Environmental control of reproduction in Themeda aus

Australian Journal of Botany 17, 375 DOI: 10.1071/bt9690375

Citation Report

#	Article	IF	CITATIONS
1	Effects of temperature and photoperiod on growth and reproductive development in Hyparrhenia hirta. Australian Journal of Agricultural Research, 1970, 21, 557.	1.5	14
2	Flower Induction and the Florigen Concept. Annual Review of Plant Physiology, 1971, 22, 365-394.	10.9	146
3	The Developmental Pattern in a Group of Therophytes. Flora: Morphology, Distribution, Functional Ecology of Plants, 1972, 161, 111-120.	1.2	20
4	The Developmental Pattern in a Group of Therophytes. Flora: Morphology, Distribution, Functional Ecology of Plants, 1972, 161, 121-128.	1.2	9
5	Estimation of the level of apomixis in plant populations. Heredity, 1974, 32, 321-333.	2.6	30
6	Adaptive Variability in the Growth of Danthonia caespitosa Gaud. Populations at Different Temperatures. Australian Journal of Botany, 1976, 24, 381.	0.6	23
7	Polyploidy, flowering phenology and climatic adaptation in Heteropogon contortus (Gramineae). Austral Ecology, 1976, 1, 213-222.	1.5	16
8	Flowering phenology of some native perennial tropical grasses from north-eastern Australia. Austral Ecology, 1977, 2, 199-205.	1.5	5
9	Environmental and Genetic Control of Reproduction in Danthonia caespitosa Populations. Australian Journal of Botany, 1978, 26, 351.	0.6	28
10	Isolation of diploid and tetraploid Sexual plants in guineagrass (Panicum maximum Jacq.). Breeding Science, 1979, 29, 228-238.	0.2	22
11	Breeding systems in the grasses: a survey. New Zealand Journal of Botany, 1979, 17, 547-574.	1.1	110
12	Complementary dominance of <i>themeda triandra</i> and panicum maximum examined through shoot production. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa, 1980, 15, 163-166.	0.1	4
13	Apomixis in Eremopogon foveolatus (Gramineae). Nordic Journal of Botany, 1981, 1, 97-101.	0.5	3
14	Flowering Behaviour of Four Annual Grass Species in Relation to Temperature and Photoperiod. Annals of Botany, 1982, 49, 469-475.	2.9	11
15	Dormancy and Germination of Seed of Eight Populations of Themeda australis. Australian Journal of Botany, 1982, 30, 373.	0.6	43
17	Gametophytic Apomixis. , 1984, , 475-518.		395
18	Growth and development of four Themeda triandra populations from southern Africa in response to temperature. South African Journal of Botany, 1985, 51, 350-354.	2.5	4
19	Plants and environment: Two decades of research at the Canberra phytotron. Botanical Review, The, 1985, 51, 203-272.	3.9	19

#	Article	IF	CITATIONS
20	INDIVIDUAL FLOWERING TIME IN A GOLDENROD (SOLIDAGO CANADENSIS): FIELD EXPERIMENT SHOWS GENOTYPE MORE IMPORTANT THAN ENVIRONMENT. American Journal of Botany, 1989, 76, 1681-1688.	1.7	49
21	Cytotaxonomic studies in Themeda triandra Forssk.: Part III: Sexual and apomictic embryo sac development in 53 collections. South African Journal of Botany, 1990, 56, 554-559.	2.5	4
22	Variation and Species Limits in Agamospermous Grasses. Systematic Botany, 1990, 15, 112.	0.5	32
23	Influence of photoperiod on the frequency of sexual embryo saes in facultative apomictic buffelgrass. Euphytica, 1991, 54, 141-145.	1.2	20
24	Effects of moisture supply in the dry season and subsequent defoliation on persistence of the savanna grasses Themeda triandra, Heteropogon contortus and Panicum maximum. Australian Journal of Agricultural Research, 1992, 43, 241.	1.5	46
25	Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules. Plant Cell, 1993, 5, 1425.	6.6	86
26	Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules Plant Cell, 1993, 5, 1425-1437.	6.6	363
27	Temperate native Australian grass improvement by selection. New Zealand Journal of Agricultural Research, 1996, 39, 487-497.	1.6	22
28	Ecotyptic Differences in the Flowering of Pimelea ferruginea (Thymelaeaceae) in Response to Cool Temperatures Australian Journal of Botany, 1996, 44, 47.	0.6	8
29	Discovery of highly apomictic and highly amphimictic dihaploids in Allium tuberosum. Sexual Plant Reproduction, 1997, 10, 8-12.	2.2	36
30	Seasonal differentiation ? a conservative reproductive barrier in two grasslandGentianella (Gentianaceae) species. Plant Systematics and Evolution, 1997, 208, 45-69.	0.9	32
31	Apomixis and sexuality in diploid and tetraploid accessions of Brachiaria decumbens. Sexual Plant Reproduction, 1999, 12, 43-52.	2.2	57
32	Trends in temperate Australian grass breeding and selection. Australian Journal of Agricultural Research, 2003, 54, 211.	1.5	35
33	Genotypic variation among sites within eleven Australian native grasses. Rangeland Journal, 2003, 25, 70.	0.9	5
34	Performance of native and introduced grasses for low-input pastures. 1. Survival and recruitment. Rangeland Journal, 2005, 27, 23.	0.9	29
35	The influence of genotype and environment on the fecundity and facultative expression of apomixis inHieracium pilosella. Folia Geobotanica, 2006, 41, 165-181.	0.9	12
36	Diversity in environmental controls of flowering in Australian plants. Scientia Horticulturae, 2008, 118, 161-167.	3.6	10
37	Seasonal flowering and evolution: the heritage from Charles Darwin. Functional Plant Biology, 2009, 36, 1027.	2.1	25

CITATION REPORT

#	Article	IF	CITATIONS
38	Agamospermy in outbred crosses of Fragaria vesca L. (Rosaceae). Russian Journal of Genetics, 2009, 45, 322-326.	0.6	3
39	New insights into the variability of reproduction modes in European populations of Rubus subgen. Rubus: how sexual are polyploid brambles?. Sexual Plant Reproduction, 2012, 25, 319-335.	2.2	44
40	DOES HYBRIDIZATION DRIVE THE TRANSITION TO ASEXUALITY IN DIPLOIDâ€,BOECHERA?. Evolution; International Journal of Organic Evolution, 2012, 66, 985-995.	2.3	119
41	The oxidative damage initiation hypothesis for meiosis. Plant Reproduction, 2013, 26, 351-367.	2.2	74
42	<i>Themeda triandra</i> : a keystone grass species. African Journal of Range and Forage Science, 2013, 30, 99-125.	1.4	47
43	Testing the "Local Provenance―Paradigm: A Common Garden Experiment in Cumberland Plain Woodland, Sydney, Australia. Restoration Ecology, 2013, 21, 569-577.	2.9	23
44	A tropical grass resource for pasture improvement and landscape management: <i>Themeda triandra</i> Forssk. Grass and Forage Science, 2013, 68, 205-215.	2.9	7
45	Revegetation with Australian native grasses – a reassessment of the importance of using local provenances. Rangeland Journal, 2013, 35, 155.	0.9	18
46	Turning up the heat on the provenance debate: Testing the †local is best' paradigm under heatwave conditions. Austral Ecology, 2014, 39, 600-611.	1.5	24
47	Dihaploidy yields diploid apomicts and parthenogens in Erigeron (Asteraceae). American Journal of Botany, 2014, 101, 865-874.	1.7	18
48	Genome scan of Kenyan Themeda triandra populations by AFLP markers reveals a complex genetic structure and hints for ongoing environmental selection. South African Journal of Botany, 2014, 92, 28-38.	2.5	11
49	Photoperiod Extension Enhances Sexual Megaspore Formation and Triggers Metabolic Reprogramming in Facultative Apomictic Ranunculus auricomus. Frontiers in Plant Science, 2016, 7, 278.	3.6	75
50	Seed Formation, Development, and Germination. Agronomy, 0, , 95-143.	0.2	9
51	Is evolution of apomicts driven by the phylogeography of the sexual ancestor? Insights from European and Caucasian brambles (<i>Rubus</i> , Rosaceae). Journal of Biogeography, 2017, 44, 2717-2728.	3.0	10
52	Many Facets of Dynamic Plasticity in Plants. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034629.	5.5	8
53	Did apomixis evolve from sex or was it the other way around?. Journal of Experimental Botany, 2019, 70, 2951-2964.	4.8	61
54	Apomixis in flowering plants: Developmental and evolutionary considerations. Current Topics in Developmental Biology, 2019, 131, 565-604.	2.2	45
55	Polyploidy affects the seed, dormancy and seedling characteristics of a perennial grass, conferring an advantage in stressful climates. Plant Biology, 2020, 22, 500-513.	3.8	26

#	ARTICLE	IF	CITATIONS
56	Spatial, climate and ploidy factors drive genomic diversity and resilience in the widespread grass <i>Themeda triandra</i> . Molecular Ecology, 2020, 29, 3872-3888.	3.9	22
57	Genes Modulating the Increase in Sexuality in the Facultative Diplosporous Grass Eragrostis curvula under Water Stress Conditions. Genes, 2020, 11, 969.	2.4	13
58	Understanding Past, and Predicting Future, Niche Transitions based on Grass Flowering Time Variation. Plant Physiology, 2020, 183, 822-839.	4.8	18
59	Ploidy-Dependent Effects of Light Stress on the Mode of Reproduction in the Ranunculus auricomus Complex (Ranunculaceae). Frontiers in Plant Science, 2020, 11, 104.	3.6	18
60	Eragrostis curvula, a Model Species for Diplosporous Apomixis. Plants, 2021, 10, 1818.	3.5	4
61	Systematik und Evolution der Samenpflanzen. , 1971, , 243-299.		4
62	Asexual Embryogenesis in Vascular Plants in Nature. Current Plant Science and Biotechnology in Agriculture, 1995, , 17-72.	0.0	14
63	Apomixis — other pathways for reproductive development in angiosperms. Advances in Cellular and Molecular Biology of Plants, 1994, , 486-512.	0.2	5
64	Sexuality of Angiosperms. , 1972, , 133-289.		124
65	Seed production of Australian native grass cultivars: an overview of current information and future research needs. Australian Journal of Experimental Agriculture, 2006, 46, 361.	1.0	27
66	Flowering time control in annual legumes: prospects in a changing global climate CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-14.	1.0	24
67	Degrees of sexuality in sexual plants of guineagrass by the simplified embryo sac analysis Breeding Science, 1983, 33, 45-54.	0.2	21
68	Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula). PLoS ONE, 2017, 12, e0175852.	2.5	87
69	Characterization of Apomictic Potential in Guayule (Parthenium argentatum) In Vivo and In Vitro. Journal of the American Society for Horticultural Science, 2002, 127, 404-408.	1.0	6
70	Flowering of Blandfordia grandiflora (Christmas bells) in response to fire frequency and temperature. Australian Journal of Botany, 2020, 68, 449.	0.6	1
72	Hybridisation and chloroplast capture between distinct <i>Themeda triandra</i> lineages in Australia. Molecular Ecology, 2022, 31, 5846-5860.	3.9	7
73	Independent recruitment of FRUITFULL-like transcription factors in the convergent origins of vernalization-responsive grass flowering. Molecular Phylogenetics and Evolution, 2023, 179, 107678.	2.7	1
74	<i>Themeda triandra</i> as a perennial seed crop in south-eastern Australia: What are the agronomic possibilities and constraints, and future research needs?. Cogent Food and Agriculture, 2022, 8, .	1.4	0

CITATION REPORT

CITATION REPORT