties of the Au/P3HT:PCBM/n-Si (MPS) Schottky barrier diodes. Microelectronics Reliability, 2014, 54, 2766-2774.	0.9	9
894	Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. Journal of Materials Chemistry A, 2014, 2, 16877-16883.	5.2	93
895	Modified electrical characteristics of Pt/n-type Ge Schottky diode with a pyronine-B interlayer. Superlattices and Microstructures, 2014, 75, 806-817.	1.4	22
896	Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes. Semiconductor Science and Technology, 2014, 29, 095022.	1.0	15
897	Electrical and photoelectrical characterization of a TTF/p-InP organic–inorganic heterojunction. Microelectronic Engineering, 2014, 129, 91-95.	1.1	17
898	Electrical and optical properties of Cu2ZnSnS4 grown by a thermal co-evaporation method and its diode application. Materials Science in Semiconductor Processing, 2014, 28, 98-102.	1.9	31
899	Electrical parameters of Schottky contacts in CaCu3Ti4O12 thin film capacitors. Applied Physics A: Materials Science and Processing, 2014, 116, 2001-2006.	1.1	5
900	Influence of annealing effects on the electrical and microstructural properties of Se Schottky contacts on n-type GaN. Journal of Materials Science: Materials in Electronics, 2014, 25, 2379-2386.	1.1	4
901	Electrical and photoconducting properties of nanorod in based spinel compound/p-Si photodiode by sol–gel spin coating technique. Journal of Sol-Gel Science and Technology, 2014, 71, 421-427.	1.1	11
902	Investigation of currentâ€voltage characteristics and current conduction mechanisms in composites of polyvinyl alcohol and bismuth oxide. Polymer Engineering and Science, 2014, 54, 1811-1816.	1.5	8
903	All-printed diode operating at 1.6 GHz. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11943-11948.	3.3	68
904	Electrical Properties and Current Transport Mechanisms of the Au/n-GaN Schottky Structure with Solution- Processed High-k BaTiO3 Interlayer. Journal of Electronic Materials, 2014, 43, 3499-3507.	1.0	80
905	Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures. Electronic Materials Letters, 2014, 10, 411-416.	1.0	28
906	Influence of tetramethylammonium hydroxide treatment on the electrical characteristics of Ni/Au/GaN Schottky barrier diode. Materials Chemistry and Physics, 2014, 143, 801-805.	2.0	11
907	Reduction of surface roughness and defect density by cryogenic implantation of arsenic. Japanese Journal of Applied Physics, 2014, 53, 066507.	0.8	6
908	Characterization of electrical properties of Al/maleic anhydride (MA)/p-Si structures by well-known methods. Synthetic Metals, 2014, 191, 83-88.	2.1	9
909	Fabrication and electrical characterization of Au/Pyronine-G/p-Si diode. Materials Science in Semiconductor Processing, 2014, 28, 20-25.	1.9	4

	Сітаті	on Report	
#	Article	IF	CITATIONS
910	Electrical and structural properties of tungsten Schottky contacts to p-type InP at different annealing temperatures. Superlattices and Microstructures, 2014, 71, 134-146.	1.4	7
911	UV illumination effects on electrical characteristics of metal–polymer–semiconductor diodes fabricated with new poly(propylene glycol)-b-polystyrene block copolymer. Composites Part B: Engineering, 2014, 57, 8-12.	5.9	14
912	Electrical properties and the double Gaussian distribution of inhomogeneous barrier heights in Se/n-GaN Schottky barrier diode. Superlattices and Microstructures, 2014, 67, 242-255.	1.4	32
913	Electrical and photovoltaic properties of Au/(Ni, Zn)-doped PVA/n-Si structures in dark and under 250W illumination level. Materials Science in Semiconductor Processing, 2014, 28, 48-53.	1.9	34
914	Electrical and interfacial properties of Au/P3HT:PCBM/n-Si Schottky barrier diodes at room temperature. Materials Science in Semiconductor Processing, 2014, 26, 448-454.	1.9	23
915	Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications, 2014, 5, 3990.	5.8	167
916	Fabrication of Reproducible, Integrationâ€Compatible Hybrid Molecular/Si Electronics. Small, 2014, 10, 5151-5160.	5.2	20
917	Temperature and Voltage Effect on Barrier Height and Ideality Factor in Au/PVC + TCNQ/pâ€5i Structures. Advances in Polymer Technology, 2014, 33, .	0.8	12
918	Electrical Characteristics of an Ag/n-InP Schottky Diode Based on Temperature-Dependent Current–Voltage and Capacitance–Voltage Measurements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3960-3971.	1.1	18
919	Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment. Semiconductor Science and Technology, 2015, 30, 125016.	1.0	4
920	Nanoscale inhomogeneity of the Schottky barrier and resistivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoS<mml:mn>2</mml:mn></mml:mi </mml:msub>multilayers. Physical Review B, 2015, 92, .</mml:math 	1.1	69
921	Potential barrier heights at metal on oxygen-terminated diamond interfaces. Journal of Applied Physics, 2015, 118, .	1.1	18
922	Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer. Journal of Applied Physics, 2015, 118, .	1.1	41
923	Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing. Journal of Applied Physics, 2015, 118, .	1.1	45
924	Temperature Dependent Current-Voltage and Capacitance-Voltage Characteristics of an Au/n-Type Si Schottky Barrier Diode Modified Using a PEDOT:PSS Interlayer. Materials Transactions, 2015, 56, 10-16.	0.4	22
925	On the temperature dependent forward bias current–voltage (l–V) characteristics in Au/2% graphene–cobalt doped (Ca3Co4Ga0.001Ox)/n-Si structure. Materials Science in Semiconductor Processing, 2015, 39, 332-338.	1.9	28
926	Annealing effects on the electrical, structural and morphological properties of Ti/p-GaN/Ni/Au Schottky diode. Applied Physics A: Materials Science and Processing, 2015, 121, 131-140.	1.1	13
927	Influence of Etching-Induced Surface Damage on Device Performance With Consideration of Minority Carriers Within Diffusion Length From Depletion Edge. IEEE Transactions on Electron Devices, 2015, 62, 634-640.	1.6	1

#	Article	IF	CITATIONS
928	Electronic transport of Au/(Ca _{1.9} Pr _{0.1} Co ₄ O _x)/n-Si structures analysed over a wide temperature range. Philosophical Magazine, 2015, 95, 1448-1461.	0.7	17
929	Temperature-dependent electrical parameters and current transport mechanisms of Ru/Ti/n-InP Schottky diodes. Indian Journal of Physics, 2015, 89, 1161-1168.	0.9	7
930	Carrier transport mechanisms and photodetector characteristics of Ag/TiOPc/p-Si/Al hybrid heterojunction. Materials Science in Semiconductor Processing, 2015, 39, 324-331.	1.9	20
931	Impact of Copper-Doped Titanium Dioxide Interfacial Layers on the Interface-State and Electrical Properties of Si-based MOS Devices. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4150-4159.	1.1	5
932	Barrier characteristics of biopolymer-based organic/inorganic Au/CTS/n-InP hybrid junctions. Philosophical Magazine, 2015, 95, 3413-3428.	0.7	1
933	The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications. Results in Physics, 2015, 5, 314-321.	2.0	71
934	Investigation of dielectric relaxation and ac electrical conductivity using impedance spectroscopy method in (AuZn)/TiO2/p-GaAs(110) schottky barrier diodes. Journal of Alloys and Compounds, 2015, 628, 442-449.	2.8	90
935	The comparison of electrical characterizations and photovoltaic performance of Al/p-Si and Al/Azure C/p-Si junctions devices. Synthetic Metals, 2015, 200, 66-73.	2.1	20
936	The effect of Mo-doped PVC+TCNQ interfacial layer on the electrical properties of Au/PVC+TCNQ/p-Si structures at room temperature. Materials Science in Semiconductor Processing, 2015, 33, 140-148.	1.9	28
937	A compare of electrical characteristics in Al/p-Si (MS) and Al/C20H12/p-Si (MPS) type diodes using current–voltage (l–V) and capacitance–voltage (C–V) measurements. Materials Science in Semiconductor Processing, 2015, 32, 137-144.	1.9	52
938	Electrical and photovoltaic properties of Gaussian distributed inhomogeneous barrier based on tris(8-hydroxyquinoline) indium/p-si interface. Materials Science in Semiconductor Processing, 2015, 32, 145-151.	1.9	21
939	Electrical and photovoltaic characteristics of Ni/(n)Bi2S3 Schottky barrier junction. Superlattices and Microstructures, 2015, 80, 39-52.	1.4	5
940	Role of Interfacial Oxide in High-Efficiency Graphene–Silicon Schottky Barrier Solar Cells. Nano Letters, 2015, 15, 2104-2110.	4.5	404
941	Air-Pressure Tunable Depletion Width, Rectification Behavior, and Charge Conduction in Oxide Nanotubes. ACS Applied Materials & Interfaces, 2015, 7, 2153-2159.	4.0	5
942	Electrical parameters of Au/n-GaN and Pt/n-GaN Schottky diodes. Superlattices and Microstructures, 2015, 82, 269-286.	1.4	10
943	Rapid thermal annealing effects on the electrical, structural and morphological properties of Yb/p-type InP Schottky Structure. Electronic Materials Letters, 2015, 11, 73-81.	1.0	12
944	Temperature dependent of electrical characteristics of Au/n-GaAs/In Schottky diode with In2S3 interfacial layer obtained by using spray pyrolysis method. Journal of Alloys and Compounds, 2015, 646, 954-965.	2.8	21
945	Current–voltage–temperature and capacitance–voltage–temperature characteristics of TiW alloy/p-InP Schottky barrier diode. Journal of Alloys and Compounds, 2015, 649, 1220-1225.	2.8	18

#	Article	IF	CITATIONS
946	Current–voltage and capacitance–voltage characteristics of Al Schottky contacts to strained Si-on-insulator in the wide temperature range. Materials Science in Semiconductor Processing, 2015, 39, 390-399.	1.9	38
947	Effect of annealing temperature on the electrical, structural and surface morphological properties of Ru/Ti Schottky contacts on n -type InP. Superlattices and Microstructures, 2015, 86, 280-291.	1.4	7
948	Effect of thermal annealing on the electrical and structural properties of Au/Y/p-type InP Schottky structure. Vacuum, 2015, 119, 276-283.	1.6	10
949	Dielectric properties and electric modulus of Au/PPy/n-Si (MPS) type Schottky barrier diodes (SBDS) as a function of frequency and applied bias voltage. International Journal of Modern Physics B, 2015, 29, 1550075.	1.0	18
950	Current–Voltage and Capacitance–Conductance–Voltage Characteristics of Al/SiO2/p-Si and Al/Methyl Green (MG)/p-Si Structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 347-353.	1.1	10
951	Insulating-layer formation of metallic LaNiO3 on Nb-doped SrTiO3 substrate. Applied Physics Letters, 2015, 106, 121601.	1.5	10
952	CO ₂ gas detection properties of a TIO ₂ /Al ₂ O ₃ heterostructure under UV light irradiation. Physica Scripta, 2015, 90, 055802.	1.2	39
953	Rapid thermal annealing effects on the electrical and structural properties of Ru/V/n-InP Schottky barrier diode. Superlattices and Microstructures, 2015, 83, 48-60.	1.4	5
954	The Study of 0.34ÂTHz Monolithically Integrated Fourth Subharmonic Mixer Using Planar Schottky Barrier Diode. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 1112-1122.	1.2	6
955	Full loss compensation in hybrid plasmonic waveguides under electrical pumping. Optics Express, 2015, 23, 19358.	1.7	27
956	Cu2ZnSnS4 Films Grown on Flexible Substrates by Dip Coating Using a Methanol-Based Solution: Electronic Properties and Devices. Journal of Electronic Materials, 2015, 44, 4760-4768.	1.0	10
957	Temperature dependent current–voltage characteristics of Au/n-type Ge Schottky barrier diodes with graphene interlayer. Journal of Alloys and Compounds, 2015, 650, 658-663.	2.8	24
958	A simple model for ultra-low specific contact resistivity metal- interfacial layer -semiconductor contacts. , 2015, , .		0
959	An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical waterAoxidation. Nature Materials, 2015, 14, 1150-1155.	13.3	214
960	Modeling of bipolar resistive switching of a nonlinear MISM memristor. Semiconductor Science and Technology, 2015, 30, 115009.	1.0	19
961	Double Gaussian Distribution of Barrier Heights, Interface States, and Current Transport Mechanisms in Au/Bi0.5Na0.5TiO3-BaTiO3/n-GaN MIS Structure. Journal of Electronic Materials, 2015, 44, 549-557.	1.0	21
962	Electrical characterization of Au/poly (linoleic acid)-g-poly(methyl methacrylate) (PLiMMA)/n-Si diode in dark and under illumination. Current Applied Physics, 2015, 15, 14-17.	1.1	15
963	Effect of copper phthalocyanine (CuPc) interlayer on the electrical characteristics of Au/n-GaN Schottky rectifier. Materials Science in Semiconductor Processing, 2015, 30, 420-428.	1.9	10

	CITATION REP	PORT	
# 964	ARTICLE Advanced Scanning Tunneling Microscopy for Nanoscale Analysis of Semiconductor Devices. , 2016, , .	IF	CITATIONS
965	Effects Of the γ- radiation on the electrical characteristics of the Au/n-Si/Au-Sb Schottky diode. Journal of Physics: Conference Series, 2016, 707, 012018.	0.3	4
966	New type of Schottky diode-based Cu–Al–Mn–Cr shape memory material films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	11
967	A comparative study on the electrical parameters of Au/n-Si Schottky diodes with and without interfacial (Ca1.9Pr0.1Co4Ox) layer. International Journal of Modern Physics B, 2016, 30, 1650090.	1.0	15
968	High Detectivity Grapheneâ€ s ilicon Heterojunction Photodetector. Small, 2016, 12, 595-601.	5.2	370
969	Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene dopedâ€PVA/nâ€Si (MPS) structures. Journal of Applied Polymer Science, 2016, 133, .	1.3	47
970	Laterally inhomogeneous barrier analysis of cu/n-gap/al schottky devices. Journal of Physics: Conference Series, 2016, 707, 012023.	0.3	0
971	Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions. Journal of Applied Physics, 2016, 119, .	1.1	5
972	Interface state density and dielectric properties of Au/n-GaP Schottky diode. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	10
973	Barrier inhomogeneities and interface states of metal/4H-SiC Schottky contacts. Japanese Journal of Applied Physics, 2016, 55, 124101.	0.8	6
974	Schottky diode characteristics and 1/f noise of high sensitivity reduced graphene oxide/Si heterojunction photodetector. Journal of Applied Physics, 2016, 119, 124303.	1.1	18
975	Mn ₅ Ge ₃ C _{0.6} /Ge(1 1 1) Schottky contacts tuned by an n-ty ultra-shallow doping layer. Journal Physics D: Applied Physics, 2016, 49, 355101.	ре 1.3	6
976	Behavior of temperature dependent electrical properties of Pd/Au Schottky contact to GaN grown on Si substrate by MBE. Materials Research Express, 2016, 3, 125901.	0.8	6
977	Ni/Al ₂ O ₃ /4H-SiC structure for He ⁺⁺ energy detection in RBS experiments. Journal of Instrumentation, 2016, 11, P10013-P10013.	0.5	0
978	Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE. AIP Conference Proceedings, 2016, , .	0.3	0
979	Time-dependent of characteristics of Cu/CuS/n-GaAs/In structure produced by SILAR method. Materials Research Bulletin, 2016, 81, 55-62.	2.7	9
980	Electrical properties and transport mechanisms of Au/Ba0.6Sr0.4TiO3/GaN metal–insulator–semiconductor (MIS) diode at high temperature range. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	6
981	Influence of nanostructure Fe-doped ZnO interlayer on the electrical properties of Au/n-type InP Schottky structure. Materials Chemistry and Physics, 2016, 177, 92-98.	2.0	14

#	Article	IF	CITATIONS
982	Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities. Journal of Materials Science: Materials in Electronics, 2016, 27, 8340-8347.	1.1	51
983	Electrical characteristics of p-Si/TiO ₂ /Al and p-Si/TiO ₂ -Zr/Al Schottky devices. Philosophical Magazine, 2016, 96, 1684-1693.	0.7	17
984	Enhanced saturation current sensitivities to charge trapping and illumination in MOS tunnel diode by inserting metal in gate dielectric. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	1
985	Efficiency improvement in silicon nanowire/conductive polymer hybrid solar cells based on formic acid treatment. RSC Advances, 2016, 6, 86836-86842.	1.7	7
986	Temperature-Dependent Electrical Properties and Carrier Transport Mechanisms of TMAH-Treated Ni/Au/Al2O3/GaN MIS Diode. Journal of Electronic Materials, 2016, 45, 5655-5662.	1.0	14
987	Thermally activated conductivity of Si hybrid structure based on ZnPc thin film. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	2
988	Making the science of interfaces work for semiconductor electronics. Journal Physics D: Applied Physics, 2016, 49, 391001.	1.3	2
989	Analysis of temperature dependent forward characteristics of Ni/\$(ar{2}01)\$ <i>β</i> -Ga ₂ O ₃ Schottky diodes. Semiconductor Science and Technology, 2016, 31, 115002.	1.0	55
990	Effects of Ta-oxide interlayer on the Schottky barrier parameters of Ni/n-type Ge Schottky barrier diode. Microelectronic Engineering, 2016, 163, 26-31.	1.1	18
991	Temperature dependent current–voltage and photovoltaic properties of chemically prepared (p)Si/(n)Bi2S3 heterojunction. Egyptian Journal of Basic and Applied Sciences, 2016, 3, 314-321.	0.2	7
992	Ga2O3 as both gate dielectric and surface passivation via sol-gel method at room ambient. , 2016, , .		1
993	Temperature-dependent model for hole transport mechanism in a poly(1.8-diaminocarbazole)/Si structure. Philosophical Magazine, 2016, 96, 2600-2614.	0.7	3
994	Electronic properties of Al/MoO3/p-InP enhanced Schottky barrier contacts. Thin Solid Films, 2016, 616, 145-150.	0.8	34
995	Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy, 2016, 28, 44-50.	8.2	89
996	Capacitance rollâ€off and frequencyâ€dispersion capacitance–conductance phenomena in field plate and guard ring edgeâ€terminated Ni/SiO ₂ /4Hâ€nSiC Schottky barrier diodes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 193-202.	0.8	39
997	Effect of platinum doping on the structural and electrical properties of SnO2thin films. Journal of Experimental Nanoscience, 2016, 11, 1285-1306.	1.3	11
998	Epitaxial growth and electric/magnetic properties of a magneto-electric Cr2O3 thin film. Journal of the Korean Physical Society, 2016, 68, 143-146.	0.3	1
999	Illumination impact on electrical properties of Ag/0.6Âwt% nanographene oxide doped poly(vinyl) Tj ETQq1 1 0.	784314 rg 2.8	BT/Overlock

#	Article	IF	CITATIONS
1000	Investigation of barrier inhomogeneities and interface state density in Au/MgZnO: Ga Schottky contact. Journal Physics D: Applied Physics, 2016, 49, 445303.	1.3	36
1001	Effect of oxygen plasma treatment on the electrical characteristics of Pt/n-type Si Schottky diodes. Journal of the Korean Physical Society, 2016, 69, 1321-1327.	0.3	1
1002	Microstructural, electrical and carrier transport properties of Au/NiO/n-GaN heterojunction with a nickel oxide interlayer. RSC Advances, 2016, 6, 105761-105770.	1.7	58
1003	Effects of high-k zirconium oxide (ZrO2) interlayer on the electrical and transport properties of Au/n-type InP Schottky diode. Thin Solid Films, 2016, 619, 231-238.	0.8	27
1004	Transconductance sensitivity enhancement in gated-MIS(p) tunnel diode by self-protective effective local thinning mechanism. Applied Physics Letters, 2016, 109, .	1.5	5
1005	The Effect of Interface States Density Distribution and Series Resistance on Electrical Behaviour of Schottky Diode. Materials Today: Proceedings, 2016, 3, 1658-1665.	0.9	10
1006	Morphological and crystalline structural characteristics of PEDOTâ,,¢/TiO2 nanocomposites for applications towards technologyÂinÂelectronic devices. Journal of Alloys and Compounds, 2016, 671, 291-298.	2.8	4
1007	Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	16
1009	Investigation of Electrical Characteristics in Al/CdS-PVA/p-Si (MPS) Structures Using Impedance Spectroscopy Method. IEEE Transactions on Electron Devices, 2016, 63, 2948-2955.	1.6	79
1010	High-efficiency, stable and non-chemically doped graphene–Si solar cells through interface engineering and PMMA antireflection. RSC Advances, 2016, 6, 10175-10179.	1.7	36
1011	Al doped ZnO based metal–semiconductor–metal and metal–insulator–semiconductor–insulator–metal UV sensors. Optik, 2016, 127, 3523-3526.	1.4	22
1012	Correlations for coumarin additive on the electrical and photocatalytic activity of TiO2 modified by thiourea. Microelectronic Engineering, 2016, 154, 26-37.	1.1	10
1013	Poly(melamine-co-formaldehyde) methylated effect on the interface states of metal/polymer/p-Si Schottky barrier diode. Synthetic Metals, 2016, 211, 99-106.	2.1	29
1014	Wet chemical methods for producing mixing crystalline phase ZrO 2 thin film. Applied Surface Science, 2016, 377, 159-166.	3.1	17
1015	Electrical characteristics and rectification performance of wet chemically synthesized vertically aligned n-ZnO nanowire/p-Si heterojunction. Journal Physics D: Applied Physics, 2016, 49, 115102.	1.3	27
1016	Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode. Superlattices and Microstructures, 2016, 91, 306-312.	1.4	15
1017	Relationship between photovoltaic and diode characteristic parameters in the Sn/p-Si Schottky type photovoltaics. Solar Energy, 2016, 132, 96-102.	2.9	12
1018	Modification of electrical properties of Au/n-type InP Schottky diode with a high-k Ba 0.6 Sr 0.4 TiO 3 interlayer. Superlattices and Microstructures, 2016, 93, 82-91.	1.4	31

#	Article	IF	CITATIONS
1019	Effect of annealing temperature on the electrical and structural properties of V/p-GaN Schottky structures. Thin Solid Films, 2016, 598, 236-242.	0.8	17
1020	The comparative electrical characteristics of Au/n-Si (MS) diodes with and without a 2% graphene cobalt-doped Ca3Co4Ga0.001Ox interfacial layer at room temperature. Microelectronic Engineering, 2016, 149, 166-171.	1.1	45
1021	Electrical characteristics of (n)Si/(p)PbS heterojunction prepared by chemical bath deposition technique. Superlattices and Microstructures, 2016, 89, 43-52.	1.4	4
1022	Transport mechanisms and interface properties of W/p-InP Schottky diode at room temperature. Indian Journal of Physics, 2016, 90, 399-406.	0.9	7
1023	Current injection from metal to MoS2 probed at nanoscale by conductive atomic force microscopy. Materials Science in Semiconductor Processing, 2016, 42, 174-178.	1.9	12
1024	Al doped ZnO based MISIM ultraviolet photodetectors. Microsystem Technologies, 2017, 23, 999-1003.	1.2	3
1025	Controlling the electrical characteristics of Au/n‣i structure with and without (biphenylâ€CoPc) and (OHSubsâ€ZnPc) interfacial layers at room temperature. Polymers for Advanced Technologies, 2017, 28, 952-957.	1.6	6
1026	Effect of layer thickness on the electrical parameters and conduction mechanisms of conjugated polymerâ€based heterojunction diode. Journal of Applied Polymer Science, 2017, 134, .	1.3	16
1027	Current-voltage characteristics of Au/PLiMMA/n-Si diode under ultraviolet irradiation. Journal of Physics and Chemistry of Solids, 2017, 103, 197-200.	1.9	9
1028	Metal-insulator-SiC Schottky structures using HfO 2 and TiO 2 dielectrics. Thin Solid Films, 2017, 621, 184-187.	0.8	19
1029	Electrical and Dielectric Properties of a n-Si Schottky Barrier Diode with Bismuth Titanate Interlayer: Effect of Temperature. Journal of Electronic Materials, 2017, 46, 1895-1901.	1.0	7
1030	Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures. Indian Journal of Physics, 2017, 91, 421-430.	0.9	36
1031	Temperature dependence of characteristic parameters of the Au/C20H12/n-Si Schottky barrier diodes (SBDs) in the wide temperature range. Journal of Materials Science: Materials in Electronics, 2017, 28, 3987-3996.	1.1	27
1032	Temperature-dependent Schottky barrier in high-performance organic solar cells. Scientific Reports, 2017, 7, 40134.	1.6	25
1033	Au/n-InP Schottky diodes using an Al ₂ O ₃ interfacial layer grown by atomic layer deposition. Semiconductor Science and Technology, 2017, 32, 025011.	1.0	8
1034	Multi-scale investigation of interface properties, stacking order and decoupling of few layer graphene on C-face 4H-SiC. Carbon, 2017, 116, 722-732.	5.4	23
1035	A facile growth of spray based ZnO films and device performance investigation for Schottky diodes: Determination of interface state density distribution. Journal of Alloys and Compounds, 2017, 708, 55-66.	2.8	43
1036	Chemical Modification of Semiconductor Surfaces for Molecular Electronics. Chemical Reviews, 2017, 117, 4624-4666.	23.0	181

#	Article	IF	CITATIONS
1037	Influence of rapid thermal annealing on electrical and structural properties of Pd/Au Schottky contact to Ga-polarity GaN grown on Si (111) substrate. Journal of Alloys and Compounds, 2017, 705, 782-787.	2.8	9
1038	Investigation of photo-induced effect on electrical properties of Au/PPy/n-Si (MPS) type schottky barrier diodes. Journal of Materials Science: Materials in Electronics, 2017, 28, 6413-6420.	1.1	16
1039	Energy harvesting efficiency in GaN nanowire-based nanogenerators: the critical influence of the Schottky nanocontact. Nanoscale, 2017, 9, 4610-4619.	2.8	29
1040	Electrical characteristics of Au/n-Si (MS) Schottky Diodes (SDs) with and without different rates (graphene + Ca1.9Pr0.1Co4Ox-doped poly(vinyl alcohol)) interfacial layer. Journal of Materials Science: Materials in Electronics, 2017, 28, 7905-7911.	1.1	34
1041	Selective control of electron and hole tunneling in 2D assembly. Science Advances, 2017, 3, e1602726.	4.7	25
1042	The Investigation of Current-Conduction Mechanisms of Te/NaF:CdS/SnO2 Structure in Wide Temperature Range of 80–400ÂK. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 409-417.	0.8	13
1043	Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Materials, 2017, 4, 025075.	2.0	127
1044	Series resistance and interface states effects on the C–V and G/w–V characteristics in Au/(Co3O4-doped PVA)/n-Si structures at room temperature. Journal of Materials Science: Materials in Electronics, 2017, 28, 12967-12976.	1.1	29
1045	Electrical and photovoltaic properties of Ag/p-Si structure with GO doped NiO interlayer in dark and under light illumination. Journal of Alloys and Compounds, 2017, 718, 75-84.	2.8	24
1046	Enhancing rectification of Nb:SrTiO 3 /ZnO heterojunctions by magnetic field. Vacuum, 2017, 142, 66-71.	1.6	5
1047	The energy density distribution profile of interface traps and their relaxation times and capture cross sections of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors at room temperature. Polymer Bulletin, 2017, 74, 3765-3781.	1.7	16
1048	Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates. Journal of Applied Physics, 2017, 121, .	1.1	34
1049	Frequency dependent C–V and G/ï‰â€"V characteristics on the illumination-induced Au/ZnO/n-GaAs Schottky barrier diodes. Journal of Materials Science: Materials in Electronics, 2017, 28, 4951-4957.	1.1	24
1050	Influence of Al ₂ O ₃ barrier on the interfacial electronic structure of Au/Ti/n-GaAs structures. Journal of Semiconductors, 2017, 38, 054003.	2.0	41
1051	Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nature Communications, 2017, 8, 15217.	5.8	165
1052	Frequency dependent electrical characteristics and origin of anomalous capacitance–voltage (C–V) peak in Au/(graphene-doped PVA)/n-Si capacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 7819-7826.	1.1	30
1053	Barrier Parameters and Current Transport Characteristics of Ti/p-InP Schottky Junction Modified Using Orange G (OG) Organic Interlayer. Journal of Electronic Materials, 2017, 46, 5746-5754.	1.0	30
1054	Two-diode behavior in metal-ferroelectric-semiconductor structures with bismuth titanate interfacial layer. International Journal of Modern Physics B, 2017, 31, 1750197.	1.0	3

#	Article	IF	CITATIONS
1055	Correlation between barrier height and ideality factor in identically prepared diodes of Al/Bi4Ti3O12/p-Si (MFS) structure with barrier inhomogeneity. Journal of Alloys and Compounds, 2017, 721, 750-756.	2.8	17
1056	Characteristics of the Schottky barriers of two-terminal thin-film Al/nano-Si film/ITO structures. Semiconductors, 2017, 51, 608-616.	0.2	4
1057	Electrical Properties of Dilute Nitride GaAsPN/GaPN MQW p–i–n Diode. Journal of Electronic Materials, 2017, 46, 4590-4595.	1.0	5
1058	Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP. Indian Journal of Physics, 2017, 91, 743-753.	0.9	4
1059	Electrical and frequency-dependent properties of Au/Sm2O3/n-GaN MIS junction with a high-k rare-earth Sm2O3 as interlayer. Current Applied Physics, 2017, 17, 980-988.	1.1	35
1060	Design and fabrication of dioxyphenylcoumarin substituted cyclotriphosphazene compounds photodiodes. Physica B: Condensed Matter, 2017, 515, 8-17.	1.3	16
1061	Microstructural, electrical and frequency-dependent properties of Au/p-Cu2ZnSnS4/n-GaN heterojunction. Journal of Colloid and Interface Science, 2017, 499, 180-188.	5.0	30
1062	Transport properties of Gallium Phosphide based Schottky contact with thin insulating layer. Materials Science in Semiconductor Processing, 2017, 61, 145-149.	1.9	4
1063	Analysis of electrical characteristics and conduction mechanisms in the Al/(%7 Zn-doped PVA)/p-Si (MPS) structure at room temperature. Journal of Materials Science: Materials in Electronics, 2017, 28, 8844-8856.	1.1	17
1064	Investigation of the C-V characteristics that provides linearity in a large reverse bias region and the effects of series resistance, surface states and interlayer in Au/n-Si/Ag diodes. Journal of Alloys and Compounds, 2017, 708, 464-469.	2.8	22
1065	Electrical and Interfacial Properties of an Antipyrine Derivative/p-Si Heterojunction. Silicon, 2017, 9, 363-369.	1.8	1
1066	ELECTRICAL PROPERTIES OF AI/p-Si STRUCTURE WITH AI2O3 THIN FILM FABRICATED BY ATOMIC LAYER DEPOSITION SYSTEM. Surface Review and Letters, 2017, 24, 1750077.	0.5	2
1067	Junction diodes in organic solar cells. Nano Energy, 2017, 41, 717-730.	8.2	20
1068	Study on the electrical properties of ZnSe/Si heterojunction diode. Journal of Materials Science: Materials in Electronics, 2017, 28, 17806-17815.	1.1	26
1070	Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Japanese Journal of Applied Physics, 2017, 56, 094301.	0.8	30
1071	Facile ultrasound-assisted and microwave-assisted methods for preparation of Bi2S3-PVA nanostructures: exploring their pertinent structural and optical properties and comparative studies on the electrical, properties of Au/(Bi2S3-PVA)/n-Si Schottky structure. Journal of Materials Science: Materials in Flectronics 2017 28 17948-17960	1.1	18
1072	Enhancing the barrier height in oxide Schottky junctions using interface dipoles. Applied Physics Letters, 2017, 111, 091602.	1.5	6
1073	Dye based photodiodes for solar energy applications. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	14

#	Article	IF	CITATIONS
1074	Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN. Journal of Semiconductors, 2017, 38, 064001.	2.0	4
1075	Resistive switching induced by charge trapping/detrapping: a unified mechanism for colossal electroresistance in certain Nb:SrTiO ₃ -based heterojunctions. Journal of Materials Chemistry C, 2017, 5, 7317-7327.	2.7	61
1076	The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. Journal of Materials Science: Materials in Electronics, 2017, 28, 14040-14048.	1.1	80
1077	Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes. Superlattices and Microstructures, 2017, 111, 1010-1021.	1.4	23
1078	Fabrication and electrical characterizations of graphene nanocomposite thin film based heterojunction diode. Physica B: Condensed Matter, 2017, 524, 97-103.	1.3	12
1079	Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures. Journal of Semiconductors, 2017, 38, 114001.	2.0	5
1080	Improved electron emission properties of the porous silicon emitter by chemical surface modification. Semiconductor Science and Technology, 2017, 32, 085006.	1.0	0
1081	Interpretation of barrier height inhomogeneities in Au/In2S3/SnO2/(In-Ga) structures at low temperatures. Journal of Materials Science: Materials in Electronics, 2017, 28, 7501-7508.	1.1	10
1082	The effect of transparent conductive nanocrystalline oxide thin layer on performance of UV detectors fabricated on Fe-doped GaN. Materials Science in Semiconductor Processing, 2017, 57, 132-136.	1.9	8
1083	Electrical and frequency dependence characteristics of Ti/polyethylene oxide (PEO)/p-type InP organic-inorganic Schottky junction. Journal of Alloys and Compounds, 2017, 695, 2587-2596.	2.8	36
1084	Modified electrical properties and transport mechanism of Ti/p-InP Schottky structure with a polyvinylpyrrolidone (PVP) polymer interlayer. Journal of Materials Science: Materials in Electronics, 2017, 28, 4847-4855.	1.1	37
1085	Electrical properties and the determination of interface state density from l–V, C–f and G–f measurements in Ir/Ru/n-InGaN Schottky barrier diode. Semiconductors, 2017, 51, 1641-1649.	0.2	1
1086	A study of different extraction techniques of nanocrystalline graphite (NCG)/p-type silicon schottky diode parameters. , 2017, , .		0
1087	Interfacial layer thickness dependent electrical characteristics of Au/(Zn-doped PVA)/ <i>n</i> -4H-SiC (MPS) structures at room temperature. EPJ Applied Physics, 2017, 80, 10101.	0.3	19
1088	Ni/Al <inf>2</inf> O <inf>3</inf> /4H-SiC Schottky diodes. , 2017, , .		1
1089	I-V and C-V Characterization of a High-Responsivity Graphene/Silicon Photodiode with Embedded MOS Capacitor. Nanomaterials, 2017, 7, 158.	1.9	63
1090	A Comparative Study on Electrical Characteristics of Au/N-Si Schottky Diodes, with and Without Bi-Doped PVA Interfacial Layer in Dark and Under Illumination at Room Temperature. Journal of Nanomedicine & Nanotechnology, 2017, 04, .	1.1	21
1091	Microstructural, chemical states and electrical properties of Au/CuO/n-InP heterojunction with a cupric oxide interlayer. Vacuum, 2018, 152, 15-24.	1.6	20

#	Article	IF	CITATIONS
1092	General Considerations for Improving Photovoltage in Metal–Insulator–Semiconductor Photoanodes. Journal of Physical Chemistry C, 2018, 122, 5462-5471.	1.5	54
1093	Electrical Characterization of Graphite/InP Schottky Diodes by I–V–T and C–V Methods. Journal of Electronic Materials, 2018, 47, 4950-4954.	1.0	5
1094	Frequency-Dependent Admittance Analysis of the Metal–Semiconductor Structure With an Interlayer of Zn-Doped Organic Polymer Nanocomposites. IEEE Transactions on Electron Devices, 2018, 65, 231-236.	1.6	38
1095	A Study on the Electronic Properties of SiOxNy/p-Si Interface. Silicon, 2018, 10, 2717-2725.	1.8	10
1096	Improving effect of poly (linolenic acid)–g–poly (caprolactone)–g–poly (t-butyl acrylate) interfacial layer on Au/n-Si diodes. Materials Chemistry and Physics, 2018, 213, 1-5.	2.0	9
1097	Underwater unidirectional acoustic transmission through a plate with bilateral asymmetric gratings. Modern Physics Letters B, 2018, 32, 1850133.	1.0	3
1098	Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects. IEEE Journal of Photovoltaics, 2018, 8, 373-388.	1.5	285
1099	Characterization of a SiC MIS Schottky diode as RBS particle detector. Journal of Instrumentation, 2018, 13, P02017-P02017.	0.5	1
1100	Fabrication and characterization of n-Si/SiON/metal gate structure for future MOS technology. Microsystem Technologies, 2018, 24, 4179-4185.	1.2	1
1101	THE INFLUENCE OF HIGH-ENERGY ELECTRONS IRRADIATION ON SURFACE OF n-GaP AND ON Au/n-GaP/Al SCHOTTKY BARRIER DIODE. Surface Review and Letters, 2018, 25, 1850064.	0.5	2
1102	Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfaces. Journal of Physical Chemistry C, 2018, 122, 3312-3325.	1.5	7
1103	Controlling the properties of ZnO thin films by varying precursor concentration. Journal of Alloys and Compounds, 2018, 741, 957-968.	2.8	26
1104	On electrical and interfacial properties of iron and platinum Schottky barrier diodes on (111) n-type Si0.65Ge0.35. International Journal of Modern Physics B, 2018, 32, 1850097.	1.0	3
1105	Silicon based MIS photoanode for water oxidation: A comparison of RuO2 and Ni Schottky contacts. Applied Surface Science, 2018, 461, 48-53.	3.1	18
1106	Investigation of carrier transport mechanisms in the Cu–Zn–Se based hetero-structure grown by sputtering technique. Canadian Journal of Physics, 2018, 96, 816-825.	0.4	10
1107	Temperature-Dependent Electrical Characteristics of Au/Si3N4/4H n-SiC MIS Diode. Journal of Electronic Materials, 2018, 47, 2979-2987.	1.0	24
1108	Frequency-Dependent Dielectric Parameters of Au/TiO2/n-Si (MIS) Structure. Silicon, 2018, 10, 2071-2077.	1.8	33
1109	High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane. ACS Applied Materials & Interfaces, 2018, 10, 12870-12877.	4.0	38

#	Article	IF	CITATIONS
1110	Effect of inhomogeneous Schottky barrier height of SnO2nanowires device. Semiconductor Science and Technology, 2018, 33, 055003.	1.0	17
1111	Optoelectrical properties of Al/p-Si/Fe:N doped ZnO/Al diodes. Thin Solid Films, 2018, 653, 236-248.	0.8	23
1112	Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures. Journal of Electronic Materials, 2018, 47, 3510-3520.	1.0	25
1113	Impact of Zr content on multiphase zirconium–tungsten oxide (Zr–WOx) films and its MIS structure of Cu/Zr–WOx/p-Si Schottky barrier diodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 2618-2627.	1.1	45
1114	Interface and transport properties of gamma irradiated Au/n-GaP Schottky diode. Materials Science in Semiconductor Processing, 2018, 74, 1-6.	1.9	13
1115	On the electrical characterization of platinum octaethylporphyrin (PtOEP)/Si hybrid device. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	10
1116	Origin of Voltageâ€Dependent High Ideality Factors in Graphene–Silicon Diodes. Advanced Electronic Materials, 2018, 4, 1700317.	2.6	14
1117	Facile electrochemical-assisted synthesis of TiO2 nanotubes and their role in Schottky barrier diode applications. Superlattices and Microstructures, 2018, 113, 310-318.	1.4	19
1118	Effect of Insertion of Ultrathin Al ₂ O ₃ Interlayer at Metal/GaN Interfaces. Physica Status Solidi (B): Basic Research, 2018, 255, 1700382.	0.7	8
1119	Evaluation of Electric and Dielectric Properties of Metal–Semiconductor Structures With 2% GC-Doped-(Ca ₃ Co ₄ Ga _{0.001} O _{<i>x</i>}) Interlayer. IEEE Transactions on Electron Devices, 2018, 65, 3901-3908.	1.6	30
1120	Progress of Graphene–Silicon Heterojunction Photovoltaic Devices. Advanced Materials Interfaces, 2018, 5, 1801520.	1.9	22
1121	Surface chemical states, electrical and carrier transport properties of Au/ZrO2/n-GaN MIS junction with a high-k ZrO2 as an insulating layer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 231, 74-80.	1.7	25
1122	Current-Transport Mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky Diodes in the Temperature Range Between 220ÂK and 380ÂK. Journal of Electronic Materials, 2018, 47, 6945-6953.	1.0	42
1123	Temperature dependent transport characterization of iron on n-type (111) Si0.65Ge0.35 Schottky diodes. Journal of Alloys and Compounds, 2018, 763, 173-179.	2.8	14
1124	The Analysis of the Electrical and Photovoltaic Properties of Cr/p-Si Structures Using Current-Voltage Measurements. Silicon, 2018, 10, 2109-2116.	1.8	29
1125	Influence of \$\$hbox {Si}_{3}hbox {N}_{4}\$\$ Si 3 N 4 layer on the electrical properties of Au/n-4H SiC diodes. Bulletin of Materials Science, 2018, 41, 1.	0.8	5
1126	Photoelectrochemistry of Ultrathin, Semitransparent, and Catalytic Gold Films Electrodeposited Epitaxially onto n-Silicon (111). ACS Applied Materials & amp; Interfaces, 2018, 10, 21365-21371.	4.0	12
1127	Silicon Solar Cells with Embedded Siliconâ€onâ€nsulation Layer via Nitrogen Ion Beam Implantation. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1701018.	0.8	3

#	Article	IF	CITATIONS
1128	Temperature-dependent contact resistance of carrier selective Poly-Si on oxide junctions. Solar Energy Materials and Solar Cells, 2018, 185, 425-430.	3.0	54
1129	Thermal annealing studies in epitaxial 4H-SiC Schottky barrier diodes over wide temperature range. Microelectronics Reliability, 2018, 87, 213-221.	0.9	7
1130	Study of barrier height inhomogeneity at zinc oxide/polymer:fullerene interface in polymer solar cells. Polymers for Advanced Technologies, 2018, 29, 2230-2236.	1.6	1
1131	Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer. Solar Energy Materials and Solar Cells, 2018, 185, 61-65.	3.0	41
1132	Maximizing Solar Water Splitting Performance by Nanoscopic Control of the Charge Carrier Fluxes across Semiconductor–Electrocatalyst Junctions. ACS Catalysis, 2018, 8, 8545-8552.	5.5	28
1133	Modified Interface Properties of Au/n-type GaN Schottky Junction with a High-k Ba0.6Sr0.4TiO3 Insulating Layer. Journal of Electronic Materials, 2018, 47, 6458-6466.	1.0	0
1134	Carrier transport through the ultrathin silicon-oxide layer in tunnel oxide passivated contact (TOPCon) c-Si solar cells. Solar Energy Materials and Solar Cells, 2018, 187, 113-122.	3.0	76
1135	Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures. Progress in Natural Science: Materials International, 2018, 28, 325-331.	1.8	53
1136	Nanoscale electrical mapping of two-dimensional materials by conductive atomic force microscopy for transistors applications. AIP Conference Proceedings, 2018, , .	0.3	4
1137	Van der Waals interfaces in epitaxial vertical metal/2D/3D semiconductor heterojunctions of monolayer MoS ₂ and GaN. 2D Materials, 2018, 5, 045016.	2.0	21
1138	Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure. Materials, 2018, 11, 90.	1.3	2
1139	Theoretical study of piezotronic metal–insulator–semiconductor tunnel devices. Journal Physics D: Applied Physics, 2018, 51, 324006.	1.3	1
1140	Covalent functionalization of polycrystalline silicon nanoribbons applied to Pb(II) electrical detection. Sensors and Actuators B: Chemical, 2018, 268, 368-375.	4.0	1
1141	Analysis of Schottky Barrier Parameters and Current Transport Properties of V/p-Type GaN Schottky Junction at Low Temperatures. Journal of Electronic Materials, 2018, 47, 4140-4148.	1.0	4
1142	Temperature-dependent electronic charge transport characteristics at MoS2/p-type Ge heterojunctions. Journal of Alloys and Compounds, 2018, 757, 221-227.	2.8	24
1143	Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures. Physica B: Condensed Matter, 2018, 546, 93-98.	1.3	34
1144	Overlayer induced air gap acting as a responsivity amplifier for majority carrier graphene–insulator–silicon photodetectors. Journal of Materials Chemistry C, 2018, 6, 6958-6965.	2.7	11
1145	High temperature current transport in gate oxides based (GaN)/AlGaN/GaN Schottky diodes. Applied Surface Science, 2018, 461, 206-211.	3.1	5

#	Article	IF	CITATIONS
1146	Platinum doping effect on InO MSM IR photodetectors. Superlattices and Microstructures, 2018, 122, 650-660.	1.4	4
1147	Double Gaussian barrier distribution of permalloy (Ni0.8Fe0.2) Schottky contacts to n-type GaN. Superlattices and Microstructures, 2018, 120, 508-516.	1.4	18
1148	Frequency and Voltage Dependence of Interface States and Series Resistance in Ti/Au/p-Si Diodes with 100 μm and 200 μm Diameter Fabricated by Photolithography. Silicon, 2019, 11, 1055-1061.	1.8	0
1149	Fermi-level depinning in metal/Ge interface using oxygen plasma treatment. Applied Surface Science, 2019, 463, 91-95.	3.1	14
1150	Gaussian distribution of inhomogeneous barrier height in nanocrystalline graphite (NCG)/p-Si Schottky diodes. Japanese Journal of Applied Physics, 2019, 58, 065002.	0.8	0
1151	Double Gaussian distribution of barrier heights and self-powered infrared photoresponse of InN/AlN/Si (111) heterostructure. Journal of Applied Physics, 2019, 126, .	1.1	19
1152	Dielectric properties of \$\$hbox {Ag/Ru}_{0.03}\$\$–PVA/n-Si structures. Bulletin of Materials Science, 2019, 42, 1.	0.8	4
1153	Ti ₃ C ₂ T <i>_x</i> (MXene)â€Silicon Heterojunction for Efficient Photovoltaic Cells. Advanced Energy Materials, 2019, 9, 1901063.	10.2	68
1154	Dielectric characterization of BSA doped-PANI interlayered metal–semiconductor structures. Journal of Materials Science: Materials in Electronics, 2019, 30, 14224-14232.	1.1	15
1155	Correlated lateral and vertical transport of large-scale majority carrier graphene–insulator–silicon photodiodes. Journal of Materials Chemistry C, 2019, 7, 9346-9353.	2.7	1
1156	Temperature dependent current-voltage characteristics of Al/TiO2/n-Si and Al/Cu:TiO2/n-Si devices. Materials Science in Semiconductor Processing, 2019, 103, 104620.	1.9	22
1157	The Structural and Electrical Properties of the Au/n-Si (MS) Diodes With Nanocomposites Interlayer (Ag-Doped ZnO/PVP) by Using the Simple Ultrasound-Assisted Method. IEEE Transactions on Electron Devices, 2019, 66, 3103-3109.	1.6	27
1158	Improved barrier parameters and working stability of Au/p-GO/n-lnP/Au–Ge Schottky barrier diode with GO interlayer showing resistive switching effect. Vacuum, 2019, 168, 108825.	1.6	13
1159	A comparison of the electrical characteristics of TiO2/p-Si/Ag, GNR-TiO2/p-Si/Ag and MWCNT-TiO2/p-Si/Ag photodiodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 13617-13626.	1.1	12
1160	The role of interface traps, series resistance and (Ni-doped PVA) interlayer effects on electrical characteristics in Al/p-Si (MS) structures. Journal of Materials Science: Materials in Electronics, 2019, 30, 19854-19861.	1.1	16
1161	Electrical model of multi-level bipolar Ta2O5/TaOx Bi-layered ReRAM. Microelectronics Journal, 2019, 93, 104616.	1.1	9
1162	Guidelines for Optimizing the Performance of Metal–Insulator–Semiconductor (MIS) Photoelectrocatalytic Systems by Tuning the Insulator Thickness. ACS Energy Letters, 2019, 4, 2632-2638.	8.8	18
1163	The Fundamental Current Mechanisms in SiC Schottky Barrier Diodes: Physical Model, Experimental Verification and Implications. , 2019, , .		0

#	Article	IF	CITATIONS
1164	Comparison of electrical characteristics of Sn/p-type Si structure at different temperatures and under irradiation. Materials Today: Proceedings, 2019, 18, 1946-1954.	0.9	3
1165	Investigation of the efficiencies of the (SnO2-PVA) interlayer in Au/n-Si (MS) SDs on electrical characteristics at room temperature by comparison. Journal of Materials Science: Materials in Electronics, 2019, 30, 20479-20488.	1.1	23
1166	Mechanism of Charge Transport in Hybrid Organic-Inorganic PEDOT:PSS/Silicon Heterojunctions. Physical Review Applied, 2019, 12, .	1.5	16
1167	Chemical, electrical and carrier transport properties of Au/cytosine/undoped-InP MPS junction with a cytosine polymer. Solid State Sciences, 2019, 97, 105987.	1.5	3
1168	The investigation of effects of (Fe2O4-PVP) organic-layer, surface states, and series resistance on the electrical characteristics and the sources of them. Journal of Materials Science: Materials in Electronics, 2019, 30, 17032-17039.	1.1	45
1169	Effect of rare-earth Pr6O11 insulating layer on the electrical properties of Au/n-GaN Schottky electrode and its chemical and structural characterization. Journal of Materials Science: Materials in Electronics, 2019, 30, 18710-18719.	1.1	11
1170	Interfacial States and Fano–Feshbach Resonance in Graphene–Silicon Vertical Junction. Nano Letters, 2019, 19, 6765-6771.	4.5	2
1171	Double parallel barrier height behavior of Au/Poly (linoleic acid)-g-poly (methyl methacrylate) (PLiMMA)/n-Si structure. Microelectronics Reliability, 2019, 99, 132-136.	0.9	2
1172	Giant Electroresistance in Ferroionic Tunnel Junctions. IScience, 2019, 16, 368-377.	1.9	51
1173	Passivation of Germanium by Graphene for Stable Graphene/Germanium Heterostructure Devices. ACS Applied Nano Materials, 2019, 2, 4313-4322.	2.4	11
1174	Frequency, voltage and illumination interaction with the electrical characteristics of the CdZnO interlayered Schottky structure. Journal of Materials Science: Materials in Electronics, 2019, 30, 11536-11541.	1.1	23
1175	Low resistance metal contacts on MoS2 films deposited by laser physical vapor deposition. Journal of Materials Science: Materials in Electronics, 2019, 30, 10024-10029.	1.1	4
1176	Investigation of electrical properties of \$\$hbox {In/ZnIn}_{2} hbox {Te}_{4}/hbox {n-Si/Ag}~hbox {diode}\$\$ In/ZnIn 2 Te 4 / n-Si/Ag. Bulletin of Materials Science, 2019, 42, 1.	0.8	9
1177	On the Role of Interface States in AlGaN/GaN Schottky Recessed Diodes: Physical Insights, Performance Tradeoff, and Engineering Guidelines. IEEE Transactions on Electron Devices, 2019, 66, 2569-2576.	1.6	18
1178	Characterization of tunnel oxide passivated contact with n-type poly-Si on p-type c-Si wafer substrate. Current Applied Physics, 2019, 19, 811-816.	1.1	0
1179	The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. Journal of Alloys and Compounds, 2019, 790, 388-396.	2.8	31
1180	Microstructural, chemical and electrical characteristics of Au/magnetite (Fe3O4)/n-GaN MIS junction with a magnetite interlayer. Vacuum, 2019, 164, 233-241.	1.6	17
1181	Rectifying and breakdown voltage enhancement of Au/n-GaN Schottky diode with Al-doped ZnO films and its structural characterization. Thin Solid Films, 2019, 676, 125-132.	0.8	23

#	Article	IF	CITATIONS
1182	Computational Modeling of Polycrystalline Silicon on Oxide Passivating Contact for Silicon Solar Cells. IEEE Transactions on Electron Devices, 2019, 66, 1819-1826.	1.6	12
1183	Description and Verification of the Fundamental Current Mechanisms in Silicon Carbide Schottky Barrier Diodes. Scientific Reports, 2019, 9, 3754.	1.6	31
1184	Statistical distribution of barrier heights, current conduction mechanism and voltage-dependent capacitance–frequency characteristics of Au/Fe3O4/n-GaN heterojunction. SN Applied Sciences, 2019, 1, 1.	1.5	1
1185	Photosensitive Sb-n-InSb Schottky barrier diodes. Semiconductor Science and Technology, 2019, 34, 045018.	1.0	2
1186	Structural, Chemical and Electrical Properties of Au/La2O3/n-GaN MIS Junction with a High-k Lanthanum Oxide Insulating Layer. Journal of Electronic Materials, 2019, 48, 4217-4225.	1.0	29
1187	Controlled Current Transport in Pt/Nb:SrTiO ₃ Junctions via Insertion of Uniform Thin Layers of TaO _x . Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900136.	1.2	1
1188	On the possible conduction mechanisms in Rhenium/n-GaAs Schottky barrier diodes fabricated by pulsed laser deposition in temperature range of 60–400ÂK. Journal of Materials Science: Materials in Electronics, 2019, 30, 9029-9037.	1.1	21
1189	A comparison of electrical parameters of Au/n-Si and Au/(CoSO4–PVP)/n-Si structures (SBDs) to determine the effect of (CoSO4–PVP) organic interlayer at room temperature. Journal of Materials Science: Materials in Electronics, 2019, 30, 9273-9280.	1.1	36
1190	Analysis of anomalous transport mechanism across the interface of Ag/p-Si Schottky diode in wide temperature range. Superlattices and Microstructures, 2019, 128, 373-381.	1.4	39
1191	The fabrication of Al/p-Si (MS) type photodiode with (%2 ZnO-doped CuO) interfacial layer by sol gel method and their electrical characteristics. Physica B: Condensed Matter, 2019, 560, 91-96.	1.3	39
1192	A comparative study on current/capacitance: voltage characteristics of Au/n-Si (MS) structures with and without PVP interlayer. Journal of Materials Science: Materials in Electronics, 2019, 30, 6491-6499.	1.1	32
1193	Temperature dependence of electrical properties in \$\$hbox {In/Cu}_{{2}hbox {ZnSnTe}_{{4}hbox {ZnSnTe}_{{4}}}	0.8	13
1194	The Role of Near-Interface Traps in Modulating the Barrier Height of SiC Schottky Diodes. IEEE Transactions on Electron Devices, 2019, 66, 1675-1680.	1.6	17
1195	Determination of Surface States Energy Density Distributions and Relaxation Times for a Metal-Polymer-Semiconductor Structure. IEEE Nanotechnology Magazine, 2019, 18, 1196-1199.	1.1	21
1196	Investigation of temperature dependent negative capacitance in the forward bias C-V characteristics of (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs). Materials Science in Semiconductor Processing, 2019, 89, 26-31.	1.9	53
1197	Minimizing Trap Charge Density towards an Ideal Diode in Graphene–Silicon Schottky Solar Cell. ACS Applied Materials & Interfaces, 2019, 11, 880-888.	4.0	15
1198	Electrical characteristics analyses of zinc-oxide based MIS structure grown by atomic layer deposition. Materials Research Express, 2019, 6, 026309.	0.8	15
1199	Thermal Annealing Effects on the Electrical and Structural Properties of Ni/Pt Schottky Contacts on the Quaternary AllnGaN Epilayer. Journal of Electronic Materials, 2019, 48, 887-897.	1.0	8

#	Article	IF	CITATIONS
1200	The analysis of the electrical characteristics and interface state densities of Re/n-type Si Schottky barrier diodes at room temperature. International Journal of Electronics, 2019, 106, 507-520.	0.9	14
1201	Silicon based photodetector with Ru(II) complexes organic interlayer. Materials Science in Semiconductor Processing, 2019, 91, 422-430.	1.9	35
1202	Effect of indium doping on the electrical and structural properties of TiO2 thin films used in MOS devices. Journal of Alloys and Compounds, 2019, 775, 202-213.	2.8	17
1203	Barrier enhancement of Al/n-InP Schottky diodes by graphene oxide thin layer. Indian Journal of Physics, 2019, 93, 467-474.	0.9	5
1204	Solar Light Photodetectors Based on Nanocrystalline Zinc Oxide Cadmium Doped/p-Si Heterojunctions. Silicon, 2019, 11, 563-571.	1.8	31
1205	Effect of Sb, Tb3+ Doping on Optical and Electrical Performances of SnO2 and Si Based Schottky Diodes. Silicon, 2020, 12, 715-722.	1.8	2
1206	Effect of Organic Additives on the Characteristics of Al/Organic Additive:ZrO2/p-Si Metal–Insulator-Semiconductor (MIS) Type Schottky Barrier Diodes. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 564-572.	1.9	8
1207	A detailed comparative study on electrical and photovoltaic characteristics of Al/p-Si photodiodes with coumarin-doped PVA interfacial layer: the effect of doping concentration. Polymer Bulletin, 2020, 77, 49-71.	1.7	63
1208	Comparison of electrical properties of MS and MPS type diode in respect of (In2O3-PVP) interlayer. Physica B: Condensed Matter, 2020, 576, 411733.	1.3	46
1209	Temperature-dependent Schottky barrier parameters of Ni/Au on n-type (001) β-Ga2O3 Schottky barrier diode. Vacuum, 2020, 171, 109012.	1.6	60
1210	Distribution of interface traps in Au/2% GCâ€doped Ca ₃ Co ₄ Ga _{0.001} O _{<i>x</i>} / <i>n</i> ‣i structures. Journal of Applied Polymer Science, 2020, 137, 48399.	1.3	6
1211	Frequency and voltage dependence of barrier height, surface states, and series resistance in Al/Al2O3/p-Si structures in wide range frequency and voltage. Physica B: Condensed Matter, 2020, 582, 411979.	1.3	51
1212	Ultrasound-Assisted Method for Preparation of Ag2S Nanostructures: Fabrication of Au/Ag2S-PVA/n-Si Schottky Barrier Diode and Exploring Their Electrical Properties. Journal of Electronic Materials, 2020, 49, 444-453.	1.0	23
1213	Single step ohmic contact for heavily doped n-type silicon. Applied Surface Science, 2020, 506, 144686.	3.1	10
1214	Effect of illumination on electrical parameters of Au/(P3DMTFT)/n-GaAs Schottky barrier diodes. Indian Journal of Physics, 2020, 94, 1901-1908.	0.9	25
1215	The effects of temperature and frequency changes on the electrical characteristics of hot-injected Cu2MnSnS4 chalcogenide-based heterojunction. Physica B: Condensed Matter, 2020, 580, 411821.	1.3	12
1216	Dark and illuminated electrical characteristics of Si-based photodiode interlayered with CuCo5S8 nanocrystals. Journal of Materials Science: Materials in Electronics, 2020, 31, 935-948.	1.1	24
1217	ldentifying of series resistance and interface states on rhenium/n-GaAs structures using C–V–T and G/ï‰â€"V–T characteristics in frequency ranged 50ÂkHz to 5ÂMHz. Journal of Materials Science: Materials in Electronics, 2020, 31, 704-713.	1.1	5

#	Article	IF	CITATIONS
1218	The effects of (Bi2Te3–Bi2O3-TeO2-PVP) interfacial film on the dielectric and electrical features of Al/p-Si (MS) Schottky barrier diodes (SBDs). Physica B: Condensed Matter, 2020, 582, 411958.	1.3	33
1219	Analysis of rectifying metal-semiconductor interface using impedance spectroscopy at low temperatures. Physica B: Condensed Matter, 2020, 599, 412547.	1.3	6
1220	Planar and Nanostructured n‣i/Metalâ€Oxide/WO ₃ /BiVO ₄ Monolithic Tandem Devices for Unassisted Solar Water Splitting. Advanced Energy and Sustainability Research, 2020, 1, 2000037.	2.8	9
1221	Temperature dependence of interface state density distribution determined from conductance–frequency measurements in Ni/n-GaP/Al diode. Journal of Materials Science: Materials in Electronics, 2020, 31, 21260-21271.	1.1	7
1222	Detection of current transport mechanisms for graphene-doped-PVA interlayered metal/semiconductor structures. Physica B: Condensed Matter, 2020, 598, 412457.	1.3	18
1223	Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems. Advanced Materials, 2020, 32, 2002196.	11.1	20
1224	Electrical characteristics of organic heterojunction with an alternating benzotriazole and fluorene containing copolymer. Journal of Materials Science: Materials in Electronics, 2020, 31, 18816-18831.	1.1	12
1225	Electrical and dielectric properties of Al/(PVP: Zn-TeO2)/p-Si heterojunction structures using current–voltage (l–V) and impedance-frequency (Z–f) measurements. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	33
1226	Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells. Chinese Physics B, 2020, 29, 098801.	0.7	7
1227	Investigation of Illumination Effects on the Electrical Properties of Au/GO/p-InP Heterojunction with a Graphene Oxide Interlayer. Nanomanufacturing and Metrology, 2020, 3, 269-281.	1.5	14
1228	High photo-responsivity Au/polyvinyl alcohol (PVA)+di[1-(2-ethoxyethyl)-5-nitrobenzimidazole] copper dichloride/n-Si UV photodiode. Sensors and Actuators A: Physical, 2020, 315, 112335.	2.0	8
1229	Analysis of temperature-dependent forward and leakage conduction mechanisms in organic thin film heterojunction diode with fluorine-based PCBM blend. Journal of Materials Science: Materials in Electronics, 2020, 31, 15233-15242.	1.1	9
1230	A comparison study regarding Al/p-Si and Al/(carbon nanofiber–PVP)/p-Si diodes: current/impedance–voltage (I/Z–V) characteristics. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	13
1231	Investigation of electrical parameters of Au/P3HT:PCBM/n-6H–SiC/Ag Schottky barrier diode with different current conduction models. Superlattices and Microstructures, 2020, 146, 106658.	1.4	8
1232	Optoelectronic properties of Co/pentacene/Si MIS heterojunction photodiode. Physica B: Condensed Matter, 2020, 597, 412408.	1.3	33
1233	A Highly Sensitive Temperature Sensor Based on Au/Graphene-PVP/ <i>n</i> -Si Type Schottky Diodes and the Possible Conduction Mechanisms in the Wide Range Temperatures. IEEE Sensors Journal, 2020, 20, 14081-14089.	2.4	37
1234	Investigation of electrical and admittance analysis of Au/Thiophene/n-Si structure at room temperature. Physica B: Condensed Matter, 2020, 594, 412356.	1.3	4
1235	Analysis of temperature dependent electrical characteristics of Au/GaSe Schottky barrier diode improved by Ce-doping. Sensors and Actuators A: Physical, 2020, 315, 112264.	2.0	10

CITATION REPORT IF CITATIONS Investigation of electrical and dielectric properties of epitaxially grown Au/n-GaAs/p-Si/Al 1.5 18 heterojunction. Optical and Quantum Electronics, 2020, 52, 1. Si Nanowire With Integrated Space-Charge- Limited Conducted Schottky Junction for Enhancing Field 1.6 Electron Emission and Its Gated Devices. IEEE Transactions on Electron Devices, 2020, 67, 4467-4472. Metal Sputtering Buffer Layer for High Performance Si-Based Water Oxidation Photoanode. ACS 2.54 Applied Energy Materials, 2020, 3, 8216-8223. Dielectric Ruduced Surface Field Effect on Vertical GaN-on-GaN Nanowire Schottky Barrier Diodes., The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions. Journal of 1.1 11 Materials Science: Materials in Electronics, 2020, 31, 18640-18648. Modeling recombination and contact resistance of polyâ $\in \!\!\!\!\!\!Si$ junctions. Progress in Photovoltaics: Research and Applications, 2020, 28, 1289-1307. 4.4 Kinetics of Charge Carriers across a Graphene-Silicon Schottky Junction. Physical Review Applied, 1.5 9 Ionizing radiation effects on Au/TiO2/n-Si metal–insulator-semiconductor (MIS) structure. Journal of 1.1 Materials Science: Materials in Electronics, 2020, 31, 19846-19851. Fabrication and characterization of Schottky barrier diodes on rutile TiO₂. Materials 0.8 5 Research Express, 2020, 7, 065903. Electrical characterization of silicon nitride interlayer-based MIS diode. Journal of Materials Science: 1.1 14 Materials in Electronics, 2020, 31, 9888-9893. Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of 21 0.9 Intrinsic Electrical Properties. Jom, 2020, 72, 2391-2397. Effects of surface passivation on capacitance-voltage and conductance-voltage characteristics of Al/p-type Si/Al and Al/V2O5/p-type Si/Al diodes. Journal of Physics and Chemistry of Solids, 2020, 146, Modulating Schottky barrier of metal/p-type 4H-SiC by thin insulator TiO2 layer intercalation. Journal 1.1 6 of Applied Physics, 2020, 127, 225301.

Capacitance-voltage profiling of aluminium junctioned PVA/CdSe nanocomposite schottky diode. 1249 Materials Today: Proceedings, 2020, 28, 1445-1449. Improving the Electronic Properties of Au/n-Si Type Schottky Junction Structure With Graphene-PVP Nano-Thin Film by Using the I-V, Câ[^]2-V and G/I‰-V Characteristics. IEEE Nanotechnology Magazine, 2020, 19, 1250 2 1.1 172-178. Enhanced Electrical and Optical Characteristics of Co/Phenol Red (PR)/Silicon Hybrid Heterojunction for Photodiode and Thermal Applications. Journal of Electronic Materials, 2020, 49, 4952-4961. Fabrication of hybrid photodiode systems: BODIPY decorated cyclotriphosphazene covalently grafted 1252 3.021 graphene oxides. Inorganic Chemistry Frontiers, 2020, 7, 2920-2931. The comparison of Co/hematoxylin/n-Si and Co/hematoxylin/p-Si devices as rectifier for a wide range temperature. Materials Science in Semiconductor Processing, 2020, 113, 105039.

ARTICLE

1236

1238

1239

1240

1241

1242

1243

1244

1246

1248

2020, 14, .

109564.

#	Article	IF	CITATIONS
1254	Metal oxide semiconductor-based Schottky diodes: a review of recent advances. Materials Research Express, 2020, 7, 032001.	0.8	65
1255	Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Physica B: Condensed Matter, 2020, 587, 412122.	1.3	36
1256	High-energy e-Beam-induced effects in Au/n-Si diodes with pre-irradiated PTCDA interfacial layer. Journal of Materials Science: Materials in Electronics, 2020, 31, 5779-5788.	1.1	3
1257	Intersection behavior of the current–voltage (I–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity. Journal of Materials Science: Materials in Electronics, 2020, 31, 13167-13172.	1.1	9
1258	On the frequency and voltage-dependent main electrical parameters of the Au/ZnO/n-GaAs structures at room temperature by using various methods. Physica B: Condensed Matter, 2020, 594, 412274.	1.3	23
1259	Quantifying Losses and Assessing the Photovoltage Limits in Metal–Insulator–Semiconductor Water Splitting Systems. Advanced Energy Materials, 2020, 10, 1903354.	10.2	30
1260	Electrical characterization of GaN Schottky barrier diode at cryogenic temperatures. Applied Physics Letters, 2020, 116, .	1.5	16
1261	Schottky Barrier Height Engineering in <i>β</i> -Ga ₂ O ₃ Using SiO ₂ Interlayer Dielectric. IEEE Journal of the Electron Devices Society, 2020, 8, 286-294.	1.2	32
1262	A comprehensive investigation on Ag-doped ZnO based photodiodes with nanofibers. Journal of Materials Science: Materials in Electronics, 2020, 31, 6059-6071.	1.1	3
1263	Study of the discharge/charge process of lithium–sulfur batteries by electrochemical impedance spectroscopy. RSC Advances, 2020, 10, 5283-5293.	1.7	47
1264	Automation Software for Semiconductor Research Laboratories: Electrical Parameter Calculation Program (SeCLaS-PC). Journal of Circuits, Systems and Computers, 2020, 29, 2050215.	1.0	9
1265	ULTRAVIOLET ILLUMINATION RESPONSIVITY OF THE Au/n-Si DIODES WITH AND WITHOUT POLY (LINOLENIC) TJ I Letters, 2020, 27, 1950207.	ETQq1 1 0 0.5).784314 rg ^B 6
1266	Microstructural and interface properties of Au/SrTiO3 (STO)/n-GaN heterojunction with an e-beam evaporated high-k STO interlayer. Journal of Alloys and Compounds, 2020, 823, 153775.	2.8	9
1267	Solution-processable BODIPY decorated triazine photodiodes and their comprehensive photophysical evaluation. New Journal of Chemistry, 2020, 44, 2155-2165.	1.4	21
1268	Electrical and carrier transport properties of Au/Pr6O11/n-GaN MIS structure with a high-k rare-earth oxide interlayer at high temperature range. Vacuum, 2020, 174, 109201.	1.6	12
1269	van der Waals Integrated Devices Based on Nanomembranes of 3D Materials. Nano Letters, 2020, 20, 1410-1416.	4.5	19
1270	Illumination Dependent Electrical Data Identification of the CdZnO Interlayered Metal-Semiconductor Structures. Silicon, 2020, 12, 2885-2891.	1.8	22
1271	The rate of Cu doped TiO2 interlayer effects on the electrical characteristics of Al/Cu:TiO2/n-Si (MOS) capacitors depend on frequency and voltage. Microelectronics Reliability, 2020, 106, 113591.	0.9	14

#	Article	IF	CITATIONS
1272	The effect of molar ratio on the photo-generated charge activity of ZnO–CdO composites. European Physical Journal Plus, 2020, 135, 1.	1.2	5
1273	Investigation of the effect of different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface-layer materials on diode parameters. Journal of Materials Science: Materials in Electronics, 2020, 31, 8033-8042.	1.1	9
1274	Frequency-Dependent Admittance Analysis of Au/n-Si Structure with CoSO4-PVP Interfacial Layer. Journal of Electronic Materials, 2020, 49, 3720-3727.	1.0	26
1275	Fabrication and Analysis of the Current Transport Mechanism of Ni/n-GaN Schottky Barrier Diodes through Different Models. Semiconductors, 2020, 54, 169-175.	0.2	5
1276	Conductive Atomic Force Microscopy of Semiconducting Transition Metal Dichalcogenides and Heterostructures. Nanomaterials, 2020, 10, 803.	1.9	34
1277	Synthesis and characterization of novel benzimidazole cobalt and copper complexes and applying in Au/PVA/n-Si diode. Physica B: Condensed Matter, 2020, 589, 412217.	1.3	5
1278	Electrical Characterization of Si/ZnO Nanorod PN Heterojunction Diode. Advances in Condensed Matter Physics, 2020, 2020, 1-9.	0.4	26
1279	Analysis of current–voltage and capacitance–voltage characteristics of Zr/p-Si Schottky diode with high series resistance. Modern Physics Letters B, 2020, 34, 2050095.	1.0	4
1280	Investigation of the electrical properties of diodes by crosschecking dependence on the presence of (nanocarbon-PVP) interface layer. Journal of Materials Science: Materials in Electronics, 2020, 31, 8043-8051.	1.1	1
1281	A Hybrid Photodiode for Solar Tracking Systems. Silicon, 2021, 13, 243-250.	1.8	8
1282	Temperature dependence of electrical parameters of the Cu/n-Si metal semiconductor Schottky structures. Journal of Molecular Structure, 2021, 1224, 129057.	1.8	16
1283	3D-graphene-laser patterned p-type silicon Schottky diode. Materials Science in Semiconductor Processing, 2021, 121, 105454.	1.9	6
1284	Performance improvement of n-TiO2/p-Si heterojunction by forming of n-TiO2/polyphenylene/p-Si anisotype sandwich heterojunction. Materials Science in Semiconductor Processing, 2021, 121, 105436.	1.9	18
1285	The effect of cadmium impurities in the (PVP–TeO2) interlayer in Al/p-Si (MS) Schottky barrier diodes (SBDs): Exploring its electrophysical parameters. Physica B: Condensed Matter, 2021, 604, 412617.	1.3	18
1286	Current transport properties of (Au/Ni)/HfAlO3/n-Si metal–insulator–semiconductor junction. Journal of Physics and Chemistry of Solids, 2021, 148, 109758.	1.9	23
1287	Investigation on UV Photoresponsivity of main electrical properties of Au/CuO-PVA/n-Si MPS type Schottky Barrier Diodes (SBDs). Physica B: Condensed Matter, 2021, 604, 412723.	1.3	8
1288	Complex dielectric, complex electric modulus, and electrical conductivity in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures. Journal of Physics and Chemistry of Solids, 2021, 148, 109740.	1.9	50
1289	Frequency Response of C–V and G/ï‰-V Characteristics of Au/(Nanographite-doped PVP)/n-Si Structures. Journal of Materials Science: Materials in Electronics, 2021, 32, 993-1006.	1.1	20
#	Article	IF	CITATIONS
------	---	-----	-----------
1290	Optical characterizations and dielectric performance of 5,10,15,20-Tetrakis(pentafluorophenyl)-21H,23H-porphine palladium(II) for photodetector applications. Materials Chemistry and Physics, 2021, 258, 123989.	2.0	14
1291	Fabrication of the solar light sensitive ZnO1-xMgOx/n-Si photodiodes. Journal of Molecular Structure, 2021, 1224, 129030.	1.8	4
1292	AÂCompareÂStudy on Electrical Properties of MS Diodes with and Without CoFe2O4-PVP Interlayer. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1668-1675.	1.9	23
1293	Detailed Consideration of Electrical and Dielectric Properties of Au/Ni/n-Si MS Structure in a Wide Frequency Range. Silicon, 2021, 13, 3011-3016.	1.8	0
1294	Effect of Temperature on the Electrical and Current Transport Properties of Au/Nd2O3/n-GaN Metal/Interlayer/Semiconductor (MIS) Junction. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	6
1295	Temperature dependence of interface-state density distributions in Cu/CuO/n-type Si structures. Materials Today: Proceedings, 2021, 46, 7030-7032.	0.9	0
1297	The investigation of current condition mechanism of Al/Y2O3/p-Si Schottky barrier diodes in wide range temperature and illuminate. Microelectronics Reliability, 2021, 117, 114040.	0.9	17
1298	Highly responsive near-infrared photodetector with low dark current using graphene/germanium Schottky junction with Al ₂ O ₃ interfacial layer. Nanophotonics, 2021, 10, 1573-1579.	2.9	39
1300	Graphene Quantum Dots Open Up New Prospects for Interfacial Modifying in Graphene/Silicon Schottky Barrier Solar Cell. Energy Material Advances, 2021, 2021, .	4.7	9
1301	Stretchable memory loops and photovoltaic characteristics of organic-inorganic solid-state iron (III) chloride tetraphenyl porphyrin /p-Si(111) nanostructure devices. Sensors and Actuators A: Physical, 2021, 318, 112511.	2.0	4
1303	Electrical property investigation of the Au/n-Si and Au/PVA+benzimidazole Co complex/n-Si diodes under ultraviolet illumination. Journal of Materials Science: Materials in Electronics, 2021, 32, 6323-6330.	1.1	2
1304	Electrical and carrier transport properties of Ti/α-amylase/p-InP MPS junction with a α-amylase polymer interlayer. Journal of Materials Science: Materials in Electronics, 2021, 32, 8092-8105.	1.1	9
1305	Current Transport Mechanism of High-Performance Novel GaN MIS Diode. IEEE Electron Device Letters, 2021, 42, 304-307.	2.2	12
1306	Au/p-Si, Au/PVA/p-Si ve Au/PVA:Gr/p-Si Schottky Bariyer Diyotların Üretimi ve Temel Elektriksel Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 2021, 11, 157-168.	0.3	1
1307	Effect of atomic-layer-deposited HfO2 thin-film interfacial layer on the electrical properties of Au/Ti/n-GaAs Schottky diode. Journal of Materials Science: Materials in Electronics, 2021, 32, 10209-10223.	1.1	20
1309	Analysis of Electrical and Capacitance–Voltage of PVA/nSi. Journal of Electronic Materials, 2021, 50, 3498-3516.	1.0	16
1310	On the examination of temperature-dependent possible current-conduction mechanisms of Au/(nanocarbon-PVP)/n-Si Schottky barrier diodes in wide range of voltage. Journal of Materials Science: Materials in Electronics, 2021, 32, 10112-10122.	1.1	7
1311	Non-Linear Resistive Switching Characteristics in HFO2-Based RRAM with Low-Dimensional Material Engineered Interface. , 2021, , .		1

#	Article	IF	CITATIONS
1312	Terbiyum (Tb) Katkılı Arayüzeyin Al/p-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi. International Journal of Pure and Applied Sciences, 0, , .	0.3	0
1313	Fabrication of Dual-Barrier Planar Structure Diamond Schottky Diodes by Rapid Thermal Annealing. IEEE Transactions on Electron Devices, 2021, 68, 1176-1180.	1.6	4
1314	Investigation of electrical and photovoltaic properties of Au/n-Si Schottky diode with BOD-Z-EN interlayer. Journal of Materials Science: Materials in Electronics, 2021, 32, 12513-12520.	1.1	6
1315	Design Principles for Efficient and Stable Water Splitting Photoelectrocatalysts. Accounts of Chemical Research, 2021, 54, 1992-2002.	7.6	52
1316	A Study about Schottky Barrier Height and Ideality Factor in Thin Film Transistors with Metal/Zinc Oxide Nanoparticles Structures Aiming Flexible Electronics Application. Nanomaterials, 2021, 11, 1188.	1.9	9
1317	Effects of thermal annealing on the characterization of p-NiO/n-GaAs heterojunctions produced by thermal evaporation. Journal of Materials Science: Materials in Electronics, 2021, 32, 13462-13471.	1.1	8
1318	Strategies for High-Performance Amorphous Indium–Gallium–Zinc Oxide Schottky Contact via Defect-Induced Physical Interface Modification. ACS Applied Electronic Materials, 2021, 3, 1864-1872.	2.0	8
1319	Modification of barrier diode with cationic dye for high power applications. Optik, 2021, 232, 166598.	1.4	15
1320	Analysis and Comparison of the Main Electrical Characteristics of Cu/n-type Si metal semiconductor structures at wide temperature Range. Silicon, 2022, 14, 3493-3500.	1.8	1
1321	Investigation of Schottky emission and space charge limited current (SCLC) in Au/SnO2/n-Si Schottky diode with gamma-ray irradiation. Journal of Materials Science: Materials in Electronics, 2021, 32, 15857-15863.	1.1	12
1322	The effect of thermal annealing on Ti/p-Si Schottky diodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 15343-15351.	1.1	9
1323	Illumination Dependent Electrical and Photovoltaic Properties of Au/n-Type Si Schottky Diode with Anthracene-Based NAMA Interlayer. ECS Journal of Solid State Science and Technology, 2021, 10, 051001.	0.9	6
1324	Frequency and voltage-dependent electrical parameters, interface traps, and series resistance profile of Au/(NiS:PVP)/n-Si structures. Journal of Materials Science: Materials in Electronics, 2021, 32, 13693-13707.	1.1	22
1325	Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/p-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık ve Aydınlanma Şiddetine Bağlı İncelenmesi. Türk Doğa Ve Fen Dergisi, 0, , .	0.2	0
1326	Analysis of illumination dependent electrical characteristics of α- styryl substituted BODIPY dye-based hybrid heterojunction. Journal of Materials Science: Materials in Electronics, 2021, 32, 16738-16747.	1.1	4
1327	Fabrication, illumination dependent electrical and photovoltaic properties of Au/BOD-Pyr/n-Si/In schottky diode. Journal of Materials Science: Materials in Electronics, 2021, 32, 15707-15717.	1.1	14
1328	Light Sensitive Properties and Temperature-Dependent Electrical Performance of n-TiO2/p-Si Anisotype Heterojunction Electrochemically Formed TiO2 on p-Si. Journal of Electronic Materials, 2021, 50, 5184.	1.0	4
1329	The electrical characteristics of metal–semiconductor hetero-structures with graphene oxide and perylenetetracarboxylic dianhydride interface. Journal of Materials Science: Materials in Electronics, 2021, 32, 17500-17511.	1.1	10

#	Article	IF	CITATIONS
1330	Dielectric properties, electric modulus and conductivity profiles of Al/Al2O3/p-Si type MOS capacitor in large frequency and bias interval. Engineering Science and Technology, an International Journal, 2022, 27, 101017.	2.0	10
1331	Schottky barrier engineering in metal/semiconductor structures for high thermal stability. Semiconductor Science and Technology, 2021, 36, 075020.	1.0	2
1332	Silicon-Based Quantum Mechanical Tunnel Junction for Plasmon Excitation from Low-Energy Electron Tunneling. ACS Photonics, 2021, 8, 1951-1960.	3.2	11
1333	Interpretation of the l–V, C–V and G/Ĩ‰-V characteristics of the Au/ZnS/n-GaAs/In structure depending on annealing temperature. Physica B: Condensed Matter, 2021, 611, 412801.	1.3	2
1334	Voltage Dependent Barrier Height, Ideality Factor and Surface States in Au/(NiS-PVP)/n-Si (MPS) type Schottky Barrier Diodes. Journal of the Institute of Science and Technology, 0, , 1058-1067.	0.3	2
1335	Role of Reduced Graphene Oxide-Gold Nanoparticle Composites on Au/Au-RGO/p-Si/Al Structure Depending on Sample Temperature. Journal of Electronic Materials, 2021, 50, 4752-4761.	1.0	8
1336	Current transport mechanism of atomic layer deposited ZnO on 3C–SiC/p-Si heterostructure. Solid State Communications, 2021, 332, 114341.	0.9	0
1337	Evaluation of gamma-irradiation effects on the electrical properties of Al/(ZnO-PVA)/p-Si type Schottky diodes using current-voltage measurements. Radiation Physics and Chemistry, 2021, 183, 109430.	1.4	29
1338	Güneş Pilleri Uygulamalarında Kullanılan Organik Tabanlı Schottky Diyotlarında İyonize Radyasyonu Aygıt Parametrelerine Etkisi. Karadeniz Fen Bilimleri Dergisi, 2021, 11, 222-238.	ⁿ 0.1	1
1339	The investigation of the electrical characteristics and photo-response properties of the Al/(CMAT)/p-Si structures. Solid State Sciences, 2021, 117, 106635.	1.5	7
1340	On the investigation of the electro-optical sensor potential of Boswellia serrata resin. Optical Materials, 2021, 117, 111154.	1.7	4
1341	Electrical Properties of Silicon Nanowires Schottky Barriers Prepared by MACE at Different Etching Time. Silicon, 2022, 14, 4731-4737.	1.8	6
1342	On the frequency-dependent complex-dielectric, complex-electric modulus and conductivity in Au/(NiS:PVP)/n-Si structures. Journal of Materials Science: Materials in Electronics, 2021, 32, 20071-20081.	1.1	13
1343	Barrier reduction and current transport mechanism in Pt/n-InP Schottky diodes using atomic layer deposited ZnO interlayer. Journal of Materials Science: Materials in Electronics, 2021, 32, 22792-22802.	1.1	4
1344	Influence of graphene doping rate in PVA organic thin film on the performance of Al/p-Si structure. Journal of Materials Science: Materials in Electronics, 2021, 32, 22860-22867.	1.1	16
1345	Effect of (Co–TeO2-doped polyvinylpyrrolidone) organic interlayer on the electrophysical characteristics of Al/p-Si (MS) structures. Journal of Materials Science: Materials in Electronics, 2021, 32, 21909-21922.	1.1	16
1346	Detailed experimental and theoretical analysis of the high-temperature current conduction properties of Er-doped TiO2 thin film based diodes. Materials Science in Semiconductor Processing, 2021, 130, 105834.	1.9	7
1347	A comparison of electrical characteristics of Au/n-Si (MS) structures with PVC and (PVC:) Tj ETQq1 1 0.784314 rg	BT /Overlo	იcჭ ₅ 10 Tf 50

#	Article	IF	CITATIONS
1348	Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	11
1349	Barrier inhomogeneity and leakage current transport mechanism in vertical Pt/Gd2O3/GaN Schottky diodes. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
1350	The role of molybdenum trioxide in the change of electrical properties of Cr/MoO3/n-Si heterojunction and electrical characterization of this device depending on temperature. Sensors and Actuators A: Physical, 2021, 328, 112765.	2.0	11
1351	Inorganic–organic interfaces in hybrid solar cells. Electronic Structure, 2021, 3, 033002.	1.0	20
1352	A comparative study on electrical characteristics of Ni/n-Si and Ni/p-Si Schottky diodes with Pinus Sylvestris Resin interfacial layer in dark and under illumination at room temperature. Optical Materials, 2021, 119, 111380.	1.7	8
1353	Performance-Improved Vertical Zr/Diamond Schottky Barrier Diode With Lanthanum Hexaboride Interfacial Layer. IEEE Electron Device Letters, 2021, 42, 1366-1369.	2.2	8
1354	Effects of measurement temperature and metal thickness on Schottky diode characteristics. Physica B: Condensed Matter, 2021, 616, 413125.	1.3	8
1355	Improving light-sensing behavior of Cu/n-Si photodiode with Human Serum Albumin: Microelectronic and dielectric characterization. Optik, 2021, 241, 167069.	1.4	9
1356	Comparison of dielectric characteristics for metal–semiconductor structures fabricated with different interlayers thicknesses. Journal of Materials Science: Materials in Electronics, 2021, 32, 26700-26708.	1.1	3
1357	Comparison studies of Zn-doped CuO thin films deposited by manual and automated nebulizer-spray pyrolysis systems and their application in heterojunction-diode fabrication. Journal of Sol-Gel Science and Technology, 2022, 102, 614-627.	1.1	5
1358	Advancement and Challenges for Schottkey Barrier MIS/SIS Solar Cells: A Review. , 2022, 7, 13-28.		2
1359	Impedance studies of LiMn0.8Fe0.2PO4/C cathodes for lithium-ion batteries. Ionics, 2021, 27, 4673-4686.	1.2	4
1360	Frequency Response of Metal–Semiconductor Structures With Thin-Films Sapphire Interlayer by ALD Technique. IEEE Transactions on Electron Devices, 2021, 68, 5085-5089.	1.6	11
1361	The photosensitive activity of organic/inorganic hybrid devices based on Aniline Blue dye: Au nanoparticles (AB@Au NPs). Sensors and Actuators A: Physical, 2021, 330, 112856.	2.0	9
1362	Mechanisms of charge carrier transport in polycrystalline silicon passivating contacts. Solar Energy Materials and Solar Cells, 2021, 232, 111359.	3.0	13
1363	Electrical parameters of Au/(%1Ni-PVA)/n-Si (MPS) structure: Surface states and their lifetimes. Physica B: Condensed Matter, 2021, 621, 413207.	1.3	26
1364	Dependence of electrical parameters of co/gold-chloride/p-Si diode on frequency and illumination. Optical Materials, 2021, 121, 111613.	1.7	10
1365	Electrical and photoelectrical properties of Schottky diode construction with three-dimensional (3D) graphene aerogel interlayer. Optical Materials, 2021, 121, 111633.	1.7	5

#	Article	IF	CITATIONS
1366	Electron trapping effects in SiC Schottky diodes: Review and comment. Microelectronics Reliability, 2021, 127, 114386.	0.9	5
1367	Highly sensitive, self-powered photodetector based on reduced graphene oxide- polyvinyl pyrrolidone fibers (Fs)/p-Si heterojunction. Journal of Alloys and Compounds, 2021, 889, 161647.	2.8	23
1368	Enhanced responsivity of a graphene/Si-based heterostructure broadband photodetector by introducing a WS ₂ interfacial layer. Journal of Materials Chemistry C, 2021, 9, 3846-3853.	2.7	28
1369	Atomic Layer Deposition of ZnO for Modulation of Electrical Properties in n-GaN Schottky Contacts. Journal of Electronic Materials, 2021, 50, 1955-1962.	1.0	9
1370	Selfâ€Aggregationâ€Controlled Rapid Chemical Bath Deposition of SnO ₂ Layers and Stable Dark Depolarization Process for Highly Efficient Planar Perovskite Solar Cells. ChemSusChem, 2020, 13, 4051-4063.	3.6	17
1371	Electrical Characterization of Interface States at Schottky Contacts and MIS Tunnel Diodes. NATO ASI Series Series B: Physics, 1989, , 235-256.	0.2	7
1372	Amorphous Silicon Solar Cells. , 1983, , 427-456.		3
1373	Electrical Characterization of Interface States in In/p-Si Schottky Diode From I–V Characteristics. Environmental Science and Engineering, 2014, , 85-87.	0.1	1
1374	Current–Voltage and Capacitance–Voltage Characteristics of Ni/p-Si (100) Schottky Diode Over a Wide Temperature Range. Environmental Science and Engineering, 2014, , 359-362.	0.1	1
1375	THEORETICAL DETERMINATION OF MIS SOLAR CHARACTERISTICS. , 1990, , 448-452.		1
1376	ELECTROLUMINESCENCE IN GaP/LANGMUIR–BLODGETT FILM METAL/INSULATOR/SEMICONDUCTOR DIODES. , 1983, , 283-290.		1
1377	ITO/SiO /n-Si heterojunction solar cell with bifacial 16.6%/14.6% front/rear efficiency produced by ultrasonic spray pyrolysis: Effect of conditions of SiO growth by wet-chemical oxidation. Solar Energy, 2020, 204, 395-405.	2.9	14
1378	The analysis of hydrostatic pressure dependence of the Au/native oxide layer/n-GaAs/Au-Ge Schottky diode parameters. EPJ Applied Physics, 2012, 60, 10101.	0.3	2
1379	Negative resistance, capacitance in Mn/SiO ₂ /p-Si MOS structure. Materials Research Express, 2020, 7, 085901.	0.8	20
1380	Frequency Dependent Electrical Characteristics οf Au/n-Si/CuPc/Au Heterojunction. Acta Physica Polonica A, 2010, 117, 493-496.	0.2	12
1381	Electronic Properties of Cu/n-InP Metal-Semiconductor Structures with Cytosine Biopolymer. Acta Physica Polonica A, 2015, 128, 383-389.	0.2	7
1382	The Electrical Properties of Au/P3HT/n-GaAs Schottky Barrier Diode. Acta Physica Polonica A, 2015, 128, B-170-B-174.	0.2	9
1383	On the Frequency C-V and G-V Characteristics of Au/Poly (3-Substituted thiophene) (P3DMTFT)/n-GaAs Schottky Barrier Diodes. Acta Physica Polonica A, 2015, 128, B-450-B-455.	0.2	10

#	Article	IF	CITATIONS
1384	Analytical Studies of Metal Insulator Semiconductor Schottky Barrier Diodes. Material Science Research India, 2014, 11, 121-127.	0.9	3
1385	Laser tuned large position-dependent tunneling detection dominated by interface states in silicon based oxide-semiconductor structure. Optics Express, 2019, 27, 743.	1.7	5
1386	P3HT/nSi Heterojunction Diodes and Photovoltaic Devices Investigated by I-V and C-V Measurements. IEICE Transactions on Electronics, 2011, E94-C, 1838-1844.	0.3	2
1387	The Electrical Characterization Effect of Insulator Layer between Semiconductor and Metal. Journal of the Institute of Science and Technology, 2016, 6, 57-57.	0.3	17
1388	Effects of (0.01Ni-PVA) interlayer, interface traps (Dit), and series resistance (Rs) on the conduction mechanisms(CMs) in the Au/n-Si (MS) structures at room temperature. Journal of the Institute of Science and Technology, 0, , 835-846.	0.3	11
1389	Influence of annealing temperature on the electrical, structural and surface morphology properties of Au/Cr Schottky contacts on n-type InP. Journal of Advances in Physics, 2014, 5, 823-836.	0.2	3
1390	ANOMALOUS CAPACITANCE OF GaN-BASED SCHOTTKY DIODES. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2010, 29, 161-166.	0.2	2
1391	<i>γ</i> -Ray Irradiation Effect on MCF Rubber Solar Cells with both Photovoltaics and Sensing Involving Semiconductors Fabricated under Magnetic and Electric Fields. World Journal of Mechanics, 2020, 10, 95-119.	0.1	2
1392	Influence of Series Resistance and Interface State Density on Electrical Characteristics of Ru/Ni/n-GaN Schottky structure. Journal of Semiconductor Technology and Science, 2013, 13, 492-499.	0.1	9
1393	Schottky Barrier Height Modulation of Zr/p-Diamond Schottky Contact by Inserting Ultrathin Atomic Layer-Deposited Al ₂ O ₃ . IEEE Transactions on Electron Devices, 2021, 68, 5995-6000.	1.6	7
1394	Analysis of Double Gaussian Distribution on Barrier Inhomogeneity in a Au/n-4H SiC Schottky Diode. Journal of Electronic Materials, 2021, 50, 7044-7056.	1.0	5
1395	Comparative study of the effect of different interlayer thicknesses on frequency dependent electric modulus and conductivity in Au/n-Si structures. Thin Solid Films, 2021, 738, 138968.	0.8	3
1396	Synthesis of nickel nanoparticles-deposited strontium titanate nanocubes (Ni-STO) and heterojunction electrical applications over a wide temperature range. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115479.	1.7	8
1398	10.1007/s11454-008-1025-2. , 2010, 53, 134.		0
1399	A Physics-Based Effective Mobility Model for Polycrystalline Silicon Thin Film Transistor Considering Discontinuous Energy Band at Grain Boundaries. Japanese Journal of Applied Physics, 2011, 50, 094302.	0.8	1
1400	Investigations of Current Mechanisms and Electronic Properties of Schottky Barrier Diode. I-manager's Journal on Electronics Engineering, 2012, 2, 30-36.	0.0	4
1401	Barriers at Interfaces of High-Mobility and Compound Semiconductors. , 2014, , 301-350.		0

# 1404	ARTICLE On the Improvement of Schottky Solar Cells. , 1978, , 1019-1026.	IF	Citations
1405	Schottky Barrier Photovoltaic Diodes on Doped Amorphous Silicon. , 1978, , 223-230.		1
1406	A Model for Amorphous Silicon Solar Cells. , 1978, , 216-222.		2
1408	Metal-Insulator-Semiconductor Solar Cells Using Amorphous Si:F:H Alloys. , 1991, , 211-213.		0
1409	Studies on ITO/Si Junctions Prepared by Spray Pyrolysis Technique. , 1991, , 264-278.		0
1410	OPEN CIRCUIT VOLTAGE OF SnO2 OR ITO-nSi SOLAR CELL. , 1992, , 27-31.		0
1411	Optical characterization of the electrical properties of processed GaAs. , 1993, , 143-152.		0
1412	Chemicurrents in Sensors. , 0, , 920-929.		0
1413	OPTICAL, ELECTRICAL AND PHOTOELECTRICAL PROPERTIES OF QUERCETIN-CO(II) COMPLEX/N-SI ORGANIC-INORGANIC HYBRID DEVICE. Middle East Journal of Science, 2015, 1, 15-27.	0.1	0
1414	Sustainable Design of Photovoltaics. , 2017, , 416-493.		0
1415	Sustainable Design of Photovoltaics. Advances in Chemical and Materials Engineering Book Series, 2017, , 412-489.	0.2	2
1416	The Analysis of Inhomogeneous Barrier Height in In/SnTe/Si/Ag Diode. Journal of Polytechnic, 0, , .	0.4	0
1417	Schottky Yapılar Üzerine İnceleme ve Analiz Çalışması. Journal of Polytechnic, 0, , .	0.4	0
1418	The current–voltage and capacitance–voltage characterization of the Au/Methylene Blue/n-GaAs organic-modified Schottky diodes. Anadolu University Journal of Sciences & Technology, 0, , 1-1.	0.2	0
1419	Investigation of the Voltage Dependent Surface States and Their Relaxation Time of the Al/CdZnO/p-Si (MIS) Structure Via Admittance Method. Journal of the Institute of Science and Technology, 0, , 1359-1366.	0.3	0
1420	Near-Field Electroluminescent Refrigeration System Consisting of Two Graphene Schottky Diodes. Journal of Heat Transfer, 2020, 142, .	1.2	3
1421	Investigation of Electrical Characteristics of Yb/p-Si Schottky Diodes. Journal of the Institute of Science and Technology, 0, , 1385-1394.	0.3	0
1422	Probing Interface Trapping Characteristics of Au/Ĵ²-Ga2O3 Schottky Barrier Diode on Si (100). IEEE Transactions on Device and Materials Reliability, 2021, , 1-1.	1.5	1

#	Article	IF	CITATIONS
1423	The Effect of Measurement Frequency on Dielectric Characteristics in Al/P-Si Structures with Interfacial Native Oxide Layer. Journal of the Institute of Science and Technology, 2020, 10, 91-100.	0.3	3
1424	A NEW APPROXIMATION: FROM BARRIER LOWERING TO INTERFACE STATE DENSITY. Surface Review and Letters, 0, , .	0.5	0
1425	Optimal identification of Be-doped Al0.29Ga0.71As Schottky diode parameters using Dragonfly Algorithm: A thermal effect study. Superlattices and Microstructures, 2021, 160, 107085.	1.4	3
1426	Photoelectric effect on an Al/SiO2/p-Si Schottky diode structure. Materials Research Express, 2020, 7, 105902.	0.8	8
1427	Two Dimensional Modeling of Au/n-GaN Schottky Device. Journal of the Institute of Science and Technology, 0, , 1674-1682.	0.3	0
1428	Passivating contacts for high-efficiency silicon-based solar cells: From single-junction to tandem architecture. Nano Energy, 2022, 92, 106712.	8.2	30
1429	Atomic-scale fatigue mechanism of ferroelectric tunnel junctions. Science Advances, 2021, 7, eabh2716.	4.7	25
1430	Negative series resistance and photo-response properties of Au/PPY-MWCNTs composite/TiO ₂ /Al ₂ O ₃ /n-Si/Al photodiode. Materials Research Express, 2022, 9, 016301.	0.8	3
1431	Influence of tin oxide (SnO2) interlayer on the electrical and reverse current conduction mechanism of Au/n-InP Schottky junction and its microstructural properties. Thin Solid Films, 2021, 740, 139001.	0.8	10
1432	Latest advance on seamless metal-semiconductor contact with ultralow Schottky barrier in 2D-material-based devices. Nano Today, 2022, 42, 101372.	6.2	21
1433	Optoelectrical Properties of NilnZnO (NIZO) Thin Films. Journal of Solar Energy Research Updates, 0, 6,	0.0	0
1434	Ultraâ€Sensitive Cubicâ€ITO/Silicon Photodiode via Interface Engineering of Native SiO <i>_x</i> and Latticeâ€Strainâ€Assisted Atomic Oxidation. Advanced Functional Materials, 2022, 32, .	7.8	6
1435	Effect of TiO2 Thin Film with Different Dopants in Bringing Au-Metal into a Contact with n-Si. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1067-1077.	1.9	5
1436	High-performance photodetector based on an interface engineering-assisted graphene/silicon Schottky junction. Microsystems and Nanoengineering, 2022, 8, 9.	3.4	30
1437	Utilizing zinc oxide nanorods/polyaniline heterojunction as a flexible self-powered ultraviolet photodetector. Optical Materials, 2022, 123, 111902.	1.7	7
1438	Characterizing the Geometry and Quantifying the Impact of Nanoscopic Electrocatalyst/Semiconductor Interfaces under Solar Water Splitting Conditions. Advanced Energy Materials, 2022, 12, 2103798.	10.2	9
1439	Temperature measurement with photodiodes: Application to laser diode temperature monitoring. Sensors and Actuators A: Physical, 2022, 337, 113441.	2.0	1
1440	Silicon heterojunction solar cells: Techno-economic assessment and opportunities. Joule, 2022, 6, 514-542.	11.7	42

#	Article	IF	CITATIONS
1441	Utilizing trapped charge at bilayer 2D MoS ₂ /SiO ₂ interface for memory applications. Nanotechnology, 2022, 33, 275201.	1.3	3
1442	Electrical characteristics of Al/(GO:PTCDA)/p-type Si structure under dark and light illumination: photovoltaic properties at 40 mW cmâ^2. Journal of Materials Science: Materials in Electronics, 2022, 33, 10800-10813.	1.1	5
1443	Photodiode performance and infrared light sensing capabilities of quaternary Cu2ZnSnS4 chalcogenide. Surfaces and Interfaces, 2022, 29, 101802.	1.5	8
1444	A cheap self-powered UV-photodetector based on layer-by-layer arrangement of polyaniline and ZnO. Polymer, 2022, 245, 124699.	1.8	6
1445	Analysis of l–V-T characteristics of Be-doped AlGaAs Schottky diodes grown on (100) GaAs substrates by molecular beam epitaxy. Microelectronics Journal, 2022, 122, 105409.	1.1	9
1446	A comparison of Au/n-Si Schottky diodes (SDs) with/without a nanographite (NG) interfacial layer by considering interlayer, surface states (N _{ss}) and series resistance (R _s) effects. Physica Scripta, 2022, 97, 055811.	1.2	17
1447	The electrical characteristic of an MIS structure with biocompatible minerals doped (Brushite+Monetite: PVC) interface layer. Microelectronic Engineering, 2022, 258, 111768.	1.1	19
1448	The phthalocyanine blue-green pigments devices intended for optical filters. Optik, 2022, 258, 168808.	1.4	9
1449	Role of a thin interfacial oxide layer and optimized electrodes in improving the design of a Graphene/n-Si MSM photodetector. Superlattices and Microstructures, 2022, 164, 107121.	1.4	3
1450	Comparison of the electrical and impedance properties of Au/(ZnOMn:PVP)/n-Si (MPS) type Schottky-diodes (SDs) before and after gamma-irradiation. Physica Scripta, 2021, 96, 125881.	1.2	20
1451	Comparison of capacitance-frequency and current-voltage characteristics of Al/CdS-PVP/p-Si and Al/p-Si structures. Physica B: Condensed Matter, 2022, 640, 413836.	1.3	6
1452	Negative Series Resistance (Rs) and Real Part of Impedance (Z'), and Positive and Negative Imaginary Part of Impedance (Z'') at a High Frequency of Au/CNTS/n-Si/Al Structure. ECS Journal of Solid State Science and Technology, 0, , .	0.9	0
1453	EFFECT OF DOPING THIOUREA IN CdO THIN FILMS FOR ELECTRONIC APPLICATIONS. Surface Review and Letters, 2022, 29, .	0.5	0
1454	Analysis of the temperature dependent electrical parameters of the heterojunction obtained with Au nanoparticles decorated perovskite strontium titanate nanocubes. Journal of Alloys and Compounds, 2022, 914, 165140.	2.8	5
1455	Dielectric properties and negative-capacitance/dielectric in Au/n-Si structures with PVC and (PVC:Sm2O3) interlayer. Materials Science in Semiconductor Processing, 2022, 147, 106754.	1.9	13
1456	Synthesis characterization of SnO2 nanofibers (NFs) and application of high-performing photodetectors based on SnO2 NFs/n-Si heterostructure. Sensors and Actuators A: Physical, 2022, 342, 113631.	2.0	10
1457	Progressive and Stable Synaptic Plasticity with Femtojoule Energy Consumption by the Interface Engineering of a Metal/Ferroelectric/Semiconductor. Advanced Science, 2022, 9, .	5.6	7
1458	Ti/ p-GaN Schottky Diyotunun Elektriksel Parametrelerinin İncelenmesi. Journal of the Institute of Science and Technology, 0, , 752-760.	0.3	0

#	Article	IF	CITATIONS
1459	On the Negative Capacitance of the Au/ZnO/n-GaAs Structures in the Capacitance–Voltage Plots at the Accumulation Zone for High Frequencies. Journal of Electronic Materials, 2022, 51, 4437-4445.	1.0	1
1460	Morphological and electrical properties of Ag/p-type indium phosphide MIS structures with malachite green organic dyes. , 2022, 18, 421-430.		Ο
1461	The electrical characteristics and the interface state densities of Al/p-Si structures with and without GO insulator layer Current Chinese Science, 2022, 02, .	0.2	0
1462	Physical mechanisms of γ-ray surface treatment influence on the characteristics of close AuNi/n-n ⁺ GaN Schottky contacts. Semiconductor Science and Technology, 0, , .	1.0	0
1463	Dark and illuminated electrical characteristics of Schottky device with Zn-complex interface layer. Journal of Materials Science: Materials in Electronics, 2022, 33, 18039-18053.	1.1	7
1464	The examination of the electrical properties of Al/Mg2Si/p-Si Schottky diodes with an ecofriendly interfacial layer depending on temperature and frequency. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 144, 115380.	1.3	2
1465	Structural role of double layer amphoteric oxides forms on electrical conductivity: PbO/zinc oxide semiconductor. Physica Scripta, 2022, 97, 095803.	1.2	3
1466	Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity. Science China Materials, 2023, 66, 193-201.	3.5	13
1467	Investigation of Diode Parameters of Photoconductive and Photovoltaic p-Type Si/Ge-Doped WOx Heterojunction. Journal of Electronic Materials, 2022, 51, 6397-6409.	1.0	7
1468	A review of metal–semiconductor contacts for β-Ga ₂ O ₃ . Journal Physics D: Applied Physics, 2022, 55, 463002.	1.3	10
1469	Temperature dependence of electrical characteristics and interface state densities of Au/n-type Si structures with SnS doped PVC interface. Physica Scripta, 2022, 97, 095816.	1.2	16
1470	On-Substrate Grown MAPbBr ₃ Single Crystal Diodes for Large-Area and Low-Dark-Current X-Ray Detection. IEEE Transactions on Electron Devices, 2022, 69, 5035-5040.	1.6	1
1471	Significant enhancement in photosensitivity, responsivity, detectivity and quantum efficiency of Co3O4 nanostructured thin film-based photodetectors through Mo doping developed by spray pyrolysis method. Surfaces and Interfaces, 2022, 34, 102366.	1.5	9
1472	ALD growth of ZnO on GaN: Schottky barrier height engineering using ZnO interlayer. Materials Today Communications, 2022, 33, 104434.	0.9	1
1473	Recent advancements in poly-Si/SiO _{<i>x</i>} passivating contacts for high-efficiency silicon solar cells: technology review and perspectives. Journal of Materials Chemistry A, 2022, 10, 20147-20173.	5.2	11
1474	Improved-Performance Diamond Schottky Barrier Diode With Tin Oxide Interlayer. IEEE Transactions on Electron Devices, 2022, 69, 6260-6264.	1.6	2
1475	Exploration of current–voltage (l–V) behaviour of Au/SnO2/n-type InP heterojunction in the temperature range of 200–400ÂK. Indian Journal of Physics, 0, , .	0.9	0
1476	A comparison electric-dielectric features of Al/p-Si (MS) and Al/ (Al2O3:PVP)/p-Si (MPS) structures using voltage–current (V–I) and frequency–impedance (f–Z) measurements. Journal of Materials Science: Materials in Electronics, 2022, 33, 21963-21975.	1.1	12

#	Article	IF	CITATIONS
1477	Optical and Electrical Characterization of a ZnO/Coronene-Based Hybrid Heterojunction Photodiode. Journal of Electronic Materials, 2022, 51, 6846-6857.	1.0	8
1478	Highly Homogeneous 2D/3D Heterojunction Diodes by Pulsed Laser Deposition of MoS ₂ on Ion Implantation Doped 4Hâ€SiC. Advanced Materials Interfaces, 2023, 10, .	1.9	11
1479	Microstructural properties of SiC thin film deposited by RF sputtering technique and its role on the barrier parameters of n-InP/Pd and n-GaP/Pd junctions as an interlayer. Physica B: Condensed Matter, 2022, 647, 414364.	1.3	2
1480	Influence of a Strong Magnetic Field on the AC Transport Properties of Fe/SiO2/n-Si MIS Structure. Journal of Experimental and Theoretical Physics, 2022, 135, 377-382.	0.2	1
1481	Inhomogeneous heterojunction performance of Zr/diamond Schottky diode with Gaussian distribution of barrier heights for high sensitivity temperature sensor. Sensors and Actuators A: Physical, 2022, 347, 113906.	2.0	7
1482	Atomic Layer Deposited Bilayers and the Influence on Metal-Insulator-Semiconductor Schottky Barriers. , 2022, , .		1
1483	Spectroscopic performance of Ni/4H-SiC and Ti/4H-SiC Schottky barrier diode alpha particle detectors. Journal of Instrumentation, 2022, 17, P11014.	0.5	0
1484	Investigation of photon-induced effects on some diode parameters and negative capacitance of the Schottky structure with Zn-doped organic polymer (PVA) interface. Physica Scripta, 2023, 98, 015804.	1.2	4
1485	The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface. Synthetic Metals, 2023, 292, 117243.	2.1	19
1486	Interface engineering of p-type quaternary metal oxide semiconductor interlayer-embedded β-Ga2O3 Schottky barrier diode. Materials Today Physics, 2023, 30, 100932.	2.9	3
1487	Double Gaussian Distribution of Inhomogeneous Barrier Height in (Ni-Au)/Al0.25Ga0.75N/GaN. Brazilian Journal of Physics, 2023, 53, .	0.7	0
1488	Effect of thermal annealing on the electronic parameters of al/p-si/cu double Schottky barrier heights. Physica B: Condensed Matter, 2022, , 414566.	1.3	1
1489	Işık Altında Elektrodepozisyon Yöntemi ile Üretilmiş GaxOyNz/p-Si Diyot Yapısının Elektriksel Karakterizasyonu. Journal of the Institute of Science and Technology, 0, , 2129-2139.	0.3	0
1490	Production of spin coated chromium oxide (CrO ₃) thin layers and application in the Al/p-Si metal semiconductor structures. Physica Scripta, 2023, 98, 015837.	1.2	2
1491	Dark conduction mechanisms of PTQBDT based heterojunction diode. Physica Scripta, 2023, 98, 015819.	1.2	3
1492	Tunable rapid electron transport in titanium oxide thin films. Applied Physics Letters, 2023, 122, 011601.	1.5	0
1493	Variation of electrical and dielectric characteristics of Schottky diodes (SDs) depending on the existence of PVC and carbon-nanotube (CNT)-doped PVC interlayers. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
1494	Electrical Characteristics of Metal–Insulator Diamond Semiconductor Schottky Barrier Diode Grown on Heteroepitaxial Diamond Substrate. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	3

#	Article	IF	CITATIONS
1495	Effect of rapid thermal annealing on performances of vertical boron-doped diamond Schottky diode with LaB6 interlayer. Diamond and Related Materials, 2023, 132, 109678.	1.8	1
1496	Investigation of electrical characterization of Al/HfO2/p-Si structures in wide temperature range. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	3
1497	Effect of perylenetetracarboxylic dianhydride on the main electrical properties and interface states of Al/p-Si structures. Physica B: Condensed Matter, 2023, 657, 414790.	1.3	3
1498	Spectroscopic analysis and device application of molecular organic dye layer in the Al/p-Si MIS contacts. Journal of Physics and Chemistry of Solids, 2023, 178, 111360.	1.9	0
1500	Improvement of electric and photoelectric properties of the Al/n-ZnO/p-Si/Al photodiodes by green synthesis method using chamomille flower extract. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
1501	Highâ€Speed Graphene–Silicon–Graphene Waveguide PDs with High Photoâ€toâ€Darkâ€Current Ratio and Large Linear Dynamic Range. Laser and Photonics Reviews, 2023, 17, .	4.4	6
1502	Electrical properties of Al/p-Si diode with AlN interface layer under temperature and illumination stimuli for sensing applications. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	2
1503	The photoresponse behavior of a Schottky structure with a transition metal oxide-doped organic polymer (RuO2:PVC) interface. Polymer Bulletin, 2024, 81, 403-422.	1.7	3
1504	A Study on the Wide Frequency Range Electrical Variables in the Al/Coumarin–PVA/p-Si Diodes at Room Temperature. Gazi University Journal of Science Part A:engineering and Innovation, 2023, 10, 53-61.	0.2	0
1505	A Comparison Electronic Specifications of the MS & MPS type Schottky Diodes (SDs) via Utilizing Voltage-Current (V-I) Characteristics. Gazi University Journal of Science Part A:engineering and Innovation, 2023, 10, 62-69.	0.2	1
1506	Analysis of the chemical states and microstructural, electrical, and carrier transport properties of the Ni/HfO2/Ga2O3/n-GaN MOS junction. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
1507	On the wide range frequency and voltage dependence of electrical features and density of surface states of the Al/(Cu:DLC)/p-Si/Au Schottky diodes (SDs). Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	5
1508	The frequency dependent electrical properties of MIS structures with Mn-doped complexed interfacial layer. Physica Scripta, 2023, 98, 055926.	1.2	0
1509	Optoelectronic Properties of Triphenylamine Organic Thin Film Layered Al/p-Si /TPA/Al Heterojunction for Photodiode Application. ECS Journal of Solid State Science and Technology, 2023, 12, 045001.	0.9	0
1510	Energy harvesting from Radio waves using few-layer 2D Galena (Galenene). Nanoscale, 0, , .	2.8	4
1514	Nanocrystalline Heterojunction Device Fabrication and Characterization using CdSe. , 2023, ,		0
1557	The Structural and Electrical Characterization of Europium Sulfide Thin Films Prepared with E-Beam Evaporation. , 0, , .		0