Reducing Land Subsidence in the Wilmington Oil Field

Water Resources Research 6, 1505-1514

DOI: 10.1029/wr006i005p01505

Citation Report

#	Article	IF	CITATIONS
1	Ground water. Eos, 1971, 52, IUGG265.	0.1	0
2	Compaction and subsidence issues within the petroleum industry: From wilmington to ekofisk and beyond. Physics and Chemistry of the Earth, 2001, 26, 3-14.	0.6	124
3	Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model. Geophysical Journal International, 2012, 189, 898-910.	2.4	60
4	Geomechanics of subsurface water withdrawal and injection. Water Resources Research, 2015, 51, 3922-3955.	4.2	103
5	Land uplift induced by injection: a feasible method to evaluate the security of CO2 capture and sequestration projects. Environmental Earth Sciences, 2018, 77, 1.	2.7	3
6	Finite Element Modeling of Production-Induced Compaction and Subsidence in a Reservoir along Coastal Louisiana. Journal of Coastal Research, 2019, 35, 600.	0.3	3
7	Subsidence associated with oil extraction, measured from time series analysis of Sentinel-1 data: case study of the Patos-Marinza oil field, Albania. Solid Earth, 2020, 11, 363-378.	2.8	13
8	Maintaining the Integrity of Storage Sites. SpringerBriefs in Petroleum Geoscience & Engineering, 2017, , 49-58.	0.3	O
10	Reserves prediction and deliverability. , 2022, , 609-736.		0