Heat Transfer and Friction in Turbulent Pipe Flow with

Advances in Heat Transfer 6, 503-564

DOI: 10.1016/s0065-2717(08)70153-9

Citation Report

#	Article	IF	CITATIONS
1	A critical evaluation of analytical solutions and reynolds analogy equations for turbulent heat and mass transfer in smooth tubes. Heat and Mass Transfer, 1971, 4, 197-204.	0.2	23
2	The influence of property variation on forced convection heat transfer to liquids. International Journal of Heat and Mass Transfer, 1972, 15, 1515-1536.	2.5	21
4	A convenient correlation for heat transfer to constant and variable property fluids in turbulent pipe flow. International Journal of Heat and Mass Transfer, 1975, 18, 677-683.	2.5	230
6	The form of the extended Reynolds analogy for rough surfaces. Letters in Heat and Mass Transfer, 1978, 5, 99-109.	0.3	5
7	Gleichungen zur Berechnung des WÄrmeļbergangs in querdurchstrĶmten einzelnen Rohrreihen und Rohrbļndeln. Forschung Im Ingenieurwesen/Engineering Research, 1978, 44, 15-25.	1.0	35
8	Experiments on heat transfer and pressure drop for a pair of colinear, interrupted plates aligned with the flow. International Journal of Heat and Mass Transfer, 1978, 21, 1069-1080.	2.5	27
9	Second law analysis in heat transfer. Energy, 1980, 5, 720-732.	4. 5	575
10	Comparison of heat transfer fluids for use in solar thermal power stations. Electric Power Systems Research, 1980, 3, 139-150.	2.1	25
11	Evaluation of heat transfer augmentation techniques based on their impact on entropy generation. Letters in Heat and Mass Transfer, 1980, 7, 97-106.	0.3	67
12	Heat transfer to variable property fluids in turbulent pipe flow. International Journal of Heat and Fluid Flow, 1980, 2, 121-129.	1.1	4
13	A new theoretical formula for turbulent heat and mass transfer with gases or liquids in tube flow. Canadian Journal of Chemical Engineering, 1980, 58, 443-447.	0.9	18
14	Forced-Convection Heat Transfer. , 1981, , 38-66.		O
15	The Influence of Improved Physical Property Data on Calculated Heat Transfer Coefficients. Heat Transfer Engineering, 1981, 2, 27-39.	1.2	14
16	Enhancement of heat transfer by the use of mixtures. Thermochimica Acta, 1982, 54, 27-34.	1.2	1
17	An update of intube forced convection heat transfer coefficients of water. Desalination, 1983, 44, 109-119.	4.0	3
18	Simple mixing model for pressurized thermal shock applications. Nuclear Engineering and Design, 1983, 74, 193-197.	0.8	3
19	An Empirical Mixing Model for Pressurized Thermal Shock Applications. Nuclear Technology, 1985, 69, 94-99.	0.7	1
20	An improved MSF condenser design. Desalination, 1985, 55, 169-183.	4.0	3

#	ARTICLE	IF	CITATIONS
21	The surface rejuvenation theory of wall turbulence for momentum, heat and mass transfer: Application to moderate and high schmidt(Prandtl) fluids. AICHE Journal, 1985, 31, 1614-1620.	1.8	12
22	HEAT TRANSFER TO HORIZONTAL TUBES IN A PILOT-SCALE FLUIDIZED-BED COMBUSTOR BURNING LOW-RANK COALS. Chemical Engineering Communications, 1985, 39, 43-68.	1.5	6
23	Convection heat transfer from discrete heat sources in a rectangular channel. International Journal of Heat and Mass Transfer, 1986, 29, 1051-1058.	2.5	133
24	Thermal-hydraulic constraints on water-cooled research reactor performance. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 249, 53-57.	0.7	3
25	Electric currents generated by turbulent flows of liquid hydrocarbons in smooth pipes: Experiment vs. theory. Chemical Engineering Science, 1986, 41, 3183-3189.	1.9	15
26	TURBULENT VARIABLE PROPERTY GAS FLOWS. Chemical Engineering Communications, 1986, 42, 315-332.	1.5	1
27	Turbulent forced convective heat transfer inside a locally heated tube. Numerical analysis considering heat conduction within the tube wall 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1987, 53, 2528-2536.	0.2	2
28	NUMERICAL AND EXPERIMENTAL STUDIES OF TURBULENT HEAT TRANSFER IN A TUBE. Numerical Heat Transfer, 1987, 11, 461-476.	0.5	5
29	TURBULENT VARIABLE PROPERTY LIQUID FLOWS. Chemical Engineering Communications, 1987, 54, 211-223.	1.5	0
30	A high-performance thermal module for computer packaging. Journal of Electronic Materials, 1987, 16, 357-364.	1.0	29
31	Heat transfer and friction coefficients for tomato puree. International Journal of Heat and Mass Transfer, 1988, 31, 1913-1921.	2.5	2
32	Internal forced convection to low-Prandtl-number gas mixtures. International Journal of Heat and Mass Transfer, 1988, 31, 13-25.	2.5	45
33	Heat transfer from turbulent water flow in a tube to a cooled isothermal wall. International Journal of Heat and Fluid Flow, 1988, 9, 202-207.	1.1	1
34	Analytical study of He II flow characteristics in the SHOOT transfer line. Cryogenics, 1988, 28, 81-85.	0.9	10
35	Convection., 1989,, 70-100.		0
36	Numerical modeling of Helium-II in forced flow conditions. Journal of Thermophysics and Heat Transfer, 1989, 3, 203-212.	0.9	10
37	A simple method for obtaining the fully developed heat transfer coefficient in turbulent pipe flow. Heat and Mass Transfer, 1989, 24, 349-352.	0.2	3
38	The role of a single large axial interval on the numerical determination of turbulent forced convection in a tube. International Communications in Heat and Mass Transfer, 1989, 16, 645-654.	2.9	1

#	Article	IF	Citations
39	Computation of single- and two-phase heat transfer rates suitable for water-cooled tubes and subchannels. Nuclear Engineering and Design, 1989, 114, 61-77.	0.8	12
40	Numerical Prediction of Turbulent Pipe Flow Heat Transfe for Various Prandtl Number Fluids with the Improved k-ε Turbulence Model. The JSME International Journal, Series 2: Fluids Engineering, Heat Transfer, Power, Combustionrmophysical Properties, 1989, 32, 613-622.	0.1	22
41	Rate correlation for condensation of pure vapor on turbulent, subcooled liquid. International Journal of Heat and Mass Transfer, 1990, 33, 2001-2018.	2.5	16
42	TURBULENT HEAT TRANSFER IN A RECTANGULAR INTERNAL LOOP REACTOR WITH RECYCLING OF FLUID AT BOTH ENDS. Chemical Engineering Communications, 1990, 95, 153-168.	1.5	0
43	Thermal-Hydraulic Systems Safety Analysis to Support the Design Process for the Advanced Neutron Source Reactor. Nuclear Technology, 1991, 95, 228-246.	0.7	1
44	Turbulent momentum and heat transfer in channel gas flow at high heat loads: A review. Experimental Thermal and Fluid Science, 1991, 4, 375-388.	1.5	1
45	Heat transfer from turbulent air flowing through a cooled isothermal tube. Applied Energy, 1991, 38, 143-156.	5.1	0
46	Heat Transfer under Supercritical Pressures. Advances in Heat Transfer, 1991, 21, 1-53.	0.4	98
47	Development of Components for High Heat Flux Cooling with Supercritical Hydrogen. , 0, , .		4
48	Thermal Analysis of a Shower-Head Burner. , 1992, , .		0
49	Entrance region heat transfer in a channel downstream of an impinging jet array. International Journal of Heat and Mass Transfer, 1992, 35, 3363-3374.	2.5	2
50	Heat transfer and pressure drop in large pitch spirally indented tubes. International Journal of Heat and Mass Transfer, 1993, 36, 565-576.	2.5	14
51	Forced-convection heat transfer in the entrance region of pipes. International Journal of Heat and Mass Transfer, 1993, 36, 3343-3349.	2.5	7
52	Review of mass (heat) â€" transfer measurements using naphthalene sublimation. Experimental Thermal and Fluid Science, 1993, 7, 125.	1.5	4
53	Downtime and early burntime thermal response of the fusion power core of a pulsed fusion reactor. , $0, , .$		0
54	Generalized Correlation for Condensation on Vertical Fluted Surfaces. Heat Transfer Engineering, 1994, 15, 19-23.	1.2	3
55	Forced convection heat transfer with phase-change-material slurries: Turbulent flow in a circular tube. International Journal of Heat and Mass Transfer, 1994, 37, 207-215.	2.5	95
56	Conceptual Design Station Blackout and Loss-of-Flow Accident Analyses for the Advanced Neutron Source Reactor. Nuclear Technology, 1994, 106, 31-45.	0.7	4

#	Article	IF	CITATIONS
57	On Heat Transfer Augmentation Using Dilute Gas–Solid Suspensions. Journal of Heat Transfer, 1995, 117, 1091-1094.	1.2	1
58	Local Friction and Heat Transfer Behavior of Water in a Turbulent Pipe Flow With a Large Heat Flux at the Wall. Journal of Heat Transfer, 1995, 117, 283-288.	1.2	14
59	Computation of high-temperature near-wall heat transfer using an enthalpy balancing scheme. International Journal of Heat and Mass Transfer, 1995, 38, 55-64.	2.5	2
60	Generalized integral forms for friction, heat and mass transfer coefficients. International Journal of Heat and Mass Transfer, 1995, 38, 3103-3108.	2.5	3
61	Boiling curve correlation for subcooled flow boiling. International Journal of Heat and Mass Transfer, 1995, 38, 758-760.	2.5	13
62	A review of mass transfer measurements using naphthalene sublimation. Experimental Thermal and Fluid Science, 1995, 10, 416-434.	1.5	389
63	Thermal performance of solar air heaters: Mathematical model and solution procedure. Solar Energy, 1995, 55, 93-109.	2.9	196
64	A simple model to evaluate direct contact heat transfer and flow characteristics in annular two-phase flow. International Journal of Heat and Fluid Flow, 1995, 16, 272-279.	1.1	10
65	Heat Transfer and Pressure Drop Characteristics of Spirally Fluted Annuli: Part II—Heat Transfer. Journal of Heat Transfer, 1995, 117, 61-68.	1.2	38
66	An economical, high temperature, impedance heat exchanger. , 0, , .		1
67	Transition Boiling Curves in Saturated Pool Boiling From Horizontal Cylinders. Journal of Heat Transfer, 1996, 118, 654-661.	1.2	13
68	Local Subcooled Flow-Boiling Model Development. Fusion Science and Technology, 1996, 29, 459-467.	0.6	4
69	The turbulent Prandtl number in the near-wall region for low-Prandtl-number gas mixtures. International Journal of Heat and Mass Transfer, 1996, 39, 1287-1295.	2.5	29
70	Transient characteristics of He II forced flow heated at the center of a pipe line. Cryogenics, 1996, 36, 219-224.	0.9	18
71	Buoyancy and Property Variation Effects in Turbulent Mixed Convection of Water in Vertical Tubes. Journal of Heat Transfer, 1996, 118, 381-387.	1.2	29
72	Effects of Partial Inlet Blockages on High-Velocity Flow Through a Thin Rectangular Duct: Experimental and Analytical Results. Journal of Heat Transfer, 1997, 119, 440-450.	1.2	4
73	Stacked planar Joule-Thomson cryocooler. , 1997, , .		1
74	Pressure Drop and Heat Transfer for Flow-Boiling of Water in Small-Diameter Tubes 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1997, 63, 3706-3714.	0.2	0

#	Article	IF	CITATIONS
75	Suppression of Flow Boiling Nucleation. Journal of Heat Transfer, 1997, 119, 517-524.	1.2	14
76	Critique of the Classical Algebraic Analogies between Heat, Mass, and Momentum Transfer. Industrial & Lamp; Engineering Chemistry Research, 1997, 36, 3866-3878.	1.8	31
77	An economical, high-temperature, impedance heat exchanger. IEEE Transactions on Industry Applications, 1997, 33, 1300-1306.	3.3	4
78	Thermal Flow Analysis of HFC-134a MFC Condenser for Automotive Air-Conditioner., 0,,.		2
79	Heat transfer and heat transfer fouling in Kraft black liquor evaporators. Experimental Thermal and Fluid Science, 1997, 14, 425-437.	1.5	27
80	Numerical study of flow and heat transfer of superfluid helium in capillary channels. Cryogenics, 1997, 37, 829-835.	0.9	7
81	Effect of variable fluid properties on impingement heat transfer with submerged circular jets. International Journal of Heat and Mass Transfer, 1998, 41, 1363-1366.	2.5	2
82	The correction to take account of variable property effects on turbulent forced convection to water in a pipe. International Journal of Heat and Mass Transfer, 1998, 41, 665-669.	2.5	13
83	Essentially exact characteristics of turbulent convection in a round tube. Chemical Engineering Journal, 1998, 71, 163-173.	6.6	20
84	Experimental and theoretical results on upward annular flows in thermal non-equilibrium. Experimental Thermal and Fluid Science, 1998, 16, 220-229.	1.5	4
85	A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes. Journal of Heat Transfer, 1998, 120, 410-417.	1.2	213
86	Heat Transfer Enhancement in Heat Exchangers. Advances in Heat Transfer, 1998, 31, 159-332.	0.4	13
87	Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling. Journal of Heat Transfer, 1998, 120, 395-401.	1.2	202
88	Heat Transfer and Pressure Drop in Pin-Fin Trapezoidal Ducts. , 1998, , .		9
89	A Systems Engineering Approach to Engine Cooling Design. , 0, , .		32
90	Coupling Between Heat and Momentum Transfer Mechanisms for Drag-Reducing Polymer and Surfactant Solutions. Journal of Heat Transfer, 1999, 121, 796-802.	1.2	41
91	Heat Transfer and Pressure Drop in Pin-Fin Trapezoidal Ducts. Journal of Turbomachinery, 1999, 121, 264-271.	0.9	39
92	The conceptual analysis of turbulent flow and convection. Chemical Engineering and Processing: Process Intensification, 1999, 38, 427-439.	1.8	7

#	ARTICLE	IF	CITATIONS
93	Technical Note Experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes. International Journal of Heat and Mass Transfer, 1999, 42, 1343-1351.	2.5	98
94	Pilot study to investigate novel experimental and theoretical fire-event modelling techniques. , 1999 , , .		5
95	Local Heat/Mass Transfer Measurements in a Rectangular Duct With Discrete Ribs. , 1999, , .		14
96	Lateral-Flow Effect on Endwall Heat Transfer and Pressure Drop in a Pin-Fin Trapezoidal Duct of Various Pin Shapes. , 2000, , .		11
97	Fluid mechanics in terms of eigenparameters. Chemical Engineering Science, 2000, 55, 1179-1188.	1.9	1
98	Liquid cooling for a multichip module using Fluorinert liquid and paraffin slurry. International Journal of Heat and Mass Transfer, 2000, 43, 209-218.	2.5	21
99	Prediction of heat and mass transfer for fully developed turbulent fluid flow through tubes. International Journal of Heat and Mass Transfer, 2000, 43, 1399-1408.	2.5	56
100	Local collapse of gas pipelines under sleeve repairs. International Journal of Pressure Vessels and Piping, 2000, 77, 555-566.	1.2	9
101	Experimental study on the application of paraffin slurry to high density electronic package cooling. Heat and Mass Transfer, 2000, 36, 29-36.	1.2	9
102	Heat Transfer and Pressure Drop of Laminar Flow in Horizontal Tubes With/Without Longitudinal Inserts. Journal of Heat Transfer, 2000, 122, 465-475.	1.2	29
103	Local Heat/Mass Transfer Measurements in a Rectangular Duct With Discrete Ribs. Journal of Turbomachinery, 2000, 122, 579-586.	0.9	82
104	Effect of Outflow Orientation on Heat Transfer and Pressure Drop in a Triangular Duct With an Array of Tangential Jets. Journal of Heat Transfer, 2000, 122, 669-678.	1.2	11
105	The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes. Journal of Heat Transfer, 2000, 122, 278-286.	1.2	107
106	Predicting heat extraction due to boiling in the cooling channels during the pressure die casting process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2000, 214, 465-482.	1.1	7
107	Heat removal of inâ€tube viscous flows to air with the assistance of arrays of plate fins Part I: theoretical aspects involving 3â€D, 2â€D and 1â€D models. International Journal of Numerical Methods for Heat and Fluid Flow, 2000, 10, 334-354.	1.6	4
108	Thermal Flow Study on the Integrated All Aluminum Radiator and Condenser. , 0, , .		0
109	Critical Heat Flux and Boiling Heat Transfer to Water in a 3-mm-Diameter Horizontal Tube. , 2001, , .		4
110	Development of a microchannel evaporator model for a CO2 air-conditioning system. Energy, 2001, 26, 931-948.	4.5	62

#	Article	IF	CITATIONS
111	Heat transfer enhancement in dimpled tubes. Applied Thermal Engineering, 2001, 21, 535-547.	3.0	130
112	Turbulent heat transfer with phase change material suspensions. International Journal of Heat and Mass Transfer, 2001, 44, 2277-2285.	2. 5	42
113	The characteristics of fully developed turbulent convection in a round tube. Chemical Engineering Science, 2001, 56, 1781-1800.	1.9	33
114	Turbulent forced convection in microtubes. International Journal of Heat and Mass Transfer, 2001, 44, 2777-2782.	2.5	70
115	Lateral-Flow Effect on Endwall Heat Transfer and Pressure Drop in a Pin-Fin Trapezoidal Duct of Various Pin Shapes. Journal of Turbomachinery, 2001, 123, 133-139.	0.9	36
116	Investigation of Paraffin Deposition During Multiphase Flow in Pipelines and Wellbores—Part 2: Modeling. Journal of Energy Resources Technology, Transactions of the ASME, 2001, 123, 150-157.	1.4	46
117	Thermal Performance Testing of Industrial Heat Exchangers. Advances in Heat Transfer, 2001, , 1-55.	0.4	1
118	Turbulent flow and convection: The prediction of turbulent flow and convection in a round tube. Advances in Heat Transfer, 2001, 34, 255-361.	0.4	17
119	Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels. Journal of Heat Transfer, 2002, 124, 413-420.	1.2	257
120	Smart, low-cost, pumpless loop for micro-channel electronic cooling using flat and enhanced surfaces., 0, , .		5
121	A Universal Heat Transfer Correlation for Intake and Exhaust Flows in an Spark-Ignition Internal Combustion Engine. , 0, , .		40
122	Prediction of fully developed turbulent convection with minimal explicit empiricism. AICHE Journal, 2002, 48, 927-940.	1.8	30
123	Semi-analytic solution of the two-dimensional turbulent energy equation in round tubes using an analytic velocity profile and its experimental validation. Heat and Mass Transfer, 2002, 39, 81-88.	1.2	1
124	A proposed mechanism for hydrodynamically-controlled onset of significant void in microtubes. International Journal of Heat and Fluid Flow, 2002, 23, 769-775.	1.1	63
125	Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. International Journal of Heat and Mass Transfer, 2002, 45, 4781-4792.	2. 5	166
126	Heat transfer and pressure drop for low Reynolds turbulent flow in helically dimpled tubes. International Journal of Heat and Mass Transfer, 2002, 45, 543-553.	2.5	112
127	Boiling incipience in microchannels. International Journal of Heat and Mass Transfer, 2002, 45, 4599-4606.	2.5	106
128	Calculation of a Core with Fuel Elements Whose Cross Sections Are Cross-Shaped. Atomic Energy, 2003, 95, 449-452.	0.1	0

#	Article	IF	CITATIONS
129	A Modified Model for the Calculation of Fully Developed Heat Transfer and Drag in Tubes under Conditions of Turbulent Flow of Gases with Varying Physical Properties. High Temperature, 2003, 41, 790-800.	0.1	5
130	Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates. Solar Energy, 2003, 75, 317-328.	2.9	94
131	An improved method for analyzing a fin and tube evaporator containing a zeotropic mixture refrigerant with air mal-distribution. International Journal of Refrigeration, 2003, 26, 707-720.	1.8	25
132	Experimental correlation of falling film absorption heat transfer on micro-scale hatched tubes. International Journal of Refrigeration, 2003, 26, 758-763.	1.8	27
133	Heat removal performance of auxiliary cooling system for the high temperature engineering test reactor during scrams. Annals of Nuclear Energy, 2003, 30, 811-830.	0.9	1
134	A mathematical model of thermal performance of a solar air heater with slats. Renewable Energy, 2003, 28, 1597-1615.	4.3	61
135	Microchannel Heat Exchanger Design for Evaporator and Condenser Applications. Advances in Heat Transfer, 2003, 37, 297-429.	0.4	31
136	Smart pumpless loop for micro-channel electronic cooling using flat and enhanced surfaces. IEEE Transactions on Components and Packaging Technologies, 2003, 26, 99-109.	1.4	46
137	Experimental Study of Electrohydrodynamic Induction Pumping of a Dielectric Micro Liquid Film in External Horizontal Condensation Process. Journal of Heat Transfer, 2003, 125, 1096-1105.	1.2	25
139	Frozen Equilibrium and EGR Effects on Radical-Initiated H2 Combustion Kinetics in Low-Compression D.I. Engines Using Pistons with Micro-Chambers. , 2003, , .		13
140	CNG / Methane-Combustion Kinetics (without N2) and Frozen Equilibrium in Radical-Ignition Reduced Compression Ratio D.I. Diesel Engines Using Pistons with Micro-Chambers. , 2004, , .		12
141	Radical Controlled Autoignition at Reduced Compression Ratios in a Hydrogen D.I. Diesel Engine With Piston Micro-Chambers. , 2004, , .		11
142	Local Heat Transfer and Pressure Drop for Finned-Tube Heat Exchangers Using Oval Tubes and Vortex Generators. Journal of Heat Transfer, 2004, 126, 826-835.	1.2	46
143	Single-Side Heated Monoblock, High Heat Flux Removal Using Water Subcooled Turbulent Flow Boiling. Journal of Heat Transfer, 2004, 126, 17-21.	1.2	0
144	Modeling of central domestic water heater for buildings. Applied Thermal Engineering, 2004, 24, 269-279.	3.0	10
145	Determination of heat transfer correlations for plate-fin-and-tube heat exchangers. Heat and Mass Transfer, 2004, 40, 809-822.	1.2	26
146	Flow and heat transfer simulation of injection molding with microstructures. Polymer Engineering and Science, 2004, 44, 1866-1876.	1.5	69
147	The effect of heat transfer additive and surface roughness of micro-scale hatched tubes on absorption performance. International Journal of Refrigeration, 2004, 27, 264-270.	1.8	22

#	Article	IF	CITATIONS
148	In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement. International Journal of Refrigeration, 2004, 27, 736-747.	1.8	359
149	Experimental investigation of various turbulator inserts in gas-heated channels. Experimental Thermal and Fluid Science, 2004, 28, 877-886.	1.5	16
150	Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks. Heat Transfer Engineering, 2004, 25, 15-25.	1.2	99
151	Numerical prediction of turbulent convective heat transfer in mini/micro channels for carbon dioxide at supercritical pressure. International Journal of Heat and Mass Transfer, 2005, 48, 3864-3879.	2.5	33
152	Thermodynamics and heat transfer of ice slurries. International Journal of Refrigeration, 2005, 28, 51-59.	1.8	39
153	Single-phase heat transfer and flow characteristics of micro-fin tubes. Applied Thermal Engineering, 2005, 25, 1657-1669.	3.0	43
154	Modelling of diesel exhaust aerosol during laboratory sampling. Atmospheric Environment, 2005, 39, 1335-1345.	1.9	73
155	Testing of a hot- and cold-wire probe to measure simultaneously the speed and temperature in supercritical CO2 flow. Experiments in Fluids, 2005, 39, 703-711.	1.1	7
156	Structural analysis for the gas-cooled high flux test module of IFMIF. Fusion Engineering and Design, 2005, 75-79, 853-857.	1.0	6
157	Thermal performance of a single-row fin-and-tube heat exchanger. Journal of Thermal Science, 2005, 14, 172-180.	0.9	15
158	Direct numerical simulation of turbulent supercritical flows with heat transfer. Physics of Fluids, 2005, 17, 105104.	1.6	202
159	Effect of wall distance on the prediction of variable property flow with two-equation turbulence models. International Journal of Computational Fluid Dynamics, 2005, 19, 447-455.	0.5	2
160	Detailed Investigation of Heat Flux Measurements Made in a Standard Propane-Air Fire-Certification Burner Compared to Levels Derived From a Low-Temperature Analog Burner. Journal of Engineering for Gas Turbines and Power, 2005, 127, 249-256.	0.5	7
161	Shape Optimization of a Dimpled Channel to Enhance Turbulent Heat Transfer. Numerical Heat Transfer; Part A: Applications, 2005, 48, 901-915.	1.2	56
162	Condensation in minichannels and microchannels. , 2006, , 227-408.		6
163	Structural Analysis with Thermal Effects for Vessels of the Gas-Cooled High-Flux Test Module of IFMIF. Fusion Science and Technology, 2006, 50, 538-545.	0.6	1
164	A Gas Tension Device with Response Times of Minutes. Journal of Atmospheric and Oceanic Technology, 2006, 23, 1539-1558.	0.5	15
165	Assessment of Flow Boiling Heat Transfer Correlations for Application to Mini-Channels. , 2006, , 213.		O

#	Article	IF	CITATIONS
166	Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube. Journal of Supercritical Fluids, 2006, 38, 339-346.	1.6	50
167	Experimental study of dropwise condensation on plasma-ion implanted stainless steel tubes. International Journal of Heat and Mass Transfer, 2006, 49, 5018-5026.	2.5	55
168	Shape optimization of inclined ribs as heat transfer augmentation device. Journal of Thermal Science, 2006, 15, 364-370.	0.9	4
169	Study of Single Phase Flow Heat Transfer and Friction Pressure Drop in a Spiral Internally Ribbed Tube. Chemical Engineering and Technology, 2006, 29, 588-595.	0.9	19
170	Enhanced Heat Transfer Characteristics of Upward Flow Boiling of Kerosene in a Vertical Spirally Internally Ribbed Tube. Chemical Engineering and Technology, 2006, 29, 1233-1241.	0.9	11
171	Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels. Journal of Heat Transfer, 2006, 128, 1050-1059.	1.2	168
172	Comparisons of Mechanical and Chemical Treatments and Nano Technologies for Absorption Applications. HVAC and R Research, 2006, 12, 807-819.	0.9	11
173	Theoretical comparison of intraluminal heating techniques. International Journal of Hyperthermia, 2007, 23, 395-411.	1.1	10
174	Rotational Effects on Pressure Drop in Smooth and Ribbed Two-Pass Ducts. Journal of Thermophysics and Heat Transfer, 2007, 21, 664-667.	0.9	4
175	Effects of a High Porous Material on Heat Transfer and Flow in a Circular Tube. , 2007, , 87.		1
176	Effects of Bleed Flow on Heat/Mass Transfer in a Rotating Rib-Roughened Channel. Journal of Turbomachinery, 2007, 129, 636-642.	0.9	12
177	Recent Advances in High Heat Flux Smooth and Swirl Flow Boiling of Water. Fusion Science and Technology, 2007, 52, 880-884.	0.6	1
178	Development of a Porous-Type Manifold for IFMIF High Flux Test Module. Fusion Science and Technology, 2007, 52, 549-553.	0.6	0
179	Design Optimization of Internal Cooling Passage with V-shaped Ribs. Numerical Heat Transfer; Part A: Applications, 2007, 51, 1103-1118.	1.2	49
180	Evaluation of Surrogate Models in Optimization of Wire-Wrapped Fuel Assembly. Journal of Nuclear Science and Technology, 2007, 44, 819-822.	0.7	11
181	CNG/Methane-Combustion in a Homogeneous-Combustion Radical-Ignition D.I. Diesel Engine. , 2007, , .		10
182	Parametric Study of 2007 Standard Heavy-Duty Diesel Engine Particulate Matter Sampling System. , 2007, , .		0
183	Hydrogen Combustion in a Novel Rotary DI-HCRI Engine with Low Heat Rejection., 2007, , .		1

#	Article	IF	Citations
184	Single-Phase Heat Transfer in Micro-Tubes: A Critical Review., 2007,,.		11
185	Study of a new concept of photovoltaic–thermal hybrid collector. Solar Energy, 2007, 81, 1132-1143.	2.9	131
186	Prediction of Heat Transfer Coefficient Based on Eddy Diffusivity Concept. Chemical Engineering Research and Design, 2007, 85, 455-464.	2.7	16
187	Detailed measurement of heat/mass transfer and pressure drop in a rotating two-pass duct with transverse ribs. Heat and Mass Transfer, 2007, 43, 801-815.	1.2	15
188	Flow field of a triple-walled gas-sampling probe with sub-cooled boiling effect. Flow Measurement and Instrumentation, 2007, 18, 156-165.	1.0	4
189	Direct numerical simulation of turbulent heat transfer in pipe flows: Effect of Prandtl number. International Journal of Heat and Fluid Flow, 2007, 28, 847-861.	1.1	99
190	Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes. Journal of Power Sources, 2008, 185, 1056-1065.	4.0	19
191	Wall-to-bed heat transfer in vertical hydraulic transport and in particulate fluidized beds. International Journal of Heat and Mass Transfer, 2008, 51, 5942-5948.	2.5	9
192	Pressure drop and thermal performance in rotating two-pass ducts with various cross rib arrangements. Heat and Mass Transfer, 2008, 44, 913-919.	1.2	8
193	Early Events in the Precipitation Fouling of Calcium Sulphate Dihydrate under Sensible Heating Conditions. Canadian Journal of Chemical Engineering, 2007, 85, 679-691.	0.9	28
194	Heat transfer characteristics in subcooled flow boiling with hypervapotron. Annals of Nuclear Energy, 2008, 35, 1159-1166.	0.9	17
195	Experimental investigation on heat transfer characteristics in a safety injection nozzle component in PWR. Nuclear Engineering and Design, 2008, 238, 1828-1837.	0.8	7
196	Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes. International Journal of Heat and Mass Transfer, 2008, 51, 6283-6293.	2.5	38
197	Analysis of supercritical CO2 cooling in macro- and micro-channels. International Journal of Refrigeration, 2008, 31, 1301-1316.	1.8	121
198	Effect of Turbulence and Fluid Properties on Forced Convection in Tubes. , 2008, , .		1
199	Multiobjective Optimization of Staggered Elliptical Pin-Fin Arrays. Numerical Heat Transfer; Part A: Applications, 2008, 53, 418-431.	1.2	46
200	Comparative Analysis of Flow and Convective Heat Transfer between 7-Pin and 19-Pin Wire-Wrapped Fuel Assemblies. Journal of Nuclear Science and Technology, 2008, 45, 653-661.	0.7	14
201	EXPERIMENTAL INVESTIGATION ON THE HEAT TRANSFER OF TURBULENT FLOW IN A PIPE OSCILLATING AT LOW FREQUENCIES. Experimental Heat Transfer, 2008, 21, 24-37.	2.3	4

#	ARTICLE	IF	CITATIONS
202	Direct numerical simulation of heated CO2 flows at supercritical pressure in a vertical annulus at Re= 8900 . Physics of Fluids, 2008, 20, .	1.6	72
203	Experimental study of convective heat transfer and pressure loss of SiO <inf>2</inf> /water nanofluids Part 1: Nanofluid characterization - Imposed wall temperature. , 2008, , .		5
204	Heat Transfer Study on A Bioaerosol Sampling Cyclone. Engineering Applications of Computational Fluid Mechanics, 2008, 2, 309-318.	1.5	3
205	Multiobjective Optimization of a Wire-Wrapped LMR Fuel Assembly. Nuclear Technology, 2008, 162, 45-52.	0.7	O
206	Steam Oxidation and Chromia Evaporation in Ultrasupercritical Steam Boilers and Turbines. Journal of the Electrochemical Society, 2009, 156, C292.	1.3	57
207	A one-dimensional heat-transport model for conduit flow in karst aquifers. Journal of Hydrology, 2009, 378, 230-239.	2.3	13
208	A hybrid method for refrigerant flow balancing in multi-circuit evaporators: Upstream versus downstream flow control. International Journal of Refrigeration, 2009, 32, 1271-1282.	1.8	40
209	Heat (mass) transfer and friction loss in two-pass ducts with various parallel rib arrangements. Heat and Mass Transfer, 2009, 45, 783-792.	1.2	4
210	Optimization of a stepped circular pin-fin array to enhance heat transfer performance. Heat and Mass Transfer, 2009, 46, 63-74.	1.2	44
211	Depth profiles of venusian sinuous rilles and valley networks. Icarus, 2009, 199, 250-263.	1.1	34
212	Turbulent convective heat transfer with molten salt in a circular pipe. International Communications in Heat and Mass Transfer, 2009, 36, 912-916.	2.9	85
213	Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube. International Journal of Heat and Mass Transfer, 2009, 52, 4748-4756.	2.5	77
214	Shape Optimization of 19-Pin Wire-Wrapped Fuel Assembly of LMR Using Multiobjective Evolutionary Algorithm. Nuclear Science and Engineering, 2009, 161, 245-254.	0.5	5
215	Performance evaluation of a fin-and-tube evaporator with R407C/R290/R600a refrigerant mixture. International Journal of Ambient Energy, 2010, 31, 33-46.	1.4	0
216	Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube. Experimental Thermal and Fluid Science, 2010, 34, 1295-1308.	1.5	185
217	Evaluation of momentum and thermal eddy diffusivities for turbulent flow in tubes. International Journal of Heat and Mass Transfer, 2010, 53, 1237-1242.	2.5	10
218	Implementation Methods of Wall Functions in Cell-vertex Numerical Solvers. Flow, Turbulence and Combustion, 2010, 85, 245-272.	1.4	25
219	Study on corrosion rate of carbon steel pipe under turbulent flow conditions. Canadian Journal of Chemical Engineering, 2010, 88, 1114-1120.	0.9	23

#	Article	IF	CITATIONS
220	Hydrodynamic transition delay in rectangular channels under high heat flux. Annals of Nuclear Energy, 2010, 37, 615-620.	0.9	9
221	A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 2010, 14, 615-628.	8.2	1,571
222	Drag reduction and heat transfer in surfactant solutions with excess counterion. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 292-298.	1.0	13
223	Experimental analysis on pressure drop and heat transfer of a terminal fan-coil unit with ice slurry as cooling medium. International Journal of Refrigeration, 2010, 33, 1095-1104.	1.8	18
224	An approach for the modelling and the analysis of the MSR thermo-hydrodynamic behaviour. Chemical Engineering Science, 2010, 65, 4873-4883.	1.9	20
225	Average Heat Transfer Coefficient for Pool Boiling of R-134a and R-123 on Smooth and Enhanced Tubes (RP-1316). HVAC and R Research, 2010, 16, 657-676.	0.9	16
227	A Design of an Giffard Injector-Pumped Bipropellant Micro-Rocket. , 2010, , .		1
228	Mitigation of Wax Deposition by Wax-Crystal Modifier for Kermanshah Crude Oil. Journal of Dispersion Science and Technology, 2011, 32, 975-985.	1.3	34
229	A Quasi-2-D Model for the Prediction of the Wall Temperature of Rocket Engine Cooling Channels. Numerical Heat Transfer; Part A: Applications, 2011, 60, 1-24.	1.2	27
230	Chromia Evaporation in Advanced Ultra-Supercritical Steam Boilers and Turbines. , 2011, , .		1
231	NOx Reduction in Natural Gas RI Augmented Large Bore Four-Stroke SI Engines. , 0, , .		0
232	Experimental Study of Heat Transfer Enhancement and Friction Loss Induced by Inserted Rotor-assembled Strand (II) Lubricant Oil 22. Chinese Journal of Chemical Engineering, 2011, 19, 1069-1074.	1.7	3
233	Condensation heat transfer characteristics of R-22, R-134a and R-410A in a single circular microtube. Experimental Thermal and Fluid Science, 2011, 35, 706-716.	1.5	73
234	Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. International Journal of Heat and Fluid Flow, 2011, 32, 424-439.	1.1	147
235	Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. International Journal of Thermal Sciences, 2011, 50, 341-349.	2.6	196
236	Polymer Heat Exchangers: An Enabling Technology for Water and Energy Savings. , 2011, , .		0
237	Bifurcated Forced Convective Heat Transfer of Supercritical CO2 Flow in Plane Symmetric Sudden Expansion Duct. Journal of Heat Transfer, 2011, 133, .	1.2	2
238	Flow and Mass Transfer in Bends Under Flow-Accelerated Corrosion Wall Thinning Conditions. Journal of Engineering for Gas Turbines and Power, 2011, 133, .	0.5	30

#	ARTICLE	IF	CITATIONS
239	A Novel Model of Turbulent Convective Heat Transfer in Round Tubes at Supercritical Pressures. Heat Transfer Engineering, 2011, 32, 1082-1092.	1.2	6
240	Experimental studies on effect of wire coiled coil matrix turbulators with and without bonding on the wall of the test section of concentric tube heat exchanger. Thermal Science, 2012, 16, 1151-1164.	0.5	6
241	Analytical method of predicting turbulence transition in pipe flow. Scientific Reports, 2012, 2, 214.	1.6	0
242	Experimental Investigation of Thermal Performance in a Tube With Detached Circular Ring Turbulators. Heat Transfer Engineering, 2012, 33, 682-692.	1.2	9
243	A compressible wall model for large-eddy simulation with application to prediction of aerothermal quantities. Physics of Fluids, $2012, 24, \ldots$	1.6	50
244	Modified Wilson Plots for Enhanced Heat Transfer Experiments: Current Status and Future Perspectives. Heat Transfer Engineering, 2012, 33, 342-355.	1.2	20
245	Coupled Heat Transfer Analysis in Regeneratively Cooled Thrust Chambers. , 2012, , .		1
246	Analysis on the Effect of Channel Aspect Ratio on Rocket Thermal Behavior. , 2012, , .		5
247	Heat Transfer Augmentation in Rotating Triangular Channels with Discrete and V-Shaped Ribs. Journal of Thermophysics and Heat Transfer, 2012, 26, 603-611.	0.9	11
248	Optimization of Rotating Cooling Channel with Pin Fins Downstream of Turning Region. Journal of Thermophysics and Heat Transfer, 2012, 26, 85-97.	0.9	9
249	A Short Method to Compute Nusselt Numbers in Rectangular and Annular Channels With Any Ratio of Constant Heat Rate. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	0.5	1
251	Mass Transfer Measurements behind an Orifice in a Circular Pipe Flow for Various Combinations of Swirl Intensity and Orifice Bias. Journal of Power and Energy Systems, 2012, 6, 402-411.	0.5	10
252	Computational Study of Turbulent Heat Transfer for Heating of Water in a Vertical Circular Tube. Journal of Power and Energy Systems, 2012, 6, 446-461.	0.5	7
253	Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. International Journal of Refrigeration, 2012, 35, 2287-2296.	1.8	74
254	Flow and heat transfer characteristics of r22 and ethanol at supercritical pressures. Journal of Supercritical Fluids, 2012, 70, 75-89.	1.6	34
255	Experimental study on the effect of TiO2–water nanofluid on heat transfer and pressure drop. Experimental Thermal and Fluid Science, 2012, 42, 107-115.	1.5	154
256	Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints. Energy, 2012, 46, 42-50.	4.5	27
257	Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure. Journal of Supercritical Fluids, 2012, 72, 90-99.	1.6	82

#	Article	IF	CITATIONS
258	Experimental heat transfer to supercritical carbon dioxide flowing upward vertical tube with highly conducting surroundings. Nuclear Engineering and Design, 2012, 250, 573-584.	0.8	7
259	Two-Phase Flow., 0, , .		9
260	Thermodynamic optimisation of the integrated design of a small-scale solar thermal Brayton cycle. International Journal of Energy Research, 2012, 36, 1088-1104.	2.2	39
261	Heat transfer and thermal performance characteristics of heat exchanger tube fitted with perforated twisted-tapes. Heat and Mass Transfer, 2012, 48, 881-892.	1.2	70
262	Experimental study on convective heat transfer coefficient around a vertical hexagonal rod bundle. Heat and Mass Transfer, 2012, 48, 1023-1029.	1.2	11
263	Experimental investigation of condensation in micro-fin tubes of different geometries. Experimental Thermal and Fluid Science, 2012, 37, 19-28.	1.5	55
264	Prediction of fully developed turbulent heat transfer of internal helically ribbed tubes? An extension of Gnielinski equation. International Journal of Heat and Mass Transfer, 2012, 55, 1375-1384.	2.5	63
265	Experimental investigation of condensation heat transfer and pressure drop of R22, R410A and R407C in mini-tubes. International Journal of Heat and Mass Transfer, 2012, 55, 3522-3532.	2.5	52
266	Experimental investigation of capillary-assisted solution wetting and heat transfer using a micro-scale, porous-layer coating on horizontal-tube, falling-film heat exchanger. International Journal of Refrigeration, 2012, 35, 1176-1187.	1.8	32
267	Computational study of turbulent heat transfer for heating of water in a short vertical tube under velocities controlled. Nuclear Engineering and Design, 2012, 249, 304-317.	0.8	11
268	Cooling capacity of plate type research reactors during the natural convective cooling mode. Progress in Nuclear Energy, 2012, 56, 37-42.	1.3	7
269	Numerical modeling of heat exchange and turbulent flow of fluid within tubes at supercritical pressure. High Temperature, 2012, 50, 278-285.	0.1	5
270	Multiâ€objective optimization of a rotating cooling channel with staggered pinâ€fins for heat transfer augmentation. International Journal for Numerical Methods in Fluids, 2012, 68, 922-938.	0.9	20
271	Experimental Studies on Wire Coiled Coil Matrix Turbulators with and Without Centre Core Rod. Arabian Journal for Science and Engineering, 2013, 38, 2557-2568.	1.1	5
272	Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface. International Journal of Heat and Mass Transfer, 2013, 65, 619-626.	2.5	64
273	On heat transfer in tubes. International Journal of Heat and Mass Transfer, 2013, 63, 134-140.	2.5	277
274	On the choice of correlations for calculating the heat transfer coefficient in binary gas mixtures. Journal of Engineering Thermophysics, 2013, 22, 30-42.	0.6	10
275	Development of a thermodynamic performance-analysis program for CO2 geothermal heat pump system. Journal of Industrial and Engineering Chemistry, 2013, 19, 1827-1837.	2.9	8

#	Article	IF	CITATIONS
276	Effect of microtube length on heat transfer enhancement of an water/Al2O3 nanofluid at high Reynolds numbers. International Journal of Heat and Mass Transfer, 2013, 62, 22-30.	2.5	22
277	Convective vaporization in micro-fin tubes of different geometries. Experimental Thermal and Fluid Science, 2013, 44, 398-408.	1.5	89
278	Heat Transfer Enhancement in a Tube using Rectangular-cut Twisted Tape Insert. Procedia Engineering, 2013, 56, 96-103.	1.2	82
279	Heat transfer and pressure drop in tubes fitted with grooved lobe rotor-assembled strands. , 2013, , .		0
280	Thermal response testing through the Chalk aquifer in London, UK. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2013, 166, 197-210.	0.9	27
281	Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renewable Energy, 2013, 50, 58-67.	4.3	96
282	Investigation of flow resistance characteristics of endothermic hydrocarbon fuel under supercritical pressures. Propulsion and Power Research, 2013, 2, 119-130.	2.0	9
283	Thermal characteristics in a heat exchanger tube fitted with triple twisted tape inserts. International Communications in Heat and Mass Transfer, 2013, 48, 124-132.	2.9	100
284	Improving high temperature heat capture for power generation in gasification plants. International Journal of Heat and Mass Transfer, 2013, 61, 129-137.	2.5	13
285	Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime. International Journal of Heat and Mass Transfer, 2013, 56, 741-749.	2.5	106
286	Experimental analysis of the single phase pressure drop characteristics of smooth and microfin tubes. International Communications in Heat and Mass Transfer, 2013, 46, 58-66.	2.9	31
287	Heat transfer and critical heat flux of subcooled water flow boiling in a HORIZONTAL circular tube. Experimental Thermal and Fluid Science, 2013, 44, 844-857.	1.5	13
288	The Turbulent Flows of Supercritical Fluids with Heat Transfer. Annual Review of Fluid Mechanics, 2013, 45, 495-525.	10.8	164
289	Artificial Neural Network Modeling of Deposition Thickness Through the Pipeline. Journal of Dispersion Science and Technology, 2013, 34, 496-503.	1.3	6
290	Multi-Objective Optimization of a Rotating Cooling Channel with Airfoil-Shaped Guide Vanes. Journal of Thermophysics and Heat Transfer, 2013, 27, 52-60.	0.9	3
291	Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: A review. Renewable and Sustainable Energy Reviews, 2013, 20, 23-35.	8.2	121
292	Trade-off analysis of high-aspect-ratio-cooling-channels for rocket engines. International Journal of Heat and Fluid Flow, 2013, 44, 458-467.	1.1	47
293	Two-Phase Flow Control of Electronics Cooling With Pseudo-CPUs in Parallel Flow Circuits: Dynamic Modeling and Experimental Evaluation. Journal of Electronic Packaging, Transactions of the ASME, 2013, 135, .	1.2	12

#	Article	IF	CITATIONS
294	Quasi-2D Modeling of High-Aspect-Ratio-Cooling-Channel Flows. , 2013, , .		2
295	Design approach for the integration of services in buildings. Building Services Engineering Research and Technology, 2013, 34, 333-348.	0.9	O
296	Effect of Void Fraction on Pressure Drop in Upward Vertical Two-Phase Gas-Liquid Pipe Flow. Journal of Engineering for Gas Turbines and Power, 2013, 135, .	0.5	9
297	Analysis of Post Boiling Transition Heat Transfer (Development and Evaluation for Prediction Method) Tj ETQq1 of Mechanical Engineers Series B B-hen, 2013, 79, 2301-2311.	1 0.784314 0.2	4 rgBT /Overl 1
298	Predictions of the Heat Transfer Coefficient by Correlations and Turbulence Models. Nuclear Technology, 2013, 183, 88-100.	0.7	1
299	Dynamic Modeling and Numerical Simulation of Acoustic-Thermal-Fluid Coupling for Hypersonic Vehicle Fatigue Test., 2013,,.		3
300	Comparing historical and modern methods of sea surface temperature measurement – Part 2: Field comparison in the central tropical Pacific. Ocean Science, 2013, 9, 695-711.	1.3	29
302	EXPERIMENTAL ANALYSIS OF PRESSURE DROP IN SINGLE AND TWO PHASE IN MINI CHANNELS. Revista De Engenharia Térmica, 2014, 13, 59.	0.0	0
303	Experimental Determination of the Boiling Heat Transfer Coefficients of R-134a and R-417A on a Smooth Copper Tube. Heat Transfer Engineering, 2014, 35, 1427-1434.	1.2	3
304	Effect of Cooling Channel Aspect Ratio on Rocket Thermal Behavior. Journal of Thermophysics and Heat Transfer, 2014, 28, 410-416.	0.9	33
305	Convective Condensation Inside Horizontal Smooth and Microfin Tubes. Journal of Heat Transfer, 2014, 136 , .	1.2	40
306	Experimental studies on effect of bonding the twisted tape with pins to the inner surface of the circular tube. Thermal Science, 2014, 18, 1273-1283.	0.5	5
307	Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank. Science and Technology of Nuclear Installations, 2014, 2014, 1-8.	0.3	12
308	Computational Investigations of Thermal Simulation of Shell and Tube Heat Exchanger. , 2014, , .		4
309	The Development of Turbine Volute Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations: Part 3: Exhaust Radial Turbine Volute Systems. SAE International Journal of Passenger Cars - Mechanical Systems, 2014, 7, 714-727.	0.4	3
310	Performance evaluation, energy conservation potential, and parametric study of borehole heat exchanger for space cooling in building. Journal of Renewable and Sustainable Energy, 2014, 6, 023123.	0.8	2
311	Review on the Modeling and Simulation of Thermal Energy Storage Systems. , 2014, , 247-278.		0
312	Condensation in Minichannels and Microchannels. , 2014, , 295-494.		7

#	Article	IF	CITATIONS
313	A Critical Review on Condensation Heat Transfer in Microchannels and Minichannels. Journal of Nanotechnology in Engineering and Medicine, 2014, 5 , .	0.8	28
314	Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber. Energy, 2014, 68, 519-528.	4.5	34
315	Experimental parametric study of the pressure drop characteristic curve in a horizontal boiling channel. Experimental Thermal and Fluid Science, 2014, 52, 318-327.	1.5	25
316	Trailing edge cooling of a gas turbine blade with perforated blockages with inclined holes. International Journal of Heat and Mass Transfer, 2014, 73, 9-20.	2.5	12
317	Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer, 2014, 52, 73-83.	2.9	482
318	Numerical modeling for stratified gas–liquid flow and heat transfer in pipeline. Applied Energy, 2014, 115, 83-94.	5.1	35
319	Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Experimental Thermal and Fluid Science, 2014, 57, 65-76.	1.5	90
320	Modelling wax deposition in oil transport pipelines. Canadian Journal of Chemical Engineering, 2014, 92, 973-988.	0.9	18
321	Performance assessment in a heat exchanger tube fitted with double counter twisted tape inserts. International Communications in Heat and Mass Transfer, 2014, 50, 25-33.	2.9	119
322	The external walls of a passive building: A classification and description of their thermal and optical properties. Energy and Buildings, 2014, 69, 93-102.	3.1	20
323	Experimental study on the combined effects of inclination angle and insert devices on the performance of a flat-plate solar collector. International Journal of Heat and Mass Transfer, 2014, 71, 251-263.	2.5	45
324	Advancements in the Field of Direct Steam Generation in Linear Solar Concentrators—A Review. Heat Transfer Engineering, 2014, 35, 258-271.	1.2	48
325	Single phase fluid-stator heat transfer in a rotor–stator spinning disc reactor. Chemical Engineering Science, 2014, 119, 88-98.	1.9	28
326	Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid. Energy, 2014, 78, 622-638.	4.5	178
327	Thermal 3D model for Direct Solar Steam Generation under superheated conditions. Applied Energy, 2014, 132, 370-382.	5.1	60
328	Wall Temperature Effects on Heat Transfer Coefficient for High-Pressure Turbines. Journal of Propulsion and Power, 2014, 30, 1080-1090.	1.3	35
329	Influences of solution subcooling, wall superheat and porous-layer coating on heat transfer in a horizontal-tube, falling-film heat exchanger. International Journal of Heat and Mass Transfer, 2014, 68, 141-150.	2.5	11
330	Effect of advanced surfaces on the ammonia absorption process with NH3/LiNO3 in a tubular bubble absorber. International Journal of Heat and Mass Transfer, 2014, 72, 544-552.	2.5	18

#	ARTICLE	IF	CITATIONS
331	Experimental and numerical studies on mass transfer characteristics behind an orifice in a circular pipe for application to pipe-wall thinning. Experimental Thermal and Fluid Science, 2014, 52, 239-247.	1.5	41
332	Flow boiling of R245fa in 1.1 mm diameter stainless steel, brass and copper tubes. Experimental Thermal and Fluid Science, 2014, 59, 166-183.	1.5	43
333	Shape optimization of staggered ribs in a rotating equilateral triangular cooling channel. Heat and Mass Transfer, 2014, 50, 533-544.	1.2	7
334	Investigation of flow and heat characteristics and structure identification of FLiNaK in pipe using CFD simulations. Applied Thermal Engineering, 2014, 70, 451-461.	3.0	11
335	Impact of Turbulator Design on the Heat Transfer in a High Aspect Ratio Passage of a Turbine Blade. , $2014, \ldots$		4
336	Experimental Investigation of Force Convection Heat Transfer in a Car Radiator Filled with SiO2-water Nanofluid. International Journal of Engineering, Transactions B: Applications, 2014, 27, .	0.6	14
337	Development of water heater using tubular flame - Heat transfer characteristics on the coiled tube and the inserted tube heat exchangers Mechanical Engineering Journal, 2014, 1, TEP0047-TEP0047.	0.2	5
338	Prediction of a boiling transition location and heated surface temperature for upward flow in a vertical tube (Investigation and improvement of prediction method for fuel rod wall temperature). Transactions of the JSME (in Japanese), 2014, 80, TEP0371-TEP0371.	0.1	0
339	Quantitative measurement of heat transfer fluctuation in a pipe flow around an orifice plate using high-speed infrared thermography. Mechanical Engineering Journal, 2015, 2, 15-00312-15-00312.	0.2	5
340	Experimentelle Untersuchung des konvektiven Wämeýbergangs und Druckverlustes inÂeinphasig durchströmten Thermoblechen. Chemie-Ingenieur-Technik, 2015, 87, 226-234.	0.4	22
341	Friction and Colburn factor correlations and shape optimization ofÂchevron-type plate heat exchangers. Applied Thermal Engineering, 2015, 89, 62-69.	3.0	62
342	Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output. Energy, 2015, 86, 737-748.	4. 5	21
343	Flow patterns of external solar receivers. Solar Energy, 2015, 122, 940-953.	2.9	36
344	An experimental study on vortex-generator insert with different arrangements of delta-winglets. Energy, 2015, 82, 629-639.	4.5	64
345	Thermodynamic and heat transfer analyses for R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigerating system. Applied Thermal Engineering, 2015, 80, 42-54.	3.0	89
346	Condensation and evaporation heat transfer characteristics in horizontal smooth, herringbone and enhanced surface EHT tubes. International Journal of Heat and Mass Transfer, 2015, 85, 281-291.	2.5	88
347	Numerical Study of Heat Transfer in a Rotating Detonation Combustor. , 2015, , .		8
348	Experimental investigation of heat transfer of helium-xenon mixtures in cylindrical channels. Journal of Engineering Thermophysics, 2015, 24, 33-35.	0.6	19

#	Article	IF	CITATIONS
349	Second law analysis and optimization of a parabolic trough receiver tube for direct steam generation. Heat and Mass Transfer, 2015, 51, 875-887.	1.2	6
350	Maldistribution in air–water heat pump evaporators. Part 2: Economic analysis of counteracting technologies. International Journal of Refrigeration, 2015, 50, 217-226.	1.8	5
351	Numerical Investigation of Heat Transfer, Pressure Drop and Wall Shear Stress Characteristics of Al2O3-Water Nanofluid in a Square Duct. Arabian Journal for Science and Engineering, 2015, 40, 3641-3655.	1.1	4
352	CFD-based design of 3D pyrolysis reactors: RANS vs. LES. Chemical Engineering Journal, 2015, 282, 66-76.	6.6	48
353	Heat Transfer Correlations for Single-Phase Flow, Condensation, and Boiling in Microfin Tubes. Heat Transfer Engineering, 2015, 36, 582-595.	1.2	28
354	Experimental investigation on the use of reduced graphene oxide and its hybrid complexes in improving closed conduit turbulent forced convective heat transfer. Experimental Thermal and Fluid Science, 2015, 66, 290-303.	1.5	47
355	Experimental assessment of different inserts inside straight tubes: Nanofluid as working media. Chemical Engineering and Processing: Process Intensification, 2015, 97, 1-11.	1.8	38
356	A quasi-transient model of a transcritical carbon dioxide direct-expansion ground source heat pump for space and water heating. Applied Thermal Engineering, 2015, 91, 259-269.	3.0	21
357	Thermal hydraulics analysis of the Advanced High Temperature Reactor. Nuclear Engineering and Design, 2015, 294, 73-85.	0.8	10
358	Numerical investigation on water deteriorated turbulent heat transfer regime in vertical upward heated flow in circular tube. International Journal of Heat and Mass Transfer, 2015, 83, 173-186.	2.5	5
359	An assessment of correlations of forced convection heat transfer to water at supercritical pressure. Annals of Nuclear Energy, 2015, 76, 451-460.	0.9	32
360	Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities. Computers and Geotechnics, 2015, 63, 99-111.	2.3	96
361	Thermal desalination and air conditioning using absorption cycle. Desalination and Water Treatment, 2015, 55, 3310-3329.	1.0	17
362	Experimental Studies of Nanofluid TiO ₂ /CuO in a Heat Exchanger (Double Pipe). Indian Journal of Science and Technology, 2016, 9, .	0.5	5
363	The effect of employing nanofluid on reducing the bore length of a vertical ground-source heat pump. Energy Conversion and Management, 2016, 123, 581-591.	4.4	63
364	Implicit Model Equation for Hydraulic Resistance and Heat Transfer including Wall Roughness. Journal of Nuclear Engineering and Radiation Science, 2016, 2, .	0.2	3
365	Two-phase mini-thermosyphon electronics cooling, Part 4: Application to 2U servers. , 2016, , .		10
366	Design and Analysis of Cycling Oil Cooling in Driving Motors for Electric Vehicle Application. , 2016, , .		7

#	Article	IF	CITATIONS
367	Analysis of Water Cooling of CPV Cells Mounted on Absorber Tube of a Parabolic Trough Collector. Energy Procedia, 2016, 90, 78-88.	1.8	11
368	Experimental and comparative study of a sea water-cooled surface condenser of LTTD plant with HTRI and Kern method. Desalination and Water Treatment, 2016, 57, 19540-19556.	1.0	2
369	Experimental investigation of transcritical methane flow in rocket engine cooling channel. Applied Thermal Engineering, 2016, 101, 61-70.	3.0	33
370	Heat transfer enhancement of ammonia pool boiling with an integral-fin tube. International Journal of Refrigeration, 2016, 69, 175-185.	1.8	22
371	Influence of boiling initiation surface superheat on subcooled water flow boiling critical heat flux in a SUS304 circular tube at high liquid Reynolds number. International Journal of Heat and Mass Transfer, 2016, 98, 299-312.	2.5	6
372	Flow and heat transfer characteristics of high-pressure water flowing in a vertical upward smooth tube at low mass flux conditions. Applied Thermal Engineering, 2016, 102, 391-401.	3.0	43
373	Nucleate boiling of low GWP refrigerants on highly enhanced tube surface. International Journal of Heat and Mass Transfer, 2016, 96, 660-666.	2.5	31
374	Efficient multi-objective optimization of a boot-shaped rib in a cooling channel. International Journal of Thermal Sciences, 2016, 106, 122-133.	2.6	34
375	Investigation of domestic air conditioner with a novel low charge microchannel condenser suitable for hydrocarbon refrigerant. Measurement: Journal of the International Measurement Confederation, 2016, 90, 338-348.	2.5	23
376	Conceptual design and parametric study of combined carbon dioxide/organic Rankine cycles. Applied Thermal Engineering, 2016, 103, 759-772.	3.0	24
377	Thermodynamic and economic performance improvement of ORCs through using zeotropic mixtures: Case of waste heat recovery in an offshore platform. Case Studies in Thermal Engineering, 2016, 8, 51-70.	2.8	68
378	Experimental investigation on heat transfer enhancement of a tube with coiled-wire inserts installed with a separation from the tube wall. International Communications in Heat and Mass Transfer, 2016, 78, 88-94.	2.9	66
379	Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids. Journal of Thermal Science, 2016, 25, 410-417.	0.9	113
380	Calculation of borehole thermalÂresistance. , 2016, , 63-95.		25
381	Thermal–hydraulic performance of wavy plate-fin heat exchanger using passive techniques: Perforations, winglets, and nanofluids. International Communications in Heat and Mass Transfer, 2016, 78, 231-240.	2.9	52
382	Normal and deteriorated heat transfer upon heating of turbulent flows of heat carriers with variable physical properties in tubes. High Temperature, 2016, 54, 577-598.	0.1	4
383	1D Model for Coupled Simulation of Steam Cracker Convection Section with Improved Evaporation Model. Chemie-Ingenieur-Technik, 2016, 88, 1650-1664.	0.4	9
384	Temperature Increase Behavior of Multi-Annuli in Subsea Wells. , 2016, , .		2

#	Article	IF	CITATIONS
385	Heat transfer performance of closed conduit turbulent flow: Constant mean velocity and temperature do matter!. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 285-298.	2.7	8
386	Assessment of thermal–hydraulic correlations for narrow rectangular channels with high heat flux and coolant velocity. International Journal of Heat and Mass Transfer, 2016, 99, 344-356.	2.5	18
387	Convective boiling of R-134a on enhanced-tube bundles. International Journal of Refrigeration, 2016, 68, 145-160.	1.8	19
388	Application of CNT nanofluids in a turbulent flow heat exchanger. Journal of Experimental Nanoscience, 2016, 11, 1-17.	1.3	45
389	Large Eddy Simulation of Turbulent Heat Transfer in Curved-Pipe Flow. Journal of Heat Transfer, 2016, 138, .	1.2	1
390	A Numerical Study of Turbulent Mixed Convection in a Smooth Horizontal Pipe. Journal of Heat Transfer, 2016, 138, .	1.2	6
391	Frictional Pressure Drop Correlations for Single-Phase Flow, Condensation, and Evaporation in Microfin Tubes. Journal of Heat Transfer, 2016, 138, .	1.2	9
392	Dynamic Numerical Microchannel Evaporator Model to Investigate Parallel Channel Instabilities. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.2	5
393	Modeling of the Media Supply of Gas Burners of an Industrial Furnace. IEEE Transactions on Industry Applications, 2016, 52, 2664-2672.	3.3	4
394	Heat transfer augmentation in a circular tube with perforated double counter twisted tape inserts. International Communications in Heat and Mass Transfer, 2016, 74, 18-26.	2.9	78
395	Performance analysis of a micro gas turbine and solar dish integrated system under different solar-only and hybrid operating conditions. Solar Energy, 2016, 132, 279-293.	2.9	86
396	Thermal Stress Cracking of Slide-Gate Plates in Steel Continuous Casting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 1453-1464.	1.0	6
397	An empirical study on vortex-generator insert fitted in tubular heat exchangers with dilute Cu–water nanofluid flow. Chinese Journal of Chemical Engineering, 2016, 24, 728-736.	1.7	33
398	Experimental heat transfer coefficients of pool boiling and spray evaporation of ammonia on a horizontal plain tube. International Journal of Refrigeration, 2016, 67, 259-270.	1.8	12
399	Thermal-hydraulic characteristics of plate-fin heat exchangers with corrugated/vortex-generator plate-fin (CVGPF). Applied Thermal Engineering, 2016, 98, 690-701.	3.0	42
400	Convective heat transfer enhancement inside tubes using inserted helical coils. Thermal Engineering (English Translation of Teploenergetika), 2016, 63, 42-50.	0.4	20
401	Convective Heat Transfer in a High Aspect Ratio Minichannel Heated on One Side. Journal of Heat Transfer, 2016, 138, .	1.2	12
402	Theoretical–experimental analysis of the heat transfer in a helical condenser for a heat transformer integrated to a water purification system. Desalination and Water Treatment, 2016, 57, 23132-23146.	1.0	0

#	Article	IF	CITATIONS
403	Effect of disturbance on thermal response test, part 2: Numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment. Renewable Energy, 2016, 85, 1090-1105.	4.3	35
404	Experimental study on metallic water nanofluids flow inside rectangular duct equipped with circular pins (pin channel). Experimental Thermal and Fluid Science, 2016, 72, 18-30.	1.5	18
405	Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis. Renewable Energy, 2016, 85, 306-318.	4.3	28
406	Dynamic modelling for the hot blast stove. Applied Energy, 2017, 185, 2142-2150.	5.1	26
407	Heat transfer and fluid flow behaviour of a rectangular duct roughened with V-ribs with symmetrical gaps. International Journal of Ambient Energy, 2017, 38, 347-355.	1.4	18
408	Air-Side Heat Transfer Enhancement Utilizing Design Optimization and an Additive Manufacturing Technique. Journal of Heat Transfer, 2017, 139, .	1.2	56
409	Shell side direct expansion evaporation of ammonia on a plain tube bundle with exit superheat effect. International Journal of Refrigeration, 2017, 76, 126-135.	1.8	7
410	Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature. Applied Energy, 2017, 193, 466-478.	5.1	64
411	Experimental Study on Heat Transfer and Thermo-Physical Properties of Covalently Functionalized Carbon Nanotubes Nanofluids in an Annular Heat Exchanger: A Green and Novel Synthesis. Energy & Samp; Fuels, 2017, 31, 5635-5644.	2.5	29
412	Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form. Applied Thermal Engineering, 2017, 118, 408-417.	3.0	54
413	Simple heat transfer correlations for turbulent tube flow. E3S Web of Conferences, 2017, 13, 02008.	0.2	34
414	Two-phase frictional pressure drop in horizontal micro-scale channels: Experimental data analysis and prediction method development. International Journal of Refrigeration, 2017, 79, 143-163.	1.8	48
415	The effect of heat transfer enhancement on the crystallization fouling in a double pipe heat exchanger. Experimental Thermal and Fluid Science, 2017, 86, 272-280.	1.5	37
416	Analysis on performance of nanofluid-cooled vortex-generator channels with variable longitudinal spacing among delta-winglets. Applied Thermal Engineering, 2017, 122, 1-10.	3.0	24
417	Experimental study of ammonia flooded boiling on a triangular pitch plain tube bundle. Applied Thermal Engineering, 2017, 121, 484-491.	3.0	13
418	Condenser-side integration of a simple solar-type waste heat recovery device in a thermal plant. Journal of Cleaner Production, 2017, 157, 333-341.	4.6	4
419	Numerical study of nanofluid heat transfer for different tube geometries $\hat{a} \in A$ comprehensive review on performance. International Communications in Heat and Mass Transfer, 2017, 86, 60-70.	2.9	29
420	Shell side direct expansion evaporation of ammonia on a plain tube bundle with inlet quality effect in the presence of exit superheat. International Journal of Refrigeration, 2017, 82, 11-21.	1.8	4

#	Article	IF	Citations
421	Unsteady characteristics of turbulent heat transfer in a circular pipe upon sudden acceleration and deceleration of flow. International Journal of Heat and Mass Transfer, 2017, 113, 490-501.	2.5	9
422	Shell side plain tube bundle performance of a multi-pass direct expansion evaporation of ammonia at various degrees of exit superheat. International Journal of Refrigeration, 2017, 78, 70-82.	1.8	4
423	Energy performance evaluation and application of an air treatment system for conditioning building spaces in tropics. Applied Energy, 2017, 204, 1500-1512.	5.1	17
424	Convective heat transfer of turbulent decaying swirled flows in concentric annular pipes. Applied Thermal Engineering, 2017, 120, 517-529.	3.0	5
425	Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube. Applied Thermal Engineering, 2017, 120, 10-18.	3.0	30
427	Heat transfer, friction factor and effectiveness of Fe 3 O 4 nanofluid flow in an inner tube of double pipe U-bend heat exchanger with and without longitudinal strip inserts. Experimental Thermal and Fluid Science, 2017, 85, 331-343.	1.5	39
428	Development of Compressible Large-Eddy Simulations Combining High-Order Schemes and Wall Modeling. AIAA Journal, 2017, 55, 1152-1163.	1.5	13
429	Correlations for the symmetric converging flow and heat transfer between two nearly parallel stationary disks similar to a solar updraft power plant collector. Solar Energy, 2017, 146, 309-318.	2.9	3
430	Experimental study on condensation and evaporation flow inside horizontal three dimensional enhanced tubes. International Communications in Heat and Mass Transfer, 2017, 80, 30-40.	2.9	38
431	Multi-objective optimization of asymmetric v-shaped ribs in a cooling channel using CFD, artificial neural networks and genetic algorithms. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 2319-2329.	0.8	11
432	Investigation of isothermal convective heat transfer in an optical combustor with a low-emissions swirl fuel nozzle. Applied Thermal Engineering, 2017, 114, 65-76.	3.0	9
433	Heat transfer, friction factor and effectiveness analysis of Fe 3 O 4 /water nanofluid flow in a double pipe heat exchanger with return bend. International Communications in Heat and Mass Transfer, 2017, 81, 155-163.	2.9	89
434	Thermal energy conversion using near-field thermophotovoltaic device composed of a thin-film tungsten radiator and a thin-film silicon cell. Journal of Applied Physics, 2017, 122, 084302.	1.1	9
435	Hydro-thermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation. International Journal of Thermal Sciences, 2017, 121, 138-149.	2.6	79
436	Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts. Energy, 2017, 139, 65-75.	4.5	56
437	Effect of tangled channels on the heat transfer in a printed circuit heat exchanger. International Journal of Heat and Mass Transfer, 2017, 115, 647-656.	2.5	25
438	Simple power-type heat transfer correlations for turbulent pipe flow in tubes. Journal of Thermal Science, 2017, 26, 339-348.	0.9	28
439	Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer. Energy Conversion and Management, 2017, 150, 26-36.	4.4	52

#	Article	IF	CITATIONS
440	Update on Cooling for the ITER ECH Waveguide Transmission Line. Fusion Science and Technology, 2017, , 1-5.	0.6	0
441	Experimental analysis on mixed convection in reactor cavity cooling system of HTGR for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 22046-22053.	3.8	20
442	Experimental analysis of the thermal-hydraulic performance of water based silver and SWCNT nanofluids in single-phase flow. Applied Thermal Engineering, 2017, 124, 1176-1188.	3.0	8
443	Influence of non-ideal optical factors in actual engineering on theÂsafety and stability of a parabolic trough collector. Renewable Energy, 2017, 113, 1293-1301.	4.3	9
444	Investigating the energy performance of an air treatment incorporated cooling system for hot and humid climate. Energy and Buildings, 2017, 151, 217-227.	3.1	14
445	Heat transfer and pressure drop during condensation of low-GWP refrigerants inside bar-and-plate heat exchangers. International Journal of Heat and Mass Transfer, 2017, 114, 363-379.	2.5	12
446	Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators. International Journal of Heat and Mass Transfer, 2017, 105, 495-504.	2.5	38
447	Quantitative measurement of spatio-temporal heat transfer to a turbulent water pipe flow. International Journal of Heat and Fluid Flow, 2017, 63, 46-55.	1.1	9
448	An experimental investigation of convective heat transfer enhancement in electronic module using curved deflector. Heat and Mass Transfer, 2017, 53, 985-994.	1.2	7
449	Two-phase mini-thermosyphon electronics cooling: Dynamic modeling, experimental validation and application to 2U servers. Applied Thermal Engineering, 2017, 110, 481-494.	3.0	74
450	Experimental study of falling film evaporation heat transfer on superhydrophilic horizontal-tubes at low spray density. Applied Thermal Engineering, 2017, 111, 1548-1556.	3.0	63
451	Experimental investigation of heat transfer and pressure drop of turbulent flow inside tube with inserted helical coils. Heat and Mass Transfer, 2017, 53, 1265-1276.	1.2	21
452	The heat exchange of different atomicity gases at high thermal loads. Journal of Physics: Conference Series, 2017, 891, 012040.	0.3	0
453	Numerical analysis of flow resistance and heat transfer in the transitional regime of pipe flow with twisted-tape turbulators. Journal of Physics: Conference Series, 2017, 923, 012033.	0.3	1
454	Hydraulic Resistance to Non-Isothermal Turbulent Gas and Liquid Flows in Pipes. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 2017, 53, 310-315.	0.1	0
455	Experimental Investigation of the Condensation Heat Transfer Coefficient of R134a inside Horizontal Smooth and Micro-Fin Tubes. Energies, 2017, 10, 1280.	1.6	4
456	Experimental investigation on momentum and drag reduction of Malaysian crop suspensions in closed conduit flow. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012065.	0.3	9
457	Review of Fundamentals. , 2017, , 73-146.		0

#	Article	IF	Citations
458	Multi-physics optimization for high-frequency air-core permanent-magnet motor of aircraft application. , 2017, , .		33
459	Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Tube outside Boiling Condition. Science and Technology of Nuclear Installations, 2017, 2017, 1-10.	0.3	7
460	Convective condensation in three enhanced tubes with different surface modifications. Experimental Thermal and Fluid Science, 2018, 97, 79-88.	1.5	23
461	New friction factor and Nusselt number equations for turbulent convection of liquids with variable properties in circular tubes. International Journal of Heat and Mass Transfer, 2018, 124, 454-462.	2.5	17
462	Robust neuromorphic model for simultaneous prediction of convection heat transfer coefficient and friction factor of nanofluid flow in heat exchanging equipment. Numerical Heat Transfer; Part A: Applications, 2018, 73, 501-516.	1.2	3
463	Numerical study on cooling heat transfer and pressure drop of supercritical CO2 in wavy microchannels. International Journal of Refrigeration, 2018, 90, 46-57.	1.8	24
464	Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts. Heat and Mass Transfer, 2018, 54, 2045-2059.	1.2	1
465	Simple and general correlation for heat transfer during flow condensation inside plain pipes. International Journal of Heat and Mass Transfer, 2018, 122, 290-305.	2.5	42
466	Heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube with longitudinal strip inserts. International Journal of Heat and Mass Transfer, 2018, 121, 390-401.	2.5	32
467	Experimental investigation of passive thermodynamic vent system (TVS) with liquid nitrogen. Cryogenics, 2018, 89, 147-156.	0.9	10
468	Numerical modeling of rapid depressurization of a pressure vessel containing two-phase hydrocarbon mixture. Chemical Engineering Research and Design, 2018, 113, 343-356.	2.7	6
469	Three-dimensional transient numerical model for the thermal performance of the solar receiver. Renewable Energy, 2018, 120, 550-566.	4.3	16
470	Experimental investigation of subcooled flow boiling heat transfer in helical coils. Nuclear Engineering and Design, 2018, 327, 187-197.	0.8	24
472	Theoretical analysis of the viscosity correction factor for heat transfer in pipe flow. Chemical Engineering Science, 2018, 187, 27-32.	1.9	7
473	Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review. Renewable and Sustainable Energy Reviews, 2018, 90, 910-936.	8.2	35
474	Effect of twisted tape inserts on heat transfer, friction factor of Fe3O4 nanofluids flow in a double pipe U-bend heat exchanger. International Communications in Heat and Mass Transfer, 2018, 95, 53-62.	2.9	47
475	Can the heat transfer coefficients for single-phase flow and for convective flow boiling be equivalent?. Applied Physics Letters, 2018, 112, .	1.5	16
476	Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm. Applied Energy, 2018, 219, 151-164.	5.1	94

#	Article	IF	Citations
477	CFD study of heat transfer and pressure drop for oscillating flow in helical rectangular channel heat exchanger. International Journal of Thermal Sciences, 2018, 129, 106-114.	2.6	20
478	A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties. Journal of Colloid and Interface Science, 2018, 509, 140-152.	5.0	90
479	New friction factor and Nusselt number equations for laminar forced convection of liquid with variable properties. Science China Technological Sciences, 2018, 61, 98-109.	2.0	5
480	Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: An experimental study. International Journal of Heat and Mass Transfer, 2018, 117, 223-234.	2.5	68
481	Effect of various refining processes for Kenaf Bast non-wood pulp fibers suspensions on heat transfer coefficient in circular pipe heat exchanger. Heat and Mass Transfer, 2018, 54, 875-882.	1.2	2
482	Analysis on Al2O3/water nanofluid flow in a channel by inserting corrugated/perforated fins for solar heating heat exchangers. Renewable Energy, 2018, 115, 1099-1108.	4.3	47
483	Numerical and experimental evaluation of heat transfer in helically corrugated tubes. AICHE Journal, 2018, 64, 1702-1713.	1.8	21
484	Analysis of the impact of different operating conditions on the performance of a reversible heat pump with domestic hot water production. International Journal of Refrigeration, 2018, 86, 282-291.	1.8	15
485	Evaluation of Convective Heat Transfer Coefficient of Air Flowing Through an Inclined Circular Duct. SSRN Electronic Journal, 2018, , .	0.4	0
486	Unsteady Heat Transfer of Single Phase Flow. Journal of the Japan Institute of Marine Engineering, 2018, 53, 219-222.	0.0	1
487	Transient Turbulent Heat Transfer in Vertical Small Tube. Journal of the Japan Institute of Marine Engineering, 2018, 53, 898-905.	0.0	2
488	Supercritical-Pressure Heat Transfer, Pyrolytic Reactions, and Surface Coking of <i>n</i> -Decane in Helical Tubes. Energy & Decane in Helical	2.5	34
489	Model validation and control strategy of a heat recovery system integrated in a renewable hybrid power plant demonstrator. Solar Energy, 2018, 176, 698-708.	2.9	3
490	Flow and Heat Transfer in a High-Aspect-Ratio Rib-Roughed Cooling Channel with Longitudinal Intersecting Ribs. Journal of Applied Mechanics and Technical Physics, 2018, 59, 679-686.	0.1	7
491	Heat Transfer Behaviors in Horizontal Wells Considering the Effects of Drill Pipe Rotation, and Hydraulic and Mechanical Frictions during Drilling Procedures. Energies, 2018, 11, 2414.	1.6	8
492	Heat transfer intensification of agitated U-tube heat exchanger using twisted-tube and twisted-tape as passive techniques. Chemical Engineering and Processing: Process Intensification, 2018, 133, 137-147.	1.8	38
493	CFD modelling of conjugate heat transfer in a pilotâ€scale unbaffled stirred tank reactor with a plain jacket. Canadian Journal of Chemical Engineering, 2018, 97, 573.	0.9	10
494	Design and Experimental Study of HTSG for Waste to Energy: Analysis of Pressure Difference. Energies, 2018, 11, 1815.	1.6	2

#	Article	IF	CITATIONS
495	Modeling and analysis of condensation induced water hammer. Numerical Heat Transfer; Part A: Applications, 2018, 74, 975-1000.	1.2	21
496	Quantification and Analysis of the Irreversible Flow Loss in a Linear Compressor Cascade. Entropy, 2018, 20, 486.	1.1	7
497	Thermodynamic design of cold storage-based alternate temperature systems. Applied Thermal Engineering, 2018, 144, 736-746.	3.0	3
498	A new approach to evaluate the impact of thermophysical properties of nanofluids on heat transfer and pressure drop. International Communications in Heat and Mass Transfer, 2018, 95, 161-170.	2.9	23
499	Do nanofluids affect the future of heat transfer?"A benchmark study on the efficiency of nanofluids― Energy, 2018, 157, 979-989.	4.5	42
500	Damage localization effects of the regeneratively-cooled thrust chamber wall in LOX/methane rocket engines. Chinese Journal of Aeronautics, 2018, 31, 1667-1678.	2.8	8
501	An experimental study of R410A condensation heat transfer and pressure drops characteristics in microfin and smooth tubes with 5†mm OD. International Journal of Heat and Mass Transfer, 2018, 125, 1284-1295.	2.5	21
502	Solar DSG plant for pharmaceutical industry in Jordan: Modelling, monitoring and optimization. Solar Energy, 2018, 173, 362-376.	2.9	8
503	Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery. Entropy, 2018, 20, 137.	1.1	11
504	Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles. Chinese Journal of Aeronautics, 2018, 31, 1929-1953.	2.8	189
505	Design of a Two-Phase Gravity-Driven Micro-Scale Thermosyphon Cooling System for High-Performance Computing Data Centers. , 2018, , .		7
506	Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit. Energies, 2018, 11, 580.	1.6	9
507	Airside thermal-hydraulic characteristics for tube bank heat exchangers used to cool compressor bleed air in an aero engine. Applied Thermal Engineering, 2018, 141, 939-947.	3.0	12
508	Study of Some Complex Systems by Using Numerical Methods. Lecture Notes in Computer Science, 2018, , 539-559.	1.0	0
509	Numerical simulation of turbulent mixed convective pipe flow. AIP Conference Proceedings, 2018, , .	0.3	1
510	A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO 2 under heating and cooling applications. Renewable and Sustainable Energy Reviews, 2018, 92, 658-675.	8.2	158
511	Experimental study on single-phase frictional pressure drop for water flow under high heat fluxes. Fusion Engineering and Design, 2018, 137, 1-9.	1.0	5
512	Experimental and numerical investigation of taper helical and spiral tube thermal performance. International Journal of Energy Research, 2018, 42, 4417-4428.	2.2	4

#	Article	IF	CITATIONS
513	Numerical study of heat transfer and flow behavior in a circular tube fitted with varying arrays of winglet vortex generators. International Journal of Thermal Sciences, 2018, 134, 54-65.	2.6	55
514	CFD modeling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: Comparison with experimental data. Journal of Molecular Liquids, 2018, 269, 152-159.	2.3	39
515	A review of heat transfer characteristics of switchable insulation technologies for thermally adaptive building envelopes. Energy and Buildings, 2019, 199, 427-444.	3.1	65
516	Falling film boiling and pool boiling on plain circular tubes: Influence of surface roughness, surface material and saturation temperature on heat transfer and dryout. Experimental Thermal and Fluid Science, 2019, 109, 109870.	1.5	27
517	Heat transfer coefficients for quasi-turbulent and turbulent flow in solar receiver tubes. AIP Conference Proceedings, 2019, , .	0.3	0
518	Process Intensification for Compact and Micro Heat Exchangers through Innovative Technologies: A Review. Industrial & Description of the Review. Industrial & Description of the Review	1.8	25
519	Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors. Energy, 2019, 183, 1150-1165.	4.5	10
520	Performance improvement of a double pipe heat exchanger proposed in a small-scale CAES system: An innovative design. Applied Thermal Engineering, 2019, 162, 114315.	3.0	7
521	Pretest in forced circulation molten salt heat transfer loop: Studies with thermiaâ€B. Heat Transfer - Asian Research, 2019, 48, 4354-4372.	2.8	1
522	Large eddy simulation of turbulent heat transfer in a non-isothermal channel: Effects of temperature-dependent viscosity and thermal conductivity. International Journal of Thermal Sciences, 2019, 146, 106094.	2.6	8
523	Use of peripheral fins for R-290 charge reduction in split-type residential air-conditioners. International Journal of Refrigeration, 2019, 106, 1-6.	1.8	7
524	Experimental test of tubular external molten salt receivers under non-steady state conditions. AIP Conference Proceedings, 2019, , .	0.3	2
525	Flow boiling in horizontal annuli outside horizontal smooth, herringbone and three-dimensional enhanced tubes. International Journal of Heat and Mass Transfer, 2019, 143, 118554.	2.5	18
526	CFD study of heat transfer enhancement and fluid flow characteristics of turbulent flow through tube with twisted tape inserts. Energy Procedia, 2019, 160, 715-722.	1.8	22
527	Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO2/R161 Mixture Based on Natural Draft Dry Cooling Towers. Energies, 2019, 12, 3342.	1.6	11
528	Heat transfer performance and flow characteristic in enhanced tube with the trapezoidal dimples. International Communications in Heat and Mass Transfer, 2019, 108, 104299.	2.9	40
529	Recent advances in application of nanofluids in heat transfer devices: A critical review. Renewable and Sustainable Energy Reviews, 2019, 103, 556-592.	8.2	422
530	Heat transfer and effectiveness experimentally-based analysis of wire coil with core-rod inserted in Fe3O4/water nanofluid flow in a double pipe U-bend heat exchanger. International Journal of Heat and Mass Transfer, 2019, 134, 405-419.	2.5	39

#	Article	IF	CITATIONS
531	Heat transfer of single phase flow with natural refrigerant (R-290) in microchannel. AIP Conference Proceedings, 2019, , .	0.3	1
532	Inverse heat problem of determining unknown surface heat flux in a molten salt loop. International Journal of Heat and Mass Transfer, 2019, 139, 503-516.	2.5	19
533	An experimental and analytical study of a hybrid air-conditioning system in buildings residing in tropics. Energy and Buildings, 2019, 201, 216-226.	3.1	22
534	Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. International Communications in Heat and Mass Transfer, 2019, 108, 104263.	2.9	48
535	Two-phase heat transfer in horizontal dimpled/protruded surface tubes with petal-shaped background patterns. International Journal of Heat and Mass Transfer, 2019, 140, 837-851.	2.5	17
536	Simplified heat transfer model for parabolic trough solar collectors using supercritical CO2. Energy Conversion and Management, 2019, 196, 807-820.	4.4	34
537	Baffle orientation and geometry effects on turbulent heat transfer of a constant property incompressible fluid flow inside a rectangular channel. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 3027-3052.	1.6	41
538	Performance Estimation of New Vehicle Thermal Management System for an Unmanned Military Ground Vehicle Using Integrated Simulation Model. International Journal of Automotive Technology, 2019, 20, 429-444.	0.7	1
539	An experimental study on flow boiling in microchannels under heating pulses and a methodology for predicting the wall temperature fluctuations. Applied Thermal Engineering, 2019, 159, 113851.	3.0	5
540	An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid nanofluid flow in horizontal tube with various quad-channel twisted tape inserts. International Communications in Heat and Mass Transfer, 2019, 107, 1-13.	2.9	61
541	Condensation heat transfer coefficient for rectangular multiport microchannels at high ambient temperature. International Journal of Heat and Mass Transfer, 2019, 138, 866-878.	2.5	12
542	A study on heat storage sizing and flow control for a domestic scale solar-powered organic Rankine cycle-vapour compression refrigeration system. Renewable Energy, 2019, 143, 301-312.	4.3	31
543	Assessment of Methods for Performance Comparison of Pure and Zeotropic Working Fluids for Organic Rankine Cycle Power Systems. Energies, 2019, 12, 1783.	1.6	8
544	A revised performance evaluation method for energy saving effectiveness of heat transfer enhancement techniques. International Journal of Heat and Mass Transfer, 2019, 138, 1142-1153.	2.5	36
545	Heat transfer coefficients of laminar, transitional, quasi-turbulent and turbulent flow in circular tubes. International Communications in Heat and Mass Transfer, 2019, 105, 84-106.	2.9	62
546	Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?. Energy, 2019, 174, 1110-1120.	4.5	16
547	Thermal performance improvement using unilateral spiral ribbed absorber tube for parabolic trough solar collector. Solar Energy, 2019, 183, 371-385.	2.9	38
548	Flow Boiling Heat Transfer Characteristics in Horizontal, Three-Dimensional Enhanced Tubes. Energies, 2019, 12, 927.	1.6	16

#	Article	IF	CITATIONS
549	A predictive formula for the Nusselt number of compressible laminar fluid flow passing the thermal developing zone of a hot tube. Heat Transfer - Asian Research, 2019, 48, 1529-1543.	2.8	1
550	Comparative assessment of classical heat resistance and Wilson plot test techniques used for determining convective heat transfer coefficient of thermo fluids. Thermal Science and Engineering Progress, 2019, 11, 111-124.	1.3	6
551	Assessment of a mini-channel condenser at high ambient temperatures based on experimental measurements working with R134a, R513A and R1234yf. Applied Thermal Engineering, 2019, 155, 341-353.	3.0	34
552	Experimental and numerical study of forced convection heat transfer in different internally ribbed tubes configuration using TiO ₂ nanofluid. Heat Transfer - Asian Research, 2019, 48, 1778-1804.	2.8	17
553	Fluid flow and heat transfer analogy for laminar and turbulent flow inside spiral tubes. International Journal of Thermal Sciences, 2019, 139, 362-375.	2.6	13
554	Heat transfer performance of a nano-enhanced propylene glycol:water mixture. International Journal of Thermal Sciences, 2019, 139, 413-423.	2.6	25
555	Nusselt number correlation for compact heat exchangers in transition regimes. Applied Thermal Engineering, 2019, 151, 514-522.	3.0	18
556	New methodology for modeling pressure drop and thermal hydraulic characteristics in long vertical boiler tubes at high pressure. Progress in Nuclear Energy, 2019, 113, 215-229.	1.3	5
557	Convective boiling of R-123 on enhanced-tube bundles. International Journal of Heat and Mass Transfer, 2019, 134, 752-767.	2.5	9
558	Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts. Applied Thermal Engineering, 2019, 152, 275-286.	3.0	103
559	Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers. International Journal of Thermal Sciences, 2019, 139, 105-117.	2.6	20
560	Turbulent forced convection of nanofluid in an elliptic cross-sectional pipe. International Communications in Heat and Mass Transfer, 2019, 109, 104384.	2.9	16
561	Some Features of Hydrodynamic Instability of a Plane Channel Flow of a Thermoviscous Fluid. Fluid Dynamics, 2019, 54, 978-982.	0.2	4
562	Analysis of heat transfer for gas flow in the multichannel plate heat exchanger depending on the gas Prandtl number. Journal of Physics: Conference Series, 2019, 1382, 012202.	0.3	0
563	Measurement of internal heat transfer distributions using transient infrared thermography. AIP Conference Proceedings, 2019, , .	0.3	0
564	Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes. Energy, 2019, 170, 480-496.	4.5	43
565	Evaporation heat transfer characteristics of R410A inside horizontal three-dimensional enhanced tubes. International Journal of Thermal Sciences, 2019, 137, 456-466.	2.6	9
566	Modeling convective heat transfer of supercritical carbon dioxide using an artificial neural network. Applied Thermal Engineering, 2019, 150, 686-695.	3.0	49

#	Article	IF	CITATIONS
567	Simulation models for tankless gas water heaters. Applied Thermal Engineering, 2019, 148, 944-952.	3.0	10
568	Analysis of optical and thermal factors' effects on the transient performance of parabolic trough solar collectors. Solar Energy, 2019, 179, 195-209.	2.9	25
569	Influences of geometrical parameters on the heat transfer characteristics through symmetry trapezoidal-corrugated channel using SiO2-water nanofluid. International Communications in Heat and Mass Transfer, 2019, 101, 1-9.	2.9	65
570	Heat transfer enhancement of turbulent forced nanofluid flow in a duct using triangular rib. International Journal of Heat and Mass Transfer, 2019, 134, 30-40.	2.5	22
571	Condensation heat transfer of R410A on outside of horizontal smooth and three-dimensional enhanced tubes. International Journal of Refrigeration, 2019, 98, 1-14.	1.8	13
572	An experimental study on the thermal and hydraulic characteristics of open-cell nickel and copper foams for compact heat exchangers. International Journal of Heat and Mass Transfer, 2019, 130, 162-174.	2.5	13
573	Modeling and analysis of solar air channels with attachments of different shapes. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 1815-1845.	1.6	34
574	Design characteristics of symmetrical semicircle-corrugated channel on heat transfer enhancement with nanofluid. International Journal of Mechanical Sciences, 2019, 151, 236-250.	3.6	74
575	Numerical Modeling of Convective Heat Transfer for Turbulent Flow in "Bubbler―Cooling Channels. Jom, 2019, 71, 772-778.	0.9	5
576	Computational fluid dynamics and experimental validation of a compact steam methane reformer for hydrogen production from natural gas. Applied Energy, 2019, 236, 340-353.	5.1	75
577	Experimental Performance Evaluation of Tubular Manifold Heat Exchanger. Journal of Thermal Science and Engineering Applications, 2019, 11, .	0.8	0
578	Correlation of Evaporation Heat Transfer Inside 8.8 mm and 7.14 mm Horizontal Round Micro-Fin Tubes. Heat Transfer Engineering, 2019, 40, 320-329.	1.2	6
579	Experimental investigation on drag reduction of flowing crop suspensions of the pulp fibers in circular pipe heat exchanger. Particulate Science and Technology, 2020, 38, 443-453.	1.1	4
580	Thermal energy storage radiatively coupled to a supercritical Rankine cycle for electric grid support. Renewable Energy, 2020, 145, 604-621.	4.3	22
581	Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. Journal of Thermal Analysis and Calorimetry, 2020, 139, 2435-2445.	2.0	70
582	Neural-Network-Assisted Optimization of Rectangular Channels with Intersecting Ribs for Enhanced Thermal Performance. Heat Transfer Engineering, 2020, 41, 1609-1625.	1.2	9
583	Covalently functionalized pentaethylene glycol-thermally treated graphene towards enhanced thermophysical and heat transfer characteristics. Journal of Thermal Analysis and Calorimetry, 2020, 140, 859-874.	2.0	3
584	Graph-based network modeling and simulation of condensers in once-through cooling water system under the effect of biofouling formation. Applied Thermal Engineering, 2020, 165, 114577.	3.0	4

#	Article	IF	CITATIONS
585	Near-Wall Determination of the Turbulent Prandtl Number Based on Experiments, Numerical Simulation and Analytical Models. Heat Transfer Engineering, 2020, 41, 1341-1353.	1.2	4
586	Nanofluid: Potential evaluation in automotive radiator. Journal of Molecular Liquids, 2020, 297, 112014.	2.3	105
587	Numerical investigation of heat transfer enhancement of a water/ethylene glycol mixture with Al2O3–TiO2 nanoparticles. Applied Mathematics and Computation, 2020, 369, 124836.	1.4	19
588	Pressure drop modeling and performance optimization of a humidification–dehumidification desalination system. Applied Energy, 2020, 258, 114065.	5.1	16
589	Convective heat transfer in pipe flow for glycolated water-based carbon nanofluids. A thorough analysis. Journal of Molecular Liquids, 2020, 301, 112370.	2.3	12
590	Investigations of the turbulent thermal-hydraulic performance in circular heat exchanger tubes with multiple rectangular winglet vortex generators. Applied Thermal Engineering, 2020, 168, 114838.	3.0	70
591	Heat transfer correlation for circular and non-circular ducts in the transition regime. International Journal of Heat and Mass Transfer, 2020, 149, 119165.	2.5	19
592	Numerical calculations of the thermal-aerodynamic characteristics in a solar duct with multiple V-baffles. Engineering Applications of Computational Fluid Mechanics, 2020, 14, 1173-1197.	1.5	29
593	Double skin façade integrating semi-transparent photovoltaics: Experimental study on forced convection and heat recovery. Applied Energy, 2020, 278, 115647.	5.1	31
594	Validation of the Gnielinski correlation for evaluation of heat transfer coefficient of enhanced tubes by non-linear regression model: An experimental study of absorption refrigeration system. International Communications in Heat and Mass Transfer, 2020, 118, 104819.	2.9	13
595	Improvement of the performance of solar channels by using vortex generators and hydrogen fluid. Journal of Thermal Analysis and Calorimetry, 2022, 147, 545-566.	2.0	11
596	Combination of Co3O4 deposited rGO hybrid nanofluids and longitudinal strip inserts: Thermal properties, heat transfer, friction factor, and thermal performance evaluations. Thermal Science and Engineering Progress, 2020, 20, 100695.	1.3	33
597	Thermo-hydraulic performance of nanofluids flow in various internally corrugated tubes. Chemical Engineering and Processing: Process Intensification, 2020, 154, 108043.	1.8	64
598	Thermohydraulic analysis of hybrid smooth and spirally corrugated tubes. International Journal of Thermal Sciences, 2020, 158, 106520.	2.6	12
599	Making the case for cascaded organic Rankine cycles for waste-heat recovery. Energy, 2020, 211, 118912.	4.5	14
600	Improvement of heat transfer in heat exchangers with spiral springs with the square cross-section area. Heat and Mass Transfer, 2020, 56, 2801-2812.	1.2	0
601	Hydrodynamic and thermal analysis of water, ethylene glycol and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 4349-4386.	1.6	81
602	Experimental investigation of performance of plate heat exchanger as organic Rankine cycle evaporator. International Journal of Heat and Mass Transfer, 2020, 159, 120158.	2.5	14

#	Article	IF	Citations
603	Numerical and experimental investigations on heat transfer performance of the refrigerant-heated radiator. Applied Thermal Engineering, 2020, 179, 115748.	3.0	11
604	The study of temperature regimes of a pipe wall under turbulent regime and supercritical pressures. International Journal of Modern Physics B, 2020, 34, 2050182.	1.0	1
605	Numerical evaluation on the decaying swirling flow in a multi-lobed swirl generator. Engineering Applications of Computational Fluid Mechanics, 2020, 14, 1198-1214.	1.5	5
606	Thermal and hydraulic characteristics of TiO2/water nanofluid flow in tubes possessing internal trapezoidal and triangular rib shapes. Journal of Thermal Analysis and Calorimetry, 2022, 147, 379-392.	2.0	8
607	Properties, heat transfer, energy efficiency and environmental emissions analysis of flat plate solar collector using nanodiamond nanofluids. Diamond and Related Materials, 2020, 110, 108115.	1.8	39
608	Thermal performance of fly ash nanofluids at various inlet fluid temperatures: An experimental study. International Communications in Heat and Mass Transfer, 2020, 119, 104926.	2.9	19
609	Analysis of tubular receivers for concentrating solar tower systems with a range of working fluids, in exergy-optimised flow-path configurations. Solar Energy, 2020, 211, 999-1016.	2.9	19
610	Performance evaluation of Al ₂ O ₃ nanofluid as an enhanced heat transfer fluid. Advances in Mechanical Engineering, 2020, 12, 168781402095227.	0.8	19
611	On Aqua-Based Silica (SiO2–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator. Nanomaterials, 2020, 10, 1736.	1.9	25
612	Combination of baffling technique and high-thermal conductivity fluids to enhance the overall performances of solar channels. Engineering With Computers, 2022, 38, 607-628.	3.5	27
613	Assessment and Evaluation of the Thermal Performance of Various Working Fluids in Parabolic Trough Collectors of Solar Thermal Power Plants under Non-Uniform Heat Flux Distribution Conditions. Energies, 2020, 13, 3776.	1.6	21
614	Analysis of condensation and evaporation heat transfer inside 3-D enhanced tubes. Numerical Heat Transfer; Part A: Applications, 2020, 78, 525-540.	1.2	8
615	An experimental study of flow condensation with non-azeotropic refrigerant mixtures of R32/R134a in microchannels. Journal of Physics: Conference Series, 2020, 1677, 012095.	0.3	0
616	Analyses of buoyancy-driven convection. Advances in Heat Transfer, 2020, , 1-93.	0.4	11
617	Sonochemical preparation of rGO-SnO2 nanocomposite and its nanofluids: Characterization, thermal conductivity, rheological and convective heat transfer investigation. Materials Today Communications, 2020, 23, 101148.	0.9	27
618	On flow boiling of R-1270 in a small horizontal tube: Flow patterns and heat transfer. Applied Thermal Engineering, 2020, 178, 115403.	3.0	14
619	A numerical assessment on heat transfer and flow characteristics of nanofluid in tubes enhanced with a variety of dimple configurations. Thermal Science and Engineering Progress, 2020, 19, 100578.	1.3	21
620	The current state on the thermal performance of twisted tapes: A geometrical categorisation approach. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107929.	1.8	25

#	Article	IF	CITATIONS
621	Effect of ZnO-water based nanofluids from sonochemical synthesis method on heat transfer in a circular flow passage. International Communications in Heat and Mass Transfer, 2020, 114, 104591.	2.9	30
622	Effects of the configuration of winglet vortex generators on turbulent heat transfer enhancement in circular tubes. International Journal of Heat and Mass Transfer, 2020, 157, 119928.	2.5	43
623	A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion. Applied Energy, 2020, 269, 114962.	5.1	42
624	Analytical investigation of gas production from methane hydrates and the associated heat and mass transfer upon thermal stimulation employing a coaxial wellbore. Energy Conversion and Management, 2020, 209, 112616.	4.4	24
625	Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid. Energy, 2020, 198, 117353.	4.5	20
626	Enhancing Thermal Performance of a Parabolic Trough Collector with Inserting Longitudinal Fins in the Down Half of the Receiver Tube. Journal of Thermal Science, 2020, 29, 1309-1321.	0.9	10
627	Heat Transfer Performance of Fruit Juice in a Heat Exchanger Tube Using Numerical Simulations. Applied Sciences (Switzerland), 2020, 10, 648.	1.3	10
628	Comparison of the Evaporation and Condensation Heat Transfer Coefficients on the External Surface of Tubes in the Annulus of a Tube-in-Tube Heat Exchanger. Energies, 2020, 13, 952.	1.6	11
629	Experimental study on forced convection heat transfer of KNO3–Ca(NO3)2Â+ÂSiO2 molten salt nanofluid in circular tube. Solar Energy, 2020, 206, 900-906.	2.9	13
630	An Integrated Genetic-Algorithm/Artificial-Neural-Network Approach for Steady-State Modeling of Two-Phase Pressure Drop in Pipes. SPE Production and Operations, 2020, 35, 628-640.	0.4	2
631	A Novel Combo-Algorithm Applying Java In Thermal Modelling and Simulation of Energetic Axisymmetric Materials with Combustion Reactions. Results in Engineering, 2020, 12, 100045.	2,2	1
632	The cross-sectional curvature effect of twisted tapes on heat transfer performance. Chemical Engineering and Processing: Process Intensification, 2020, 154, 108008.	1.8	19
633	A Criterion of Heat Transfer Deterioration for Supercritical Organic Fluids Flowing Upward and Its Heat Transfer Correlation. Energies, 2020, 13, 989.	1.6	1
634	Optimum design study of a straight tube with different inserts for thermal performance characteristics. Heat Transfer, 2020, 49, 1955-1981.	1.7	2
635	New Correlations for Two Phase Flow Pressure Drop in Homogeneous Flows Model. Thermal Engineering (English Translation of Teploenergetika), 2020, 67, 92-105.	0.4	9
636	A Uniquely Finned Tube Heat Exchanger Design of a Condenser for Heavy-Duty Air Conditioning Systems. International Journal of Air-Conditioning and Refrigeration, 2020, 28, 2050004.	0.8	11
637	Experimental and numerical investigation of swirling turbulent flow and heat transfer due to insertion of twisted tapes of new models in a heated tube. Applied Thermal Engineering, 2020, 171, 115070.	3.0	19
638	Model development and performance investigation of staggered tube-bundle heat exchanger for seawater source heat pump. Applied Energy, 2020, 262, 114504.	5.1	9

#	Article	IF	CITATIONS
639	Experimental investigation of effect of different tube row-numbers, fin pitches and operating conditions on thermal and hydraulic performances of louvered and wavy finned heat exchangers. International Journal of Thermal Sciences, 2020, 151, 106256.	2.6	38
640	In pursuit of a replacement for conventional high-density polyethylene tubes in ground source heat pumps from their composites $\hat{a} \in A$ comparative study. Geothermics, 2020, 87, 101819.	1.5	6
641	Performance evaluation of the characteristics of flow and heat transfer in a tube equipped with twisted tapes of new configurations. International Journal of Thermal Sciences, 2020, 153, 106323.	2.6	25
642	Forced convection heat transfer of molten Salts: A review. Nuclear Engineering and Design, 2020, 362, 110591.	0.8	17
643	Thermal performance of diffusion-bonded compact heat exchangers. International Journal of Thermal Sciences, 2020, 153, 106384.	2.6	19
644	Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1637-1654.	2.0	87
645	Evaporation Heat Transfer of R134a on outside of Smooth and Enhanced Tubes. Heat Transfer Engineering, 2021, 42, 749-763.	1.2	6
646	Experimental investigation of convective heat transfer growth on ZnO@TiO2/DW binary composites/hybrid nanofluids in a circular heat exchanger. Journal of Thermal Analysis and Calorimetry, 2021, 143, 879-898.	2.0	14
647	Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids. Journal of Thermal Analysis and Calorimetry, 2021, 143, 859-878.	2.0	19
648	Flow Boiling of Water in a Rectangular Metallic Microchannel. Heat Transfer Engineering, 2021, 42, 492-516.	1.2	32
649	One-pot sonochemical synthesis route for the synthesis of ZnO@TiO2/DW hybrid/composite nanofluid for enhancement of heat transfer in a square heat exchanger. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1139-1155.	2.0	5
650	TiO ₂ /H ₂ O nanofluid flow and heat transfer analysis in V-pattern with combined protrusion obstacle square channel: experimental analysis and CFD validation. International Journal of Ambient Energy, 2021, 42, 652-671.	1.4	11
651	3D numerical investigation of turbulent forced convection in a double-pipe heat exchanger with flat inner pipe. Applied Thermal Engineering, 2021, 182, 116106.	3.0	47
652	Large eddy simulation of the turbulence heat and mass transfer of pulsating flow in a V-sharp corrugated channel. International Journal of Heat and Mass Transfer, 2021, 166, 120720.	2.5	16
653	Numerical study on the heat transfer deterioration and its mitigations for supercritical CO2 flowing in a horizontal miniature tube. Annals of Nuclear Energy, 2021, 151, 107982.	0.9	15
654	Experimental investigation of thermo-physical properties, heat transfer, pumping power, entropy generation, and exergy efficiency of nanodiamondÂ+ÂFe3O4/60:40% water-ethylene glycol hybrid nanofluid flow in a tube. Thermal Science and Engineering Progress, 2021, 21, 100799.	1.3	55
655	Numerical development of heat transfer correlation in asymmetrically heated turbulent channel flow. International Journal of Heat and Mass Transfer, 2021, 164, 120599.	2.5	8
656	An experimental study of refrigerant distribution in an automotive condenser. Applied Thermal Engineering, 2021, 184, 116259.	3.0	1

#	Article	IF	CITATIONS
657	Numerical investigation on heat transfer characteristics of <scp>heliumâ€xenon</scp> gas mixture. International Journal of Energy Research, 2021, 45, 11745-11758.	2.2	9
658	Two-Phase Flow Heat Transfer in Micro-Fin Tubes. Heat Transfer Engineering, 2021, 42, 369-386.	1.2	6
659	Numerical Investigation of Thermal-Hydraulic Characteristics for Turbulent Nanofluid Flow in Various Conical Double Pipe Heat Exchangers. , 2021, , .		8
660	Normal and Deteriorated Heat Transfer Under Heating Turbulent Supercritical Pressure Coolants Flows in Round Tubes. Advances in Chemical and Materials Engineering Book Series, 2021, , 494-532.	0.2	3
661	CFD-Based Simulation and Analysis of Hydrothermal Aspects in Solar Channel Heat Exchangers with Various Designed Vortex Generators. CMES - Computer Modeling in Engineering and Sciences, 2021, 126, 147-173.	0.8	4
662	Heat transfer enhancement and pressure drop in two-phase flow boiling using coiled wire as turbulent promoters: A review. AIP Conference Proceedings, 2021, , .	0.3	1
663	Effects of in-line deflectors on the overall performance of a channel heat exchanger. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 512-529.	1.5	13
664	Flow Boiling. Mechanical Engineering Series, 2021, , 161-216.	0.1	0
665	Numerical study of the thermo-energy of a tubular heat exchanger with longitudinal baffles. Materials Today: Proceedings, 2021, 45, 7306-7313.	0.9	12
666	Heat exchange in steam generator with low-boiling point fluid. Thermal Science, 2021, 25, 3569-3578.	0.5	2
667	ENERGY, ECONOMIC, ENVIRONMENTAL AND HEAT TRANSFER ANALYSIS OF A SOLAR FLAT-PLATE COLLECTOR WITH pH-TREATED Fe3O4/WATER NANOFLUID. International Journal of Energy for A Clean Environment, 2021, 22, 55-98.	0.6	12
668	Computational fluid dynamic simulations and heat transfer characteristic comparisons of various arc-baffled channels. Open Physics, 2021, 19, 51-60.	0.8	9
669	Experimental investigation of heat transfer in a triple tube heat exchanger with coiled spring inserts. Heat Transfer, 2021, 50, 4552-4574.	1.7	4
670	Simulink Model of a Thermoelectric Generator for Vehicle Waste Heat Recovery. Applied Sciences (Switzerland), 2021, 11, 1340.	1.3	15
671	Intensification of thermo-hydraulic and exergetic performance by wire matrix and wavy tape: An experimental study. International Communications in Heat and Mass Transfer, 2021, 121, 105124.	2.9	1
672	Fluid selection and advanced exergy analysis of dual-loop ORC using zeotropic mixture. Applied Thermal Engineering, 2021, 185, 116423.	3.0	23
673	Heat Transfer in Supercritical Fluids: A Review. Journal of Nuclear Engineering and Radiation Science, 2021, 7, .	0.2	11
674	An Experimental Study of In-Tube Condensation and Evaporation Using Enhanced Heat Transfer (EHT) Tubes. Energies, 2021, 14, 867.	1.6	5

#	Article	IF	CITATIONS
675	Thermal-Hydraulic Analysis of Parabolic Trough Collectors Using Straight Conical Strip Inserts with Nanofluids. Nanomaterials, 2021, 11, 853.	1.9	26
676	Experimental and numerical studies of air flow and heat transfer due to insertion of novel delta-winglet tapes in a heated channel. International Journal of Heat and Mass Transfer, 2021, 169, 120912.	2.5	14
677	Experimental investigation for heat and flow characteristics of solar air heater having symmetrical gaps in multiple-arc rib pattern as roughness elements. Experimental Heat Transfer, 2022, 35, 466-483.	2.3	18
678	Turbulent heat transfer and flow analysis of hybrid Al2O3-CuO/water nanofluid: An experiment and CFD simulation study. Applied Thermal Engineering, 2021, 188, 116589.	3.0	46
679	Heat Transfer Characteristics Within the Matrix Cooling Channels. Journal of Turbomachinery, 2021, 143, .	0.9	7
680	Parametric study and sensitivity analysis of a PV/microchannel direct-expansion CO2 heat pump. Solar Energy, 2021, 218, 282-295.	2.9	8
681	Turbulent convective heat transfer in helical tube with twisted tape insert. International Journal of Heat and Mass Transfer, 2021, 169, 120918.	2.5	43
682	A convective analytical model in turbulent boundary layer on a flat plate based on the unifying heat flux formula. International Journal of Thermal Sciences, 2021, 163, 106784.	2.6	5
683	Performance evaluation and entropy generation of chevron-type plate-fin equipped with ribs and holes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622110127.	1.1	0
684	Experimental investigation on thermo-hydraulic performance of water-based fly ash–Cu hybrid nanofluid flow in a pipe at various inlet fluid temperatures. International Communications in Heat and Mass Transfer, 2021, 124, 105238.	2.9	42
685	Viscosity correction in convective heat transfer correlation of non-Newtonian fluid pipe flow: Revisited. Chemical Engineering Science, 2021, 235, 116472.	1.9	3
686	Three-dimensional thermal modelling and heat transfer analysis in the heat collector element of parabolic-trough solar collectors. Applied Thermal Engineering, 2021, 189, 116457.	3.0	6
687	Heat Transfer Characteristics of Water Flowing in Small Diameter Tubes. Journal of the Japan Institute of Marine Engineering, 2021, 56, 367-372.	0.0	0
688	Aerodynamic Fields inside S-Shaped Baffled-Channel Air-Heat Exchangers. Mathematical Problems in Engineering, 2021, 2021, 1-11.	0.6	9
689	Experimental Study on Forced Convection Heat Transfer of Helium Gas through a Minichannel. International Journal of Heat and Mass Transfer, 2021, 171, 121117.	2.5	5
690	Energy, exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets. Applied Thermal Engineering, 2021, 192, 116916.	3.0	27
691	Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances. Renewable Energy, 2021, 171, 344-359.	4.3	14
692	Effect of TiN Coating on the Fouling Behavior of Crud on Pressurized Water Reactor Fuel Cladding. Journal of Nuclear Materials, 2021, 549, 152870.	1.3	8

#	Article	IF	CITATIONS
693	Numerical and Experimental Investigations of Micro Thermal Performance in a Tube with Delta Winglet Pairs. Micromachines, 2021, 12, 786.	1.4	3
694	Heat transfer and friction in trapezoidal channels with X-shaped ribs. International Journal of Thermal Sciences, 2021, 164, 106871.	2.6	8
695	Techno-economic feasibility analysis of zeotropic mixtures and pure fluids for organic Rankine cycle systems. Applied Thermal Engineering, 2021, 192, 116791.	3.0	27
696	Computational fluid dynamics analysis of buoyancy-aided turbulent mixed convection inside a heated vertical rectangular duct. Progress in Nuclear Energy, 2021, 137, 103766.	1.3	1
697	Effects of helical obstacle on heat transfer and flow in a tube. Progress in Nuclear Energy, 2021, 137, 103735.	1.3	1
698	Forced Convection Heat Transfer Outside Enhanced Tubes with Different Surface Structures. Heat Transfer Engineering, 2022, 43, 1222-1240.	1.2	2
699	Towards convective heat transfer optimization in aluminum tube automotive radiators: Potential assessment of novel Fe2O3-TiO2/water hybrid nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124, 424-436.	2.7	65
700	Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6847-6868.	2.0	25
701	Heat transfer and pressure drop performance of Al2O3/water and TiO2/water nanofluids in tube fitted with simple or modified spiral tape inserts. Journal of Thermal Science and Engineering Applications, 0, , 1-16.	0.8	4
702	Soft-ANN based correlation for air-water two-phase flow pressure drop estimation in a vertical mini-channel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622110203.	1.1	0
703	Two-phase heat transfer of R410A in annuli outside enhanced tubes with micro-fin and dimple. International Journal of Heat and Mass Transfer, 2021, 175, 121370.	2.5	13
704	Numerical investigation of gas permeation and condensation behavior of flexible risers. Journal of Petroleum Science and Engineering, 2021, 203, 108622.	2.1	7
705	Thermal Performance Investigation in Circular Tube with Stationary and Rotating Conical-Obstacle Inserts. Journal of Thermophysics and Heat Transfer, 2022, 36, 242-255.	0.9	6
706	Experimental study on heat transfer and pressure drop characteristics utilizing three types of water based nanofluids in a helical coil under isothermal boundary condition. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 237-252.	2.7	15
707	IR thermography study of flow structure and parameters in diffusion flames. Infrared Physics and Technology, 2021, 117, 103851.	1.3	4
708	Enhanced pool boiling of propane on horizontal U-shaped tubes in a large-scale confined space. International Journal of Refrigeration, 2022, 133, 19-29.	1.8	2
709	Experimental investigation on heat transfer characteristics of high temperature air in round tube. International Journal of Advanced Nuclear Reactor Design and Technology, 2021, 3, 200-205.	0.5	2
710	Development of a thermal-hydraulic analysis code for thermal sizing of once-through steam generators for SMR. Progress in Nuclear Energy, 2021, 139, 103883.	1.3	5

#	Article	IF	CITATIONS
711	Monitoring of service life consumption for tubular solar receivers: Review of contemporary thermomechanical and damage modeling approaches. Solar Energy, 2021, 226, 427-445.	2.9	10
712	Direct numerical simulation of convective heat transfer of supercritical pressure in a vertical tube with buoyancy and thermal acceleration effects. Journal of Fluid Mechanics, 2021, 927, .	1.4	16
713	A Comparative Study of Multiple Regression and Machine Learning Techniques for Prediction of Nanofluid Heat Transfer. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	7
714	Flow and heat transfer in obstacled twisted tubes. Case Studies in Thermal Engineering, 2021, 27, 101286.	2.8	3
715	Comparative energy, exergy and CO2 emission evaluations of a LS-2 parabolic trough solar collector using Al2O3/SiO2-Syltherm 800 hybrid nanofluid. Energy Conversion and Management, 2021, 245, 114596.	4.4	32
716	Investigation on thermophysical properties, convective heat transfer and performance evaluation of ultrasonically synthesized Ag-doped TiO2 hybrid nanoparticles based highly stable nanofluid in a minichannel. Thermal Science and Engineering Progress, 2021, 25, 100928.	1.3	24
717	Critical heat flux and the dryout of liquid film in vertical two-phase annular flow. International Journal of Heat and Mass Transfer, 2021, 177, 121487.	2.5	15
718	Role of buoyancy on the thermalhydraulic behavior of supercritical carbon dioxide flow through horizontal heated minichannel. International Journal of Thermal Sciences, 2021, 168, 107051.	2.6	11
719	Dynamic modeling, validation and analysis of direct air-cooling condenser with integration to the coal-fired power plant for flexible operation. Energy Conversion and Management, 2021, 245, 114601.	4.4	17
720	Effect of multi-phase flow on asphaltene deposition: Field case application of integrated simulator. Journal of Petroleum Science and Engineering, 2021, 206, 108972.	2.1	1
721	Experimental and numerical characterization of single-phase pressure drop and heat transfer enhancement in helical corrugated tubes. International Journal of Heat and Mass Transfer, 2021, 179, 121632.	2.5	16
722	Economic and thermo-mechanical design of tubular sCO2 central-receivers. Renewable Energy, 2021, 177, 1087-1101.	4.3	12
723	Numerical investigation of vortex induced vibration effects on the heat transfer for various aspect ratios ellipse cylinder. International Journal of Thermal Sciences, 2021, 170, 107138.	2.6	10
724	A calibrated organic Rankine cycle dynamic model applying to subcritical system and transcritical system. Energy, 2021, 237, 121494.	4.5	14
725	Experimental and numerical studies of intensified turbulent heat transfer in round pipes with curved wing vortex generators. International Journal of Heat and Mass Transfer, 2021, 180, 121823.	2.5	11
726	Experimental investigation on cooling heat transfer and buoyancy effect of supercritical carbon dioxide in horizontal and vertical micro-channels. International Journal of Heat and Mass Transfer, 2021, 181, 121792.	2.5	24
727	R410A flow condensation inside two dimensional micro-fin tubes and three dimensional dimple tubes. International Journal of Heat and Mass Transfer, 2022, 182, 121910.	2.5	10
728	Heating performance and spatial analysis of seawater-source heat pump with staggered tube-bundle heat exchanger. Applied Energy, 2022, 305, 117690.	5.1	7

#	ARTICLE	IF	CITATIONS
729	Prediction of heat transfer coefficient and friction factor of mini channel shell and tube heat exchanger using numerical analysis and experimental validation. International Journal of Thermal Sciences, 2022, 171, 107182.	2.6	4
7 30	Assessment of vortex generator shapes for enhancing thermohydraulic performance of fluid flow in a channel equipped with perforated chevron plate-fin. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1790-1815.	1.6	0
731	Design and thermal-hydraulic optimization of a shell and tube heat exchanger using bees algorithm. Thermal Science, 2022, 26, 693-703.	0.5	4
732	Augmentation of Heat Transfer and Pressure Drop Characteristics Inside a Double Pipe U-Tube Heat Exchanger by Using Twisted Tape Inserts. Lecture Notes in Mechanical Engineering, 2012, , 33-45.	0.3	2
733	Thermal calculations of plate–fin–and-tube heat exchangers with different heat transfer coefficients on each tube row. Energy, 2020, 203, 117806.	4.5	25
734	The effect of polyacrylamide drag reducing agent on friction factor and heat transfer coefficient in laminar, transition and turbulent flow regimes in circular pipes with different diameters. International Journal of Heat and Mass Transfer, 2020, 154, 119815.	2.5	12
735	Experimental correlations for oscillatory-flow friction and heat transfer in circular tubes with tri-orifice baffles. International Journal of Thermal Sciences, 2020, 156, 106480.	2.6	10
738	A comprehensive review on numerical approaches to simulate heat transfer of turbulent supercritical CO ₂ flows. Numerical Heat Transfer, Part B: Fundamentals, 2020, 77, 349-400.	0.6	12
739	Experimental study of convective heat transfer and pressure loss of SiO <inf>2</inf> /water nanofluids Part 1: Nanofluid characterization - Imposed wall temperature. , 2008, , .		2
740	Transient Thermal Behaviors of Ultra-Supercritical Steam Turbine Control Valves During the Cold Start Warm-Up Process: Conjugate Heat Transfer Simulation and Field Data Validation. Journal of Heat Transfer, 2019, 141, .	1.2	3
741	Shell-Side Condensation Characteristics of R410A on Horizontal Enhanced Tubes. Journal of Heat Transfer, 2020, 142, .	1.2	4
742	Evaporation Heat Transfer and Pressure Drop in Horizontal Tubes With Strip-Type Inserts Using Refrigerant 600a. Journal of Heat Transfer, 2000, 122, 387-391.	1.2	7
743	Numerical Simulation of Water/Al ₂ O ₃ Nanofluid Turbulent Convection. Advances in Mechanical Engineering, 2010, 2, 976254.	0.8	41
744	Entry-Length Effect on the Thermal-Hydraulic Design of Plasma Facing Components of Fusion Reactors, Part I: Non-MHD Flow. Fusion Science and Technology, 1991, 19, 1024-1029.	0.6	5
745	Thermal Modeling of Multiple-Line-Heat-Source Guarded Hot Plate Apparatus. , 0, , 79-79-19.		2
746	Optimal thermo aerodynamic performance of s-shaped baffled channels. Journal of Mechanical Engineering and Sciences, 2018, 12, 3888-3913.	0.3	19
747	HYDRAULIC RESISTANCE AND HEAT TRANSFER IN NONISOTHERMAL OIL PIPELINES WITH DRAG REDUCING ADDITIVES. Problems of Gathering Treatment and Transportation of Oil and Oil Products, 2020, , 50.	0.0	2
748	THE NUMERICAL STUDY OF HEAT TRANSFER ENHANCEMENT USING AL2O3-WATER NANOFLUID IN CORRUGATED DUCT APPLICATION. Journal of Thermal Engineering, 2018, 4, 1984-1997.	0.8	20

#	Article	IF	CITATIONS
749	Numerical investigations of flow and heat transfer enhancement in a semicircle zigzag corrugated channel using nanofluids. International Journal of Heat and Technology, 2018, 36, 1292-1303.	0.3	16
750	Experimental Study of Heat Transfer Enhancement in a Heated Tube Caused by Wire-Coil and Rings. Journal of Applied Fluid Mechanics, 2015, 8, 885-892.	0.4	16
758	Experimental studies on heat transfer and friction factor characteristics of a turbulent flow for internally grooved tubes. Thermal Science, 2016, 20, 1005-1015.	0.5	1
759	Heat Transfer Study for Thermal-Hydraulic Design of the Solid-Target of Spallation Neutron Source Journal of Nuclear Science and Technology, 2001, 38, 832-843.	0.7	2
760	Comparative Analysis of Flow and Convective Heat Transfer between 7-Pin and 19-Pin Wire-Wrapped Fuel Assemblies. Journal of Nuclear Science and Technology, 2008, 45, 653-661.	0.7	9
761	Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger. , 2015, , .		6
762	Superalloys for Ultra Supercritical Steam Turbinesi;½Oxidation Behavior., 2008,,.		3
763	Numerical Simulations of Heat Transfer Phenomena through a Baffled Rectangular Channel. International Journal of Mathematical, Engineering and Management Sciences, 2021, 6, 1230-1241.	0.4	0
764	Experimental and modeling investigation of using drag reducing agents as the wax depositions inhibitor in a simulated scaled pipeline. Petroleum Science and Technology, 2021, 39, 909-925.	0.7	0
765	Effects of tip-bleed holes on two-pass channel on heat transfer with various aspect ratios. Case Studies in Thermal Engineering, 2021, 28, 101593.	2.8	1
766	Generation of entropy of turbulent EG-water-Al ₂ O ₃ hybrid nanofluid flow through a channel of rectangular cross-section. International Journal of Ambient Energy, 2022, 43, 6017-6027.	1.4	3
767	Turbulent Heat Transfer Characteristics of Supercritical Carbon Dioxide for a Vertically Upward Flow in a Pipe Using Computational Fluid Dynamics and Artificial Neural Network. Journal of Heat Transfer, 2022, 144, .	1.2	3
768	Details on the Hydrothermal Characteristics within a Solar-Channel Heat-Exchanger Provided with Staggered T-Shaped Baffles. Energies, 2021, 14, 6698.	1.6	4
769	Thermal, hydraulic, exergitic and economic evaluation of a flat tube heat exchanger equipped with a plain and modified conical turbulator. Case Studies in Thermal Engineering, 2021, 28, 101587.	2.8	7
770	A Study of Scale Growth in Fossil Power Plants. Kagaku Kogaku Ronbunshu, 2004, 30, 391-398.	0.1	1
772	CONVECTION IN TURBULENT CHANNEL FLOW. , 2009, , 361-386.		0
773	Influence of Nanoparticle Shape Factor on Convective Heat Transfer of Water-Based ZnO Nanofluids. Performance Evaluation Criterion. International Journal of Mechanical and Industrial Engineering, 2011, , 106-112.	0.0	0
775	Comparison of Different Turbulent Models in Turbulent-Forced Convective Flow and Heat Transfer Inside Rectangular Cross-Sectioned Duct Heating at the Bottom Wall. , 2014, , 577-584.		0

#	Article	IF	CITATIONS
776	Wämeübergang bei turbulenter Rohrströmung. Wäme- Und StoffÃ⅓bertragung, 1987, , 169-194.	0.0	0
777	Membrane Filtration: A Priori Predictions of the Ideal Limiting Flux. , 1990, , 132-141.		О
778	HEAT TRANSFER WITH NONUNIFORM SURFACE HEAT FLUX AND THERMAL-HYDRAULIC DESIGN OF THE PLASMA-FACING COMPONENTS OF FUSION REACTORS. , 1991, , 973-977.		1
779	A Model for Predicting the Performance of Domestic Gas-Fired Water Heaters. , 1992, , 191-200.		O
780	A Near-Wall Turbulence Model for Flows with Different Prandtl Numbers. , 1993, , 33-42.		1
781	Evaluation of Thermal Performances of Various Fan-Shaped Pin-Fin Geometries. Transactions of the Korean Society of Mechanical Engineers, B, 2014, 38, 557-570.	0.0	O
782	Implementation of a nucleate boiling flux partitioning model for a CFD simulation of compact heat exchangers based on the local estimation of bulk properties. , 2014 , , .		2
784	Thermal Design of a Cooling Coil for Building Air Conditioning. Journal of the Korea Academia-Industrial Cooperation Society, 2015, 16, 6445-6452.	0.0	O
785	Performance Comparison between Indirect Evaporative Coolers made of Aluminum, Plastic or Plastic/Paper. Journal of the Korea Academia-Industrial Cooperation Society, 2015, 16, 8165-8175.	0.0	0
786	An analytical study on the thermal performance of multi-tube CO ₂ water heater. Journal of the Korea Academia-Industrial Cooperation Society, 2016, 17, 23-30.	0.0	0
787	Verification of Method for Predicting Thermal Environment in Tunnels by Model Experimentation . Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 2017, 58, 126-132.	0.1	2
788	Isı Transferi Akışkanı Olarak Eriyik Tuz Kullanılan Bir Gövde Boru Tipi Isı Değiştiricisinin Hesaplamal Akışkanlar Dinamiği Programı ile Analizi. Journal of Polytechnic, 0, , .	Ä <u>‡</u> Ö.4	1
789	Convection Fundamentals and Correlations. , 2018, , 243-370.		0
791	Dairesel Oyuntu ile Isı Transferi İyileştirilmesi Üzerine Sayısal Araştırma. Mehmet Akif Ersoy Üniversi Uygulamalı Bilimler Dergisi, 2019, 3, 19-31.	tesi 0.2	1
792	Condensation and Evaporation Heat Transfer Characteristics of Low Mass Fluxes in Horizontal Smooth Tube and Three-Dimensional Enhanced Tubes. Journal of Thermal Science and Engineering Applications, 2020, 12, .	0.8	1
793	Measurement of Internal Heat Transfer Distribution of Highly-Loaded Gas Turbine Blade by Combined Experimental/Numerical Method. E3S Web of Conferences, 2020, 197, 10007.	0.2	O
794	Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi. Journal of Polytechnic, 0, , .	0.4	1
796	Numerical and experimental study on thermal characteristics of louvered fin microchannel air preheaters. International Advanced Researches and Engineering Journal, 2020, Early, 64-75.	0.4	0

#	ARTICLE	IF	CITATIONS
797	Thermohydraulic Performance Optimization of Automobile Radiators Using Statistical Approaches. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	2
798	A comprehensive review of the effect of lubricant on the flow characteristics of supercritical CO2 during cooling. International Journal of Refrigeration, 2022, 133, 145-156.	1.8	7
799	Numerical Simulation for Comparative Thermo-Hydraulic Performance of Turbulent Flow in Tubes with Twisted Tape Inserts. Journal of Engineering Science, 2020, 16, 71-100.	0.4	2
800	Experimental study of heat transfer and flow of delta winglets inline arrays in a tube heat exchanger for enhanced heat transfer. Heat Transfer, 2021, 50, 3582-3602.	1.7	3
801	Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect. Applied Thermal Engineering, 2022, 200, 117655.	3.0	42
802	Influence of thermal stability on organic Rankine cycle systems using siloxanes as working fluids. Applied Thermal Engineering, 2022, 200, 117639.	3.0	7
803	Thermal-hydraulic performance in a tube with punched delta winglets inserts in turbulent flow. International Journal of Thermal Sciences, 2022, 172, 107326.	2.6	23
804	LDA measurements in a one-sided ribbed square channel at Reynolds numbers of 50,000 and 100,000. Experiments in Fluids, 2021, 62, 1.	1.1	7
805	AN INTEGRATED MODEL TO STUDY THE EFFECTS OF OPERATIONAL PARAMETERS ON THE PERFORMANCE AND POLLUTANT EMISSIONS IN A UTILITY BOILER. Journal of Thermal Engineering, 0, , 474-498.	0.8	2
806	Some Basics of the Single-Phase Boundary Layer Theory. , 2007, , 1-28.		O
807	Tek Taraflı Isıtmaya Maruz Yüksek Şekil Oranlı Minikanallarda Pasif Akış Kontrol Yöntemi Kullanıla Transferinin İyileştirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 0, , 175-184		0
809	Effects of Materials on the Heat Transfer Coefficient During Condensation and Evaporation of R410A. Journal of Solar Energy Engineering, Transactions of the ASME, 2021, 143, .	1.1	1
810	Experimental study on R410A flow boiling heat transfer outside three enhanced tubes with different fin structures. AIP Advances, 2020, 10, .	0.6	3
811	Effect of various multiple strip inserts and nanofluids on the thermal–hydraulic performances of parabolic trough collectors. Applied Thermal Engineering, 2022, 201, 117798.	3.0	18
812	Analysis of the thermohydrodynamic behavior of a cooling system equipped with adjustable fins crossed by the turbulent flow of air in forced convection. International Journal of Energy and Environmental Engineering, 0 , 1 .	1.3	5
813	Numerical Design and Studies of Multipurpose Concentrated Solar Thermal Heating System. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	0
814	Forced convection enhancement of air flowing inside circular pipe with varying the pitch (P) of wire-mesh porous media. Energy Reports, 2021, 7, 70-82.	2.5	8
815	Numerical investigation of the thermo-hydraulic performance of DNA inspired double and triple helix wire coils. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108736.	1.8	4

#	ARTICLE	IF	CITATIONS
816	System Design and Application of Supercritical and Transcritical CO2 Power Cycles: A Review. Frontiers in Energy Research, 2021, 9, .	1.2	6
817	Multi-objective optimization of geometrical parameters of dimples on a dimpled heat exchanger tube by Taguchi based Grey relation analysis and response surface method. International Journal of Thermal Sciences, 2022, 173, 107365.	2.6	26
818	Heat and Mass Transfer Equations for Turbulent Flow with Wide Ranges of Prandtl and Schmidt Numbers. Heat Transfer Engineering, 0 , 1 - 15 .	1.2	1
819	Effect of spherical balls insert in collector tube of parabolic trough collector by considering Al2O3-based water. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	11
820	Novel self-join winglet vortex generators for enhanced heat transfer of turbulent airflow in round tubes. International Communications in Heat and Mass Transfer, 2022, 130, 105806.	2.9	17
821	Computational analyses of parabolic trough solar collector in the presence of helical coil-insert. International Journal of Environmental Science and Technology, 2023, 20, 683-702.	1.8	8
822	Heat generation depth and temperature distribution in solar receiver tubes subjected to induction. Applied Thermal Engineering, 2022, 204, 117902 .	3.0	11
823	Comparative Study of Nusselt Number Correlations for Hitec Molten Salt. , 2020, , .		1
824	Incremento de la termotransferencia en un sistema de enfriadores enchaquetados, optimizando los flujos de agua. Enfoqute, 2020, 11, 71-86.	0.3	0
825	Comparison of 2D and 3D Modelling Applied to Single Phase Flow of Nanofluid through Corrugated Channels. Nigerian Journal of Basic and Medical Science, 2022, 14, 128-139.	0.3	1
826	Heat Transfer Enhancement in Parabolic through Solar Receiver: A Three-Dimensional Numerical Investigation. Nanomaterials, 2022, 12, 419.	1.9	23
827	Influence of Heat Exchanger Design on the Thermal Performance of a Domestic Wine Cooler Driven by a Magnetic Refrigeration System. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20200563.	0.3	7
828	Heat transfer study of four nested helical coils inside an absorption heat transformer. Experimental Heat Transfer, 2022, 35, 993-1015.	2.3	2
829	An automotive radiator with multi-walled carbon-based nanofluids: A study on heat transfer optimization using MCDM techniques. Case Studies in Thermal Engineering, 2022, 29, 101724.	2.8	33
830	A Numerical Study on Heat Transfer Enhancement and Fluid Flow of Enhanced Tube With Ellipsoidal Dimples and Protrusions. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	2
831	Effect of dimple pitch on thermal-hydraulic performance of tubes enhanced with ellipsoidal and teardrop dimples. Case Studies in Thermal Engineering, 2022, 31, 101835.	2.8	18
832	Heat transfer enhancement of ferrofluid flow in a solar absorber tube under non-uniform magnetic field created by a periodic current-carrying wire. Sustainable Energy Technologies and Assessments, 2022, 52, 101996.	1.7	5
833	Potential evaluation of water-based ferric oxide (Fe2O3-water) nanocoolant: An experimental study. Energy, 2022, 246, 123441.	4.5	9

#	Article	IF	CITATIONS
834	Shell side direct expansion evaporation of ammonia on a 3-D structured surface tube bundle with exit superheat effect. International Journal of Refrigeration, 2022, , .	1.8	0
835	Numerical study of thermally developing turbulent internal flows. International Journal of Heat and Mass Transfer, 2022, 188, 122623.	2.5	4
836	Thermohydraulic Experiments on a Supercritical Carbon Dioxide - Air Microtube Heat Exchanger. SSRN Electronic Journal, 0, , .	0.4	0
837	Hydro-thermal analysis of turbulent airflow over a rectangular channel with inclined baffles. , 2022, , .		0
838	CFD study of heat transfer augmentation and fluid flow characteristics of turbulent flow inside helically grooved tubes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	2
839	R410A flow boiling coefficient in horizontal annular channels of enhanced tubes, Part II: Heat transfer. International Journal of Refrigeration, 2022, 137, 43-50.	1.8	3
840	Design of Novel Cooling Systems Based on Metal Plates with Channels of Shapes Inspired by Nature. Applied Sciences (Switzerland), 2022, 12, 3350.	1.3	1
841	Heat transfer, pressure drop, and exergy analyses of a shot-peened tube in the tube heat exchanger using Al2O3 nanofluids for solar thermal applications. Powder Technology, 2022, 401, 117299.	2.1	15
842	Novel thermosyphon-assisted setup for determining heat exchanger thermal characteristics. Applied Thermal Engineering, 2022, 211, 118315.	3.0	2
843	Experimental and numerical study of thermal-hydraulic performance in a heat exchanger tube with circular ring's angular cutting inserts. Experimental Heat Transfer, 2023, 36, 509-527.	2.3	7
844	Experimental Assessment of an Analytical Model of the Convective Heat Transfer Coefficient in a Mine Gallery. Mining, Metallurgy and Exploration, 2022, 39, 969-981.	0.4	1
845	Dynamic performance of a multi-mode operation CO2-based system combining cooling and power generation. Applied Energy, 2022, 312, 118720.	5.1	6
846	Development of New Correlations and Parametric Optimization in Nanofluid Flow through Protruded Roughened Square Channel. Mathematical Problems in Engineering, 2022, 2022, 1-18.	0.6	2
847	A general model for flow boiling heat transfer in microfin tubes based on a new neural network architecture. Energy and Al, 2022, 8, 100151.	5.8	9
848	Hydrothermal characteristics of turbulent flow in a tube with solid and perforated conical rings. International Communications in Heat and Mass Transfer, 2022, 134, 106000.	2.9	22
849	Characteristics of scramjet regenerative cooling with endothermic chemical reactions. Acta Astronautica, 2022, 195, 1-11.	1.7	9
850	Experimental investigation and numerical investigations of heat transfer enhancement in a tube with punched winglets. International Journal of Thermal Sciences, 2022, 177, 107542.	2.6	7
851	Experimental study of heat transfer during the flow of a gas coolant in a heated quasi-triangular channel. International Journal of Heat and Mass Transfer, 2022, 190, 122771.	2.5	3

#	Article	IF	CITATIONS
852	Effect of Cladding Surface Roughness on Thermal-Hydraulic Response of Nuclear Fuel Rod of Advanced Gas-Cooled Reactor. Nuclear Science and Engineering, 2022, 196, 623-636.	0.5	0
853	Heat Transfer and Flow Behaviors of Ferrofluid in Three-Start Helically Fluted Tubes. Heat Transfer Engineering, 2022, 43, 1769-1782.	1.2	2
854	Experimental analysis to study the effect of perforated louvered stripâ€coiled spring insert on heat transfer performance in a double pipe heat exchanger. Heat Transfer, 2022, 51, 3035-3056.	1.7	4
855	Numerical Study of Turbulent Airflow Structure and Transfer of Heat Having Trapezoidal Baffles Attached on the Walls and Centerline of the Rectangular Channel. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	0.9	0
856	Numerical study on thermal-hydraulic characteristics of flattened microfin tubes. Chemical Product and Process Modeling, 2022, .	0.5	0
857	Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine. Energy, 2022, 252, 124023.	4.5	10
858	Condensation Flow and Heat Transfer Characteristics of R410A in Micro-Fin Tubes and Three-Dimensional Surface Enhanced Tubes. Energies, 2022, 15, 2951.	1.6	0
865	Heat Transfer of Ferrofluid in Fluted Tubes with an Electromagnetic Field. Heat Transfer Engineering, 2023, 44, 426-441.	1.2	2
866	A facile, green fabrication of aqueous nanofluids containing hydrophilic functionalized carbon nanotubes toward improving heat transfer in a closed horizontal flow passage. Powder Technology, 2022, 404, 117451.	2.1	4
867	Numerical Investigation of Thermal-Hydraulic Performance of U-Tubes Enhanced With Ellipsoidal 45 deg Dimples. Journal of Heat Transfer, 2022, 144, .	1.2	5
868	Optimization of Condensation Heat Transfer on enhanced and integral fin tubes by Functionalized-Graphene Layers. Heat and Mass Transfer, 2022, 58, 2147-2160.	1.2	4
869	Thermal and Hydraulic Performances of Carbon and Metallic Oxides-Based Nanomaterials. Nanomaterials, 2022, 12, 1545.	1.9	1
870	Experimental investigation on flow and heat transfer characteristics of He-Xe gas mixture. International Journal of Heat and Mass Transfer, 2022, 192, 122942.	2.5	5
871	Reference temperature correction and dimensionless number analysis for heat transfer of supercritical CO2 in horizontal tubes. International Journal of Heat and Mass Transfer, 2022, 194, 122973.	2.5	5
872	Comparison of the effect of using helical strips and fines on the efficiency and thermal–hydraulic performance of parabolic solar collectors. Sustainable Energy Technologies and Assessments, 2022, 52, 102254.	1.7	2
873	Evaporation flow patterns and heat transfer in copper and stainless steel three-dimensional dimpled tubes. International Journal of Heat and Mass Transfer, 2022, 193, 122954.	2.5	2
874	Effect of Geometry and Operational Parameters on the Dehumidification Performance of a Desiccant Coated Heat Exchanger. Science and Technology for the Built Environment, 0, , 1-21.	0.8	2
876	Investigation on cross-flow three-fluid compact heat exchanger under flow non-uniformity: an experimental study with ANN prediction. Experimental Heat Transfer, 2023, 36, 688-718.	2.3	0

#	Article	IF	CITATIONS
877	Experimental research on refrigerant condensation heat transfer and pressure drop characteristics in the horizontal microfin tubes. International Communications in Heat and Mass Transfer, 2022, 135, 106130.	2.9	3
878	Machine learning enabled condensation heat transfer measurement. International Journal of Heat and Mass Transfer, 2022, 194, 123016.	2.5	15
879	Experimental correlations for Nusselt number and friction factor of nanofluids. , 2022, , 1-23.		0
880	Potentials and challenges for pillow-plate heat exchangers: State-of-the-art review. Applied Thermal Engineering, 2022, 214, 118739.	3.0	11
881	A comprehensive performance analysis of meta-heuristic optimization techniques for effective organic rankine cycle design. Applied Thermal Engineering, 2022, 213, 118687.	3.0	5
882	Numerical Investigation on Turbulent Flow, Heat Transfer, and Entropy Generation of Water-Based Magnetic Nanofluid Flow in a Tube with Porous Blocks Under a Uniform Magnetic Field. SSRN Electronic Journal, 0, , .	0.4	0
883	DĶkme yük gemisi için Rejeneratif Organik Rankine Çevrimi Sisteminin Dekarbonizasyon Üzerindeki Etkisinin Araştűrılması. Turkish Journal of Maritime and Marine Sciences, 0, , .	0.2	0
884	Nanofluids thermal performance in the horizontal annular passages: a recent comprehensive review. Journal of Thermal Analysis and Calorimetry, 2022, 147, 11633-11660.	2.0	5
885	Effects of flow regime and geometric parameters on the performance of a parabolic trough solar collector using nanofluid. Numerical Heat Transfer; Part A: Applications, 2022, 82, 376-388.	1.2	3
886	Modelling and analysis of a complete adsorption heat pump system. Applied Thermal Engineering, 2022, 213, 118782.	3.0	4
887	Mass transfer modeling and sensitivity study of low-temperature Fischer-Tropsch synthesis. Chemical Engineering Science, 2022, 259, 117774.	1.9	2
888	A comprehensive second law analysis for a heat exchanger tube equipped with the rod inserted straight and twisted tape and using water/CuO nanofluid. International Journal of Thermal Sciences, 2022, 181, 107765.	2.6	14
889	Experiment and dynamic simulation of a solar tower collector system for power generation. Renewable Energy, 2022, 196, 946-958.	4.3	9
890	An innovative clustering technique to generate hybrid modeling of cooling coils for energy analysis: A case study for control performance in HVAC systems. Renewable and Sustainable Energy Reviews, 2022, 166, 112676.	8.2	8
891	Experimental investigation of the effect of a novel curved winglet vortex generator on heat transfer with a designed controller circuit. International Journal of Thermal Sciences, 2022, 180, 107724.	2.6	10
892	A review of nanotechnology fluid applications in geothermal energy systems. Renewable and Sustainable Energy Reviews, 2022, 167, 112729.	8.2	25
893	The second law of thermodynamic analysis for longitudinal strip inserted nanodiamond-Fe3O4/water hybrid nanofluids. International Journal of Thermal Sciences, 2022, 181, 107721.	2.6	7
894	Heat transfer and friction loss of flowing kenaf core non-wood pulp fibre suspensions to curb reject papers. Heat and Mass Transfer, 0, , .	1.2	0

#	Article	IF	CITATIONS
896	Numerical simulation on heat transfer and flow of supercritical methane in printed circuit heat exchangers. Cryogenics, 2022, 126, 103541.	0.9	5
897	Numerical investigation on turbulent flow, heat transfer, and entropy generation of water-based magnetic nanofluid flow in a tube with hemisphere porous under a uniform magnetic field. International Communications in Heat and Mass Transfer, 2022, 137, 106308.	2.9	14
898	Feasibility evaluation of nanofluid based solar collector for biodiesel hot wash: An experimental study. Solar Energy, 2022, 245, 385-403.	2.9	1
899	Performance analyses and heat transfer optimization of parabolic trough receiver with a novel single conical strip insert. Renewable Energy, 2022, 199, 335-350.	4.3	7
900	Heat transfer and exergy efficiency analysis of 60% water and 40% ethylene glycol mixture diamond nanofluids flow through a shell and helical coil heat exchanger. International Journal of Thermal Sciences, 2023, 184, 107901.	2.6	13
901	The validation, economic and enhancement of double pipe heat exchanger by CuO nanoparticles through COVID-19. AIP Conference Proceedings, 2022, , .	0.3	0
902	Effect of Louvered Curved-Baffles on Thermohydraulic Performance in Heat Exchanger Tube. SSRN Electronic Journal, 0, , .	0.4	0
903	Technoeconomic Optimization of Superalloy Supercritical Co2ÂMicrotube Shell-and-Tube Heat Exchangers. SSRN Electronic Journal, 0, , .	0.4	0
904	Analytical Evaluation of Forced Convection Heat Transfer Phenomena of Supercritical Hydrogen. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2022, 57, 254-260.	0.1	0
905	Performance evaluation of heat transfer characteristics of heat exchanger in longitudinal fluid flow with serpentine tubes of constant pitch. Materials Today: Proceedings, 2023, 72, 864-869.	0.9	2
906	Gövde Borulu Isı Değiştiricilerin Matematiksel Modellemesinde Alternatif Yaklaşımlar. , 0, , .		0
907	Experimental study on the thermophysical properties, heat transfer, thermal entropy generation and exergy efficiency of turbulent flow of ZrO2-water nanofluids. AEJ - Alexandria Engineering Journal, 2023, 65, 867-885.	3.4	9
908	Thermal Analysis of Graphene-Based Nanofluids for Energy System and Economic Feasibility. Journal of Nanomaterials, 2022, 2022, 1-17.	1.5	0
909	Impact of Temperature and Nanoparticle Concentration on Turbulent Forced Convective Heat Transfer of Nanofluids. Energies, 2022, 15, 7742.	1.6	1
910	Hydrothermal analysis of turbulent fluid flow inside a novel enhanced circular tube for solar collector applications. Waves in Random and Complex Media, 2023, 33, 225-236.	1.6	4
911	Heat Transfer and Flow Analysis in a Circular Tube Equipped with Triangular Helical Strip Inserts Under Turbulent Flow Conditions for the Application of Boiler. International Journal of Thermophysics, 2023, 44, .	1.0	2
912	Influence of Gas-to-Wall Temperature Ratio on the Leakage Flow and Cooling Performance of a Turbine Squealer Tip. Aerospace, 2022, 9, 627.	1.1	2
913	Convective heat transfer of the Taylor flow in a two-dimensional piston pump. PLoS ONE, 2022, 17, e0275897.	1.1	0

#	Article	IF	CITATIONS
914	Dynamic thermal analysis and creep-fatigue lifetime assessment of solar tower external receivers. Solar Energy, 2022, 247, 408-431.	2.9	9
915	Numerical analysis of conjugate heat transfer within internally channeled tubes. Applied Thermal Engineering, 2023, 223, 119596.	3.0	2
916	Experimental and numerical assessment on hydrothermal behaviour of MgO-Fe3O4/H2O hybrid nano-fluid. International Journal of Thermofluids, 2022, 16, 100231.	4.0	2
917	Numerical investigations of turbulent heat transfer enhancement in circular tubes via modified internal profiles. International Journal of Thermofluids, 2022, 16, 100237.	4.0	7
918	Scaled validation test for high prandtl number fluid mixed convection between parallel plates. Nuclear Engineering and Design, 2022, 399, 112006.	0.8	4
919	Role of transverse dimples in thermal-hydraulic performance of dimpled enhanced tubes. International Communications in Heat and Mass Transfer, 2022, 139, 106435.	2.9	5
920	Vibration effects on heat transfer characteristics of supercritical pressure hydrocarbon fuel in transition and turbulent states. Applied Thermal Engineering, 2023, 219, 119617.	3.0	4
921	Enhanced Heat Transfer Using Oil-Based Nanofluid Flow through Conduits: A Review. Energies, 2022, 15, 8422.	1.6	5
922	Investigation of heat transfer performance within annular geometries with swirl-inducing fins using clove-treated graphene nanoplatelet colloidal suspension. Journal of Thermal Analysis and Calorimetry, 2022, 147, 14873-14890.	2.0	6
923	Correlations on heat transfer rate and friction factor of a rectangular toothed v-cut twisted tape exhibiting the combined effects of primary and secondary vortex flows. International Communications in Heat and Mass Transfer, 2022, 139, 106503.	2.9	8
924	Numerical investigation of turbulent entropy production rate in conical tubes fitted with a twisted-tape insert. International Communications in Heat and Mass Transfer, 2022, 139, 106520.	2.9	16
925	HEAT TRANSFER AND RELATED PROBLEMS OF SUPERCRITICAL CARBON DIOXIDE FOR CSP. Annual Review of Heat Transfer, 2022, , .	0.3	0
926	Study of thermal performance and optimization of city gas station heaters equipped with turbulator in the fire tube section. Thermal Science and Engineering Progress, 2023, 37, 101573.	1.3	3
927	Technoeconomic optimization of superalloy supercritical CO2 microtube shell-and-tube-heat exchangers. Applied Thermal Engineering, 2023, 220, 119578.	3.0	7
928	Numerical study on the thermal-induced mechanical behavior in deep energy diaphragm wall (EDW): The long-term soil elastoplastic effects. Tunnelling and Underground Space Technology, 2023, 132, 104860.	3.0	3
929	Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature. Energy, 2023, 264, 126144.	4.5	1
930	CFD investigation on thermal hydraulics of the double-wall bayonet tube heat exchanger in CLEAR-S facility. Annals of Nuclear Energy, 2023, 182, 109595.	0.9	1
931	Intensification of thermal efficiency of a cross-flow heat exchanger under turbulent flow conditions using CuFe2O4/water nanofluid. International Journal of Thermal Sciences, 2023, 185, 108107.	2.6	4

#	Article	IF	CITATIONS
932	Design optimization of prismatic rib turbulators in a rectangular channel based on multi-objective criterion. International Journal of Thermal Sciences, 2023, 185, 108091.	2.6	3
933	Experimental study on condensation heat transfer and pressure drop characteristics of R32 flowing inside an alternating cross-section flattened tube. International Journal of Heat and Mass Transfer, 2023, 202, 123750.	2.5	3
934	Numerical and experimental evaluation of thermal enhancement using zinc nano-suspensions in a square flow passage. Journal of Thermal Analysis and Calorimetry, 0 , , .	2.0	0
935	Heat Transfer During the Tube Flow of an He–Xe Gas Mixture with a Substantial Pressure Gradient Due to the Strong Heating of the Tube. Journal of Engineering Physics and Thermophysics, 2022, 95, 1539-1547.	0.2	1
936	Improved General Correlation for Condensation in Channels. Inventions, 2022, 7, 114.	1.3	3
937	Prediction of nanofluid flows' optimum velocity in finned tube-in-tube heat exchangers using artificial neural network. Kerntechnik, 2023, 88, 100-113.	0.2	3
938	Performance simulation of expander-compressor boosted subcooling refrigeration system. International Journal of Refrigeration, 2023, 149, 237-247.	1.8	5
939	Heat transfer, friction factor and exergy efficiency analysis of nanodiamond-Fe3O4/water hybrid nanofluids in a tube with twisted tape inserts. Ain Shams Engineering Journal, 2023, 14, 102068.	3.5	3
940	Flow boiling in inner annulus of horizontal enhanced tubes. International Journal of Multiphase Flow, 2023, 160, 104367.	1.6	1
941	A Review on Heat Transfer Characteristics and Enhanced Heat Transfer Technology for Helium–Xenon Gas Mixtures. Energies, 2023, 16, 68.	1.6	O
942	Numerical study of perforated obstacles effects on the performance of solar parabolic trough collector. Frontiers in Chemistry, 0 , 10 , .	1.8	4
943	Investigation of novel turbulator with and without twisted configuration under turbulent forced convection of a CuO/water nanofluid flow inside a parabolic trough solar collector. AIMS Materials Science, 2023, 10, 112-138.	0.7	1
944	Enhancing heat transfer performance of automotive radiator with H2O / activated carbon nanofluids. Journal of Molecular Liquids, 2023, 371, 121153.	2.3	2
945	Forming experiment of extruded tube with crossed ellipsoidal dimples and numerical investigation on heat transfer enhancement and flow characteristics. International Communications in Heat and Mass Transfer, 2023, 141, 106599.	2.9	6
946	Effect of louvered curved-baffles on thermohydraulic performance in heat exchanger tube. Case Studies in Thermal Engineering, 2023, 42, 102717.	2.8	4
947	Multi-objective optimization of single-phase flow heat transfer characteristics in corrugated tubes. International Journal of Thermal Sciences, 2023, 186, 108119.	2.6	9
948	Thermohydraulic experiments on a supercritical carbon dioxide–air microtube heat exchanger. International Journal of Heat and Mass Transfer, 2023, 203, 123840.	2.5	3
949	Exergetic, Energetic, and entropy production evaluations of parabolic trough collector retrofitted with elliptical dimpled receiver tube filled with hybrid nanofluid. Applied Thermal Engineering, 2023, 223, 120004.	3.0	20

#	Article	IF	CITATIONS
950	Heat transfer performance of internal flow by inserting punched and non-punched vortex generators. International Journal of Thermal Sciences, 2023, 186, 108135.	2.6	7
951	Thermo-convective behavior and entropy generation studies on Alumina and Titania nanofluids flowing through polygonal ducts. International Journal of Thermal Sciences, 2023, 186, 108123.	2.6	3
952	Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl ve Hidrolik Performansa Olan Etkisinin Sa Olarak İncelenmesi. Journal of Polytechnic, 2024, 27, 313-328.	ıyısal 0.4	1
953	Numerical and Optimization Study on a Heat Exchanger Tube Inserted with Ring by Taguchi Approach. Health Sciences Quarterly, 2023, 3, 19-27.	0.0	O
954	EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS FOR VERTICAL DOWNFLOW USING TRADITIONAL AND 3D-PRINTED MINI TUBES. Journal of Enhanced Heat Transfer, 2023, 30, 69-82.	0.5	2
955	THERMAL BOUNDARY EFFECT ON THE HEAT TRANSFER PERFORMANCE OF A RIBBED COOLING CHANNEL WITH INTERSECTING RIBS. Journal of Applied Mechanics and Technical Physics, 2022, 63, 963-971.	0.1	0
956	Influencing factors analysis for the long-term thermal performance of medium and deep U-type borehole heat exchanger system. Journal of Building Engineering, 2023, 68, 106152.	1.6	2
957	Enhanced refrigerant flow boiling heat transfer in microstructured finned surfaces. International Journal of Heat and Mass Transfer, 2023, 207, 123999.	2.5	3
958	Geometric optimization of a solar tower receiver operating with supercritical CO2 as working fluid. Applied Thermal Engineering, 2023, 228, 120318.	3.0	4
959	Analysis on enhanced turbulent heat transfer and flow characteristic in a twisted and dimpled oval tube. European Mechanical Science, 2023, 7, 41-48.	0.4	O
960	Heat transfer of hydrogen with variable properties in a heated tube. International Journal of Heat and Mass Transfer, 2023, 209, 124128.	2.5	3
961	Two layered immiscible flow of viscoelastic liquid in a vertical porous channel with Hall current, thermal radiation and chemical reaction. International Communications in Heat and Mass Transfer, 2023, 142, 106612.	2.9	10
962	R410A and R32 condensation heat transfer and flow patterns inside horizontal micro-fin and 3-D enhanced tubes. International Communications in Heat and Mass Transfer, 2023, 142, 106638.	2.9	6
963	Thermal recovery characteristics of rock and soil around medium and deep U-type borehole heat exchanger. Applied Thermal Engineering, 2023, 224, 120071.	3.0	9
964	Evaporation Flow Heat Transfer Characteristics of Stainless Steel and Copper Enhanced Tubes. Energies, 2023, 16, 2331.	1.6	1
965	Condensation Flow Heat Transfer Characteristics of Stainless Steel and Copper Enhanced Tubes. Materials, 2023, 16, 1962.	1.3	O
966	Heat Transfer and Flow Study in a Pipe with Ring-Type Inserts: Experiment Study. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 0, , .	0.8	2
967	Numerical Study of Turbulent Nanofluid Flow in Double-Tube Heat Exchanger: The Role of Second Law Analysis. Arabian Journal for Science and Engineering, 2023, 48, 12269-12290.	1.7	1

#	Article	IF	CITATIONS
968	Experiment and Simulation of the Startup Processes for the Supercritical Carbon-Dioxide Closed Brayton Cycle. Applied Sciences (Switzerland), 2023, 13, 3566.	1.3	0
970	Effect of inclination angle on the thermal-hydraulic characteristics and entropy generation of Al ₂ O ₃ –water nanofluid for in-tube turbulent flow. World Journal of Engineering, 2023, ahead-of-print, .	1.0	1
971	Numerical investigation of an enhanced PTC absorber tube using cylindrical inserts. Heat Transfer, 0, ,	1.7	0
972	Entropy generation analysis of turbulent flow in conical tubes with dimples: a numerical study. Journal of Thermal Analysis and Calorimetry, 2023, 148, 5667-5685.	2.0	6
973	Review on Supercritical Fluids Heat Transfer Correlations, Part II: Variants of Correction Factors and Buoyancy-Related Dimensionless Variables. Heat Transfer Engineering, 2024, 45, 569-583.	1.2	0
974	Coupling of 3D thermal with 1D thermohydraulic model for single-phase flows of direct steam generation in parabolic-trough solar collectors. Applied Thermal Engineering, 2023, 229, 120614.	3.0	2
1021	Pumping Energy. , 2023, , 123-144.		0
1022	Heat Transfer Fundamentals and Building Loads. , 2023, , 15-44.		0
1023	Effect of various shapes for nanoparticles on the performance of a parabolic trough solar collector using CuO/water nanofluid. AIP Conference Proceedings, 2023, , .	0.3	0
1050	A NEW PREDICTION METHOD FOR SUBCOOLED CONDENSATION CONSIDERING NON-EQUILIBRIUM EFFECTS. , 2023, , .		0
1052	New Friction Factor and Nusselt Number Correlations for Turbulent Convection of Gas with Variable Properties. , 2023 , , .		0
1061	Heat transfer and pressure drop in a single-phase flow. , 2024, , 179-194.		O