
 1

Long short-term memory networks in memristor crossbars

Can Li1, Zhongrui Wang1, Mingyi Rao1, Daniel Belkin1, Wenhao Song1, Hao Jiang1, Peng Yan1,
Yunning Li1, Peng Lin1, Miao Hu2, Ning Ge3, John Paul Strachan2, Mark Barnell4, Qing Wu4, R.
Stanley Williams2, J. Joshua Yang*1, Qiangfei Xia*1

1 Department of Electrical and Computer Engineering, University of Massachusetts, Amherst,
Massachusetts 01003, USA.
2 Hewlett Packard Labs, HP Enterprise, Palo Alto, California 94304, USA
3 HP Labs, HP Inc., Palo Alto, California 94304, USA.
4 Air Force Research Laboratory, Information Directorate, Rome, New York 13441, USA

*Email: jjyang@umass.edu; qxia@umass.edu

Abstract

Recent breakthroughs in recurrent deep neural networks with long short-term memory

(LSTM) units has led to major advances in artificial intelligence. State-of-the-art LSTM models

with significantly increased complexity and a large number of parameters, however, have a

bottleneck in computing power resulting from limited memory capacity and data communication

bandwidth. Here we demonstrate experimentally that LSTM can be implemented with a memristor

crossbar, which has a small circuit footprint to store a large number of parameters and in-memory

computing capability that circumvents the ‘von Neumann bottleneck’. We illustrate the capability

of our system by solving real-world problems in regression and classification, which shows that

memristor LSTM is a promising low-power and low-latency hardware platform for edge inference.

 2

Introduction.

The recent success of artificial intelligence largely results from the advances of deep neural

networks with various microstructures\cite{lecun2015nature}, among which long short- term

memory (LSTM) is an important unit\cite{lstm1997,lstm2000}. Enabling the learning process to

remember or forget the history of observations, LSTM-based recurrent neural networks (RNNs)

are responsible for recent achievements in analyzing temporal sequential data for applications

such as data prediction \cite{gomez2005evolino, bao2017prediction}, natural language

understanding \cite{jia2016data, karpathy2015unreasonable} machine translation

\cite{google2016tranlate}, speech recognition \cite{microsoft2017speech}, and video

surveillance \cite{lanz2017survillence}, etc. However, when implemented in conventional

digital hardware, LSTM networks have complicated structures and hence drawbacks for

inference latency and power consumption. These issues become more prominent as more

applications involve the processing of temporal data near the source in the era of the Internet of

Things (IoT). Although there has been an increased level of efforts in designing novel

architectures to accelerate LSTMs based neural networks\cite{Chang2017, euge2017lstm_fpga,

Cong2017lstm_fpga,ustc2017lstm_fpga, Conti2017, Gao2018DeltaRNN, Rizakis2018}low

parallelism and limited bandwidth between computing and memory units are still outstanding

issues. It is therefore imperative to seek an alternative computing paradigm for LSTM networks.

A memristor is a two-terminal ‘memory resistor’ \cite{chua1971memristor,

strukov2008memristor}, which performs computation via physical laws at the same location

where information is stored \cite{yang2013nnreview}. This feature removes the need for data

transfer between memory and computation entirely. Built into a crossbar architecture,

memristors have been successfully employed in feed-forward fully-connected neural networks

 3

\cite{li2018analog, ibm2018mixed, strukov2015training, burr2015training, yu2016binary,

wu2017face,hu2018dpe,li2018traininig} that showed significant advantages in power

consumption and inference latency over CMOS-based counterparts \cite{xu2018scaling,

cshwang2018review}. Short-term memory effects of some memristors were also utilized for

reservoir computing \cite{lu2017reservoir}. On the other hand, most state-of-the-art deep neural

networks are built with more sophisticated microstructures than fully-connected networks, in

which LSTMs are responsible for the recent success of temporal data processing. The memristor

crossbar implementation of an LSTM, to the best of our knowledge, has yet to be reported,

primarily because of the relative scarcity of large memristor arrays.

In this work, we demonstrate our experimental implementation of LSTM networks in

memristor crossbars. The memristors were monolithically integrated onto transistors forming

one-transistor one-memristor (1T1R) cells. By connecting a memristor fully-connected network

to a memristor recurrent LSTM network, we executed in-situ training and inference with the

multilayer LSTM-based RNN for both regression and classification problems. The memristor

LSTM network experiments succeeded in predicting airline passenger numbers and identifying

an individual human based on gait. This work shows that the LSTM networks built in memristor

crossbars represent a promising alternative computing paradigm with high speed-energy

efficiency.

Results

Memristor crossbar for LSTM. Neural networks containing LSTM units are recurrent, i.e. they

not only fully connect the nodes in different layers, but also recurrently connect the nodes in the

same layer at different time steps, as shown in Figure 1a. The recurrent connections in LSTM units

also involve gated units to control the remembering and forgetting, which enable the learning of

 4

long-term dependencies \cite{lstm1997,lstm2000}. The data flow in a standard LSTM unit is

shown in Figure 1b and is characterized by Equation 1 (linear matrix operations) and Equation 2

(gated nonlinear activations), or equivalently by Equations 3-5 in Methods.

where xt is the input vector at the present step, ht and ht−1 are the output vectors at the present and

previous time steps respectively, 𝐜̂# is the internal cell state, and "⊙ " is the element-wise

multiplication. s is the logistic sigmoid function, which yields %̂# , 𝐟(#, 𝐨*#	for the input, forget and

output gates. The model parameters are stored in weights W, recurrent weights U and bias

parameters b for cell activation (a) and each gate (i, f, o) respectively. Because of this complicated

structure, state-of-the-art deep RNNs involving LSTM units include massive quantities of model

parameters that typically exceeds the normal capacity of on-chip memory (usually static random

access memory, SRAM), and sometimes even off-chip main memory (usually dynamic random

access memory, DRAM). Consequently, the inference and training with the network will require

the parameters to be transferred to the processing unit from a separate chip for the computation,

and the data communication between chips heavily limits the performance of LSTM based RNNs

on conventional hardware.

To address this issue, we have adopted a memristor crossbar for an RNN and store the large

 5

number of parameters required by an LSTM-RNN as the conductances of the memristors. The

topography of this neural network architecture with the data flow direction is shown in Figure 1c.

The linear matrix multiplications are performed in situ in a memristor crossbar, removing the need

of transferring weight values back and forth. The model parameters are stored within the same

memristor crossbar that performs the analog matrix multiplications. We connected an LSTM layer

to a fully-connected layer for the experiments described here, and the layers can be cascaded into

more complicated structures in the future. For demonstration purposes, the gated unit in the LSTM

layer and the nonlinear unit in the fully-connected layer were implemented in software in the

present work, but they can be implemented by analog circuits \cite{Smagulova2018memrsitor}

without digital conversions to further significantly reduce the energy consumption and inference

latency.

The analog matrix unit in our LSTM was implemented in a 128×64 1T1R crossbar with

memristors monolithically integrated on top of a commercial foundry fabricated transistor

array\cite{li2018analog} (Figures 2a-2c). The integrated Ta/HfO2 memristors exhibited stable

multilevel conductance that has enabled matrix multiplication in the analog domain

\cite{Jiang2016Ta, li2018analog, hu2018dpe, li2018traininig}. With transistors controlling the

compliance current, the integrated memristor array was programmed by loading a pre-defined

conductance matrix with a write-and-verify approach (ex-situ training)\cite{ li2018analog,

hu2018dpe} or by a simple two-pulse scheme in a fully-connected neural network (in-situ

training)\cite{li2018traininig }. Inference in the LSTM layer was executed by applying voltages

on the row wires of the memristor crossbar and reading out the electrical current through the virtual

grounded column wires. The readout current vector is the dot product of the memristor

conductance matrix with the input voltage-amplitude-vector, which was obtained directly by

 6

physical laws (Ohm’s law for multiplication and Kirchhoff’s current law for summation). Each

parameter in the LSTM model was encoded by the conductance difference between two

memristors in the same column, and subtraction was calculated in the crossbar by applying

voltages with the same amplitude but different polarities on the corresponding row wires (Fig. 2a).

The applied voltage amplitude on the rows that connect to the memristors for the bias

representation is fixed across all the samples and time steps. The readout currents comprise four

parts that represent the vectors 𝐚-#, %̂#, 𝐟(#	and 𝐨*# as described in Equation 1, which were nonlinearly

activated and gated (Equation 2) and converted to voltages. The voltage vector (ht) was then fed

into the next layer (a fully-connected layer in this work) and recurrently to the LSTM layer itself

at the next time step (ht-1 at time t) (Figure 1c).

The neural network was trained in-situ within the memristor crossbar to compensate for

possible hardware imperfection, such as limited device yield, variation and noise in conductance

states \cite{yi2016noise_nc}, wire resistance, and analog peripheral asymmetry, etc. Before the

training, all memristor conductances were initialized by one set voltage pulse across the memristor

devices and synchronized gate voltages with a fixed amplitude. During the training, initial

inferences were performed on a batch of sequential data (mini-batch) and yielded sequential

outputs. After that, the memristor conductances were adjusted to make the inference outputs closer

to the target outputs (evaluated by a loss function, see Methods). The intended conductance update

values (∆G) were calculated using the back-propagation through time (BPTT)

algorithm\cite{sgdm, mozer1989bptt, werbos1988bptt} (see Methods for details). Th existing

conductances in the memristor crossbar were updated with a two-pulse scheme that has previously

been demonstrated to be effective in achieving linear and symmetric memristor conductance

updates \cite{li2018traininig}.

 7

Regression experiment. We first applied the memristor LSTM in predicting the number of airline

passengers for the next month, a typical example of a regression problem. We built a two-layer

RNN in a 128×64 1T1R memristor crossbar with each layer in a partition of the array. The input

of the RNN was the number of air passengers in the present month, and the output was the

projected number for the subsequent month. The RNN network structure is illustrated in Figure

3a. We used 15 LSTM units with a total of 2,040 memristors (34×60 array) representing 1,020

synaptic weights (Figure 3b), which took one data input, one fixed input for bias and 15 recurrent

inputs from themselves. The second layer of the network was a fully-connected (FC) layer with 15

inputs from the LSTM layer and another input as the bias. The recurrent weights in the LSTM

units represented the learned knowledge on when and what to remember and forget, and therefore

the output of the network was dependent on both present and previous inputs.

The dataset we chose for this prediction task included the airline passenger number per

month ranging from Jan 1949 to Dec 1960 with 144 observations\cite{airline_url}, in which the

first 96 samples were selected as the training set, and the remaining 48 samples as the testing set

(Figure 3c). During the inference, the number of passengers was linearly converted to a voltage

amplitude (smaller than 0.2 V in order not to disturb the memristor conductances). The final output

electrical current was scaled back to reflect the number of airline passengers. The training process

is to minimized the mean square error (Equation 7) between the data in the training set and the

network output, by the stochastic gradient descent through BPTT algorithm (see Methods). The

raw voltages applied on the memristor crossbar and the raw output currents during the inference

after 800 epochs are shown in Figures 3d-3g. The corresponding conductance and weight values

are shown in Supplementary Figure 1, although they were not used for either inference or training

process. The experimental training result in Figure 3c shows that the network learned to predict

 8

both the training data and the unseen testing data after 800 epochs of training.

Classification experiment. We further applied our memristor LSTM-RNN to identify an

individual human by the person’s gait. The gait as a biometric feature has a unique advantage when

identifying a human from a distance, as other biometrics (e.g. face) occupy too few pixels to be

recognizable. It becomes increasingly important in circumstances in which face recognition is not

feasible because of camouflage and/or lack of illumination. For employing gait in a surveillance

application scenario, it is preferable to deploy many cameras and perform the inference locally

rather than sending the raw video data back to a server in the cloud. Inference near the source

should be performed with low-power and small communication bandwidth, but still achieve low-

latency.

The memristor LSTM-RNN utilized a feature vector extracted from a video frame as the

input, and outputs the classification result as electrical current at the end of the sequence. (Figure

4a). We implemented the two-layer RNN by partitioning a 128×64 memristor crossbar (Figure

4b), in which 14 LSTM units in the first layer were fully connect to the 50-dimensional input

vector with 64×56 connections (implemented in a 128×56 memristor crossbar). The 14 LSTM

units further fully connected to eight output nodes. The classification result was represented by the

maximum dimension in the output vectors of the output nodes in the fully-connected layer.

To demonstrate the core operation of the memristor LSTM memristor network, the feature

vectors for the input of the LSTM-RNN were extracted from video frames by software. Human

silhouettes with 128×88 pixels were first pre-extracted from the raw video frames in the USF-

NIST gait dataset \cite{usf2002gait} and then processed into 128-dimensional width-profile-

vectors \cite{kale2004widthvector}. The vectors were then down-sampled to 50 dimensions to fit

the size of our crossbar (Figure 4c). We chose the video sequences from eight different people out

 9

of 75 in the original dataset. The videos cover various scenarios with people wearing two different

pairs of shoes on two different surface types (grass or concrete) taken from two different

viewpoints (eight co-variance). The videos sequences were further segmented into 664 sequences

each with 25 frames, as described in detail in Supplementary Figure 2. The training was performed

on 597 sequences randomly drawn from the dataset, while the remaining 67 unseen sequences

were used for the classification test. In state-of-the-art deep neural networks, the feature vectors

that feed into the LSTM layer are usually extracted by multiple convolutional layers and/or fully

connected layers without much human knowledge. The feature extraction step could also be

implemented in a memristor crossbar when multiple arrays are available in the near future

\cite{li2018analog}.

The training and inference processes were experimentally performed in the memristor

crossbar, with a procedure similar to that in the regression experiment (see Methods). The goal of

the training was to minimize the cross-entropy in the Bayesian probability (Equation 8 in

Methods), which was the loss function, that is calculated from the last time step electrical current

and the ground truth (Figure 4a). The desired weight update values were optimized with root mean

square propagation (RMSprop) \cite{rmsprop} based on the calculated weight gradient by the

BPTT algorithm, and applied to the memristor crossbar after the inference operation on one mini-

batch of 50 training sequences. The mean cross-entropy during the inference of each mini-batch

was calculated and shown in Figure 4d, from which one sees the effectiveness of the training with

the memristor crossbar. The classification test was conducted on the separate testing set after

training on each epoch. The classification accuracy increased steadily during the training, and the

maximum accuracy within the 50 epochs of training was 79.1%, which closely matched the defect-

free simulation (Figure 4e), confirming that the in-situ training adapted to the hardware

 10

imperfections without hand-tuned parameters.

Discussion

In summary, we have built multilayer RNNs with a memristor LSTM layer and a memristor fully-

connected layer. The successful demonstrations on both regression and classification tasks

exhibited the versatility of connecting the memristor neural network layers with different

configurations. The results open up a new direction for integrating multiple memristor crossbars

with different configurations on the same chip, which will minimize data transfer and significantly

reduce the inference latency and power consumption in a deep recurrent neural network.

Methods

1T1R array integration. The transistor array was fabricated in a commercial foundry using the 2

µm technology node. We then integrated our memristors in a university cleanroom. The transistors

were used as selector devices to mitigate the sneak path problem in the crossbar and to enable

precise conductance tuning. Two layers of metal wires were also fabricated in the foundry back-

end-of-the-line (BEOL) process as row and column wires to reduce the wire resistance (about 0.3

Ω between cells). The low wire resistance in the array is one of the key factors that provided

accurate matrix multiplication. The memristors were fabricated on top of the transistor array in the

UMass Amherst cleanroom, with sputtered palladium as the bottom electrode, atomic layer

deposited hafnia as the switching layer and sputtered tantalum as the top electrode.

Inference in the two layer LSTM-RNN. The network in this work had two layers, with the first

layer being the LSTM and the second a fully-connected layer. The algorithm can extend to more

layers because of the cascaded structure. The input to the network was xt, and the LSTM cell

activation at was calculated as shown EQUATION 3.

 11

The input gate, forget gate and the output gate that control the output are defined in

EQUATION 4

The output of the LSTM layer (as the hidden layer output in the two-layer RNN) was

determined by EQUATION 5. EQUATION 3, 4, 5 are equivalent to EQUATION 1, 2 in the main text, in

which the linear and nonlinear operations are separated for easier comprehension.

The final output of the RNN was read out by a fully-connected layer, and the function of

which is characterized by EQUATION 6

where f is the nonlinear activation function in the fully-connected layer. Specifically, we used the

logistic sigmoid function in the airline prediction experiment and the softmax function in the

human gait identification experiment.

Training with back-propagation through time (BPTT) The goal of the training process was to

minimize a loss function, which was a function of the network output yt and their targets yt (ground

 12

truth or labels). Specifically, we chose mean square loss error over all time steps for the airline

prediction experiment (EQUATION 7) and cross-entropy loss on the last time step for the human

gait identification experiment (EQUATION 8).

where n indexes over the sample, N is the batch size, t is the temporal sequence number, and T is

the total of the time steps in the sequence.

The training, i.e. model optimization, was based on the weight gradients of the loss

function. Since the weights stayed the same in the same mini-batch over all the time steps, the

gradients were accumulated before each weight update. The gradient of the loss function L on

sample n at sequence t is denoted as δvt = ./
.𝐯1
		, and is calculated by the backpropagation

through time (BPTT) algorithm \cite{mozer1989bptt, werbos1988bptt}. The last layer output

delta was calculated by EQUATION 9 for the airline prediction task and by EQUATION 10 for the gait

identification task.

where σ! is the derivative of the logistic sigmoid function.

 13

The previous layer deltas were calculated with the chain rule.

The computationally expensive steps described in EQUATION 11 and EQUATION 18 were

calculated in the crossbar. The weight gradients were calculated based on the delta rule.

The parameters (weights or bias) gradients were accumulated as described in EQUATION
21.

 14

The stochastic gradient descent with momentum (SGDM) optimizer that we used in the

airline prediction problem yielded the desired weight update value by EQUATION 22.

where η and α are the hyper-parameters for momentum and learning rate, respectively.

In the gait identification experiment, we used the root mean square propagation (RMSprop)

optimizer, which gives the desired weight update values by EQUATION 23.

where β, E, α and η are hyper-parameters, GRAD◦2 is the element-wise square operation on matrix

GRAD and ⊘ indicates the element-wise division operation.

Hyperparameters. The following table shows the hyperparameters during the training

experiment. They include both the hyperparameters for the neural network, and the physical

parameters to operate the memristor crossbar.

 15

Table 1: Training hyperparameters and physical parameters of the memristor crossbar for the regression
and classification experiments

Parameter Airline prediction Gait identification Description

α 0.01 0.01 Learning rate

η 0.9 0 Momentum

β N/A 0.9 Decay for RMSprop

e N/A 1 × 10−8 Denominator shift for RMSprop

G/W 1 × 10−4 3 × 10−4 Conductance-to-weight ratio

∆Vgate/∆G 1.02 × 104 1.02 × 104 Gate-voltage-to-conductance ratio

Vgate, 0 1.0 1.0 Initial gate voltage

Vset 2.5 2.5 Set voltage

Vreset 1.7 1.7 Reset voltage

Vread 0.2 0.2 Read voltage

Vgate, max 1.6 1.6 Maximum set gate voltage

Vgate, min 0.7 0.7 Minimum set gate voltage

Vgate, reset 5.0 5.0 Reset gate voltage

Data availability. The data that support the plots within this paper and other finding of this
study are available from the corresponding author upon reasonable request.

Reference

[airline_url] International airline passengers: monthly totals in thousands. (1976).
https://datamarket.com/data/set/22u3/international-airline- passengers-monthly-totals-in-thousands-
jan-49-dec-60. Accessed 01-March-2018.
[bao2017prediction] Bao, W., Yue, J. & Rao, Y. A deep learning framework for financial time
series using stacked autoencoders and long-short term memory. PloS one 12, e0180944 (2017).

 16

[burr2015training] Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale
neural net- work (165 000 synapses) using phase-change memory as the synaptic weight
element. IEEE Transactions on Electron Devices 62, 3498–3507 (2015).
[Chang2017] Chang, A. X. M. & Culurciello, E. Hardware accelerators for recurrent neural
networks on FPGA. Proceedings - IEEE International Symposium on Circuits and Systems
(2017).
[chua1971memristor] Chua, L. Memristor-the missing circuit element. IEEE Transactions on
circuit theory 18, 507–519 (1971).
[Cong2017lstm_fpga] Guan, Y., Yuan, Z., Sun, G. & Cong, J. Fpga-based accelerator for long
short-term memory re- current neural networks. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), 629–634 (2017).
[Conti2017] Conti, F., Cavigelli, L., Paulin, G., Susmelj, I. & Benini, L. Chipmunk: A
Systolically Scalable 0.9 mm2, 3.08 Gop/s/mW @ 1.2 mW Accelerator for Near-Sensor
Recurrent Neural Network Inference (2017). Preprint at http://arxiv.org/abs/1711.05734.
1711.05734.
[cshwang2018review] Jeong, D. S. & Hwang, C. S. Nonvolatile memory materials for
neuromorphic intelligent machines. Advanced Materials 30, 1704729 (2018).
[euge2017lstm_fpga] Chang, A. X. M. & Culurciello, E. Hardware accelerators for recurrent
neural networks on fpga. In 2017 IEEE International Symposium on Circuits and Systems
(ISCAS), 1–4 (2017).
[Gao2018DeltaRNN] Gao, C., Neil, D., Ceolini, E., Liu, S.-C. & Delbruck, T. DeltaRNN.
Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays - FPGA ’18 21– 30 (2018). http://dl.acm.org/citation.cfm?doid=3174243.3174261.
[gomez2005evolino] Schmidhuber, J., Wierstra, D. & Gomez, F. Evolino: hybrid
neuroevolution/optimal linear search for sequence learning. In Proceedings of the 19th
international joint conference on Artificial intelligence, 853–858 (Morgan Kaufmann Publishers
Inc., 2005).
[google2016tranlate] Wu, Y. et al. Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016).
[hu2018dpe] Hu, M. et al. Memristor-based analog computation and neural network classification with
a dot product engine. Advanced Materials 30, 1705914 (2018).
[ibm2018mixed] Le Gallo, M. et al. Mixed-precision in-memory computing. Nature Electronics
1, 246 (2018).
[jia2016data] Jia, R. & Liang, P. Data recombination for neural semantic parsing. arXiv preprint
arXiv:1606.03622 (2016).
[Jiang2016Ta] Jiang, H. et al. Sub-10 nm Ta Channel Responsible for Superior Performance of a
HfO2 Memristor. Scientific Reports 6, 28525 (2016).
[kale2004widthvector] Kale, A. et al. Identification of humans using gait. IEEE Transactions on
image processing 13, 1163–1173 (2004).

 17

[karpathy2015unreasonable] Karpathy, A. The unreasonable effectiveness of recurrent neural
networks. Andrej Karpathy blog (2015). URL http://karpathy.github.io/2015/05/21/rnn-
effectiveness/. Accessed 26-April-2018].
[lanz2017survillence] Sudhakaran, S. & Lanz, O. Learning to detect violent videos using
convolutional long short- term memory. In Advanced Video and Signal Based Surveillance
(AVSS), 2017 14th IEEE International Conference on, 1–6 (IEEE, 2017).

[lecun2015nature] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).
[lehtonen2009stateful] Lehtonen, E. & Laiho, M. Stateful implication logic with memristors. In
Nanoscale Architectures, 2009. NANOARCH’09. IEEE/ACM International Symposium on, 33–36
(IEEE, 2009).
[li2018analog] Li, C. et al. Analogue signal and image processing with large memristor
crossbars. Nature Electronics 1, 52 (2018).
[li2018traininig] Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer memristor
neural net- works. Nature Communications (in press, 2018).
[lstm1997] Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9,
1735–1780 (1997).
[lstm2000] Gers, F. A., Schmidhuber, J. & Cummins, F. Learning to forget: Continual prediction
with lstm. Neural Computation 12, 2451–2471 (2000).
[lu2017reservoir] Du, C., Cai, F., Zidan, M. A., Ma, W., Lee, S. H. & Lu, W. D. , “ Reservoir
computing using dynamic memristor for temporal information processing”. Nature
Communications 8, 2204 (2017).
[microsoft2017speech] Xiong, W. et al. The microsoft 2017 conversational speech recognition
system. arXiv preprint arXiv:1708.06073 (2017).
[mozer1989bptt] Mozer, M. C. A focused backpropagation algorithm for temporal pattern
recognition. Complex Systems 3, 349–381 (1989).
[Rizakis2018] Rizakis, M., Venieris, S. I., Kouris, A. & Bouganis, C.-S. Approximate FPGA-
based LSTMs under Computation Time Constraints (2018). Preprint at http://arxiv.org/abs/1801.
02190. 1801.02190.
[rmsprop] Tieleman, T. & Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning 4, 26–31
(2012).
[sgdm] Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-
propagating errors. Nature 323, 533 (1986).
[Smagulova2018memrsitor] Smagulova, K., Krestinskaya, O. & James, A.P. A memristor-based
long short term memory circuit. Analog Integr Circ Sig Process (2018).
https://doi.org/10.1007/s10470-018-1180-y
[stan2010stateful] Borghetti, J. et al. memristiveswitches enable statefullogic operations via
material implication. Nature 464, 873 (2010).
[strukov2008memristor] Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The
missing memristor found. Nature 453, 80 (2008).

 18

[strukov2015training] Prezioso, M. et al. Training and operation of an integrated neuromorphic
network based on metal-oxide memristors. Nature 521, 61 (2015).
[usf2002gait] Phillips, P. J., Sarkar, S., Robledo, I., Grother, P. & Bowyer, K. The gait
identification challenge problem: Data sets and baseline algorithm. In Pattern Recognition, 2002.
Proceedings. 16th International Conference on, vol. 1, 385–388 (IEEE, 2002).
[ustc2017lstm_fpga] Zhang, Y. et al. A power-efficient accelerator based on fpgas for lstm
network. In 2017 IEEE International Conference on Cluster Computing (CLUSTER), 629–630
(2017).
[werbos1988bptt] Werbos, P. J. Generalization of backpropagation with application to a recurrent
gas market model. Neural networks 1, 339–356 (1988).
[wu2017face] Yao, P. et al. Face classification using electronic synapses. Nature Communications
8, 15199 (2017).
[xu2018scaling] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature
Electronics 1, 216 (2018).
[yang2013nnreview] Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for
computing. Nature nanotechnology 8, 13 (2013).
[yi2016noise_nc] Yi, W. et al. Quantized conductance coincides with state instability and excess
noise in tantalum oxide memristors. Nature Communications 7, 11142 (2016).
[yu2016binary] Yu, S. et al. Binary neural network with 16 mb rram macro chip for classification
and online training. In Electron Devices Meeting (IEDM), 2016 IEEE International, 16–2 (IEEE,
2016).

Acknowledgements. This work was supported in part by the U.S. Air Force Research
Laboratory (AFRL; grant no. FA8750-15-2-0044) and the Intelligence Advanced Research
Projects Activity (IARPA; contract no. 2014-14080800008). Daniel Belkin, an undergraduate
from Swarthmore College was supported by NSF research experience for undergraduates (REU;
grant no. ECCS-1253073) at UMass. Peng Yan was visiting from Huazhong University of
Science and Technology under the support from the Chinese Scholarship Council (CSC) (grant
201606160074). Part of the device fabrication was conducted in the clean room of Center for
Hierarchical Manufacturing (CHM), an NSF Nanoscale Science and Engineering Center (NSEC)
located at the University of Massachusetts Amherst.

Author contributions. Q.X. conceived the idea. Q.X., J.J.Y., C.L. designed the experiments.
C.L., Z.W., D.B. did the programming, measurements, data analysis and simulation. M.R., P.Y,
C.L., H.J., N.G., P.L. built the integrated chips. Y.L., E.M., C.L., W.S., M.H., Z.W., J.P.S. built
the measurement system and firmware. Q.X., C.L., J.J.Y., R.S.W. wrote the manuscript. M.B.,
Q.W. and all other authors contributed to the result analysis and commented on the manuscript.

Competing Interests. The authors declare that they have no competing financial or non-financial
interests.

1

Figure 1: Schematic architecture of memristor accelerated long short-term memory
(LSTM) network. a, Schematic of a multilayer recurrent neural network (RNN) with input
nodes, recurrent hidden nodes and output nodes. The recurrent nodes (e.g. LSTM units) fully
connect to both the input nodes and the previous state of the recurrent nodes. b, The structure of a
standard LSTM cell (blue dashed box in a), which includes input, forget, and output gates to resolve
the vanishing or exploding gradient problems in standard RNN units and learn long-term
dependencies. c, The data flow in the present architecture. Input and output (I/O) data, X and Y,
are sent to/from the integrated chip (blue box) through off-chip peripheral circuits. The figure
shows a two-layer RNN which is composed of a LSTM layer and a fully-connected layer. For
both layers, the synaptic connections (parameters) are stored in-situ in the crossbar as
conductances, minimizing the data communication. In this work, the gated unit in the LSTMs
and the nonlinear unit in the fully connected layers were implemented in software. The LSTM
layer and fully connected layer can be cascaded to produce more hardware layers in hardware in
future work.

a b

c

Input neurons

Recurrent neurons

Output neurons

Input Gate

Forget Gate

Output Gate

LSTM cell

Memristor Crossbar
(Analog Matrix Multiplication)

Gated Unit

Memristor Crossbar
(Analog MM)

Nonlinear Unit

LSTM layer Fully-connected layer

2

Figure 2: LSTM units implemented in a memristor crossbar. a, One die one the integrated
1T1R chip with various array sizes (from 4×4 to 128×64) and testing circuits. b, Part of the
128×64 one-transistor one-memristor (1T1R) integrated array is used for the LSTM. The input
vectors (x) are converted to small analog voltages (V), which are applied on the row wires
of the memristor crossbar while the column wires are grounded. The currents in different
columns, which represent the solutions of matrix-vector multiplication, are labelled as ât, ̂ it,
f̂ t, ôt, respectively. The current vectors are then nonlinearly activated and gated to yield the
LSTM output vector ht, which is fed an inputs to the next layer, and the present layer of the
next time step. Scale bar, 500 µm c, Enlarged images of two 1T1R cells, with a circuit
diagrams that show the electrical connections. During the inference, voltages are applied on
the row wires (green), and currents are read from the column wires (blue). High voltages (~5
V) are applied on the gate wires to turn on all the transistors. Scale bar, 10 µm.

…
…

…
…

…
…

…
…

+

…
…

b a

c

3

Figure 3: Regression experiment for predicting the next month’s number of airline
passengers. a, Architecture of the two-layer recurrent neural network (RNN) configured for
prediction. The input xt is the observed number of passengers month t, and the output yt is
the predicted number for the month t + 1. We used 15 LSTM units with 2,040 memristors to
represent the required 1,020 synaptic weights. The output node was fully connected to the
15 LSTM output nodes by 32 memristors, and the final prediction was the nonlinear
activation of the fully-connected (FC) layer output after filtering by the logistic sigmoid
function. b, Partition of the 128×64 1T1R memristor array. A 34×60 sub-array was used for
the LSTM layer and a 32×1 sub-array was used for the FC layer. c, The in-situ training and
test results of the two-layer RNN. Two-thirds of the data are used for training, while the
remaining was used as the test set. The network precisely predicted the future airline
passenger numbers after training for 800 epochs. d-g, Raw voltage inputs and electrical
current outputs for the LSTM layer (d, f) and fully-connected layer (e, g). The data
presented in (c) is after activation and scaling of the data in (g).

LSTM
(15)

LSTM
(15)

LSTM
(15)

xt-1 xt xt+1

yt-1 yt yt+1

a c

200

400

600

800

Nu
m

be
r o

f a
irli

ne
 p

as
se

ng
er

s

Epoch 1

Epoch 200

194
9

195
0

195
1

195
2

195
3

195
4

195
5

195
6

195
7

195
8

195
9

196
0

Year

0

200

400

600

800

196
1

Epoch 800

200

400

600

800
Experimental
Prediction
Observation

Observation of current time step

Prediction on next time step

Training set Test set

FC(1) FC(1) FC(1)

Epoch 1

20 40 60 80 100 120 140
34 -0.2

-0.1

0

0.1

0.2

30

20

10

d e

f g

20 40 60 80 100 120 140

10

20

30
-0.2

-0.1

0

0.1

0.2

Voltage (V)

Voltage (V)

0 50 100 150
-50

0

50

C
ur

re
nt

 (µ
A)

Time Step

Time Step Time Step

LSTM layer voltage inputs

C
urrent (µA)

20 40 60 80 100 120 140

15

30

45

60 -150

-100

-50

0

50

100

150

Time Step

LSTM layer current outputs

Fully connected voltage inputs

Fully connected current outputs

×103

LSTM layer
(34×60)

FC layer (32×1)

b

4

Figure 4: Classification experiment for human identification by its gait. a, The two-layer
recurrent neural network (RNN) configuration for classification. In the RNN, there were 14
LSTM units, with 7,168 memristors representing the synaptic weights. The eight output nodes
were fully connected with the 14 LSTM nodes by 228 memristors, and a person was identified
by the maximum electrical current output in the last time step. The training of the network is to
minimized the cross-entropy between the predicted softmax probability in the final step (yN) and
ground truth, where N was the length of the temporal sequence. b, Partition of the 128×64 1T1R
memristor crossbar, in which a 128×56 sub-array was used for the LSTM layer and a 28×8 sub-
array was used for the fully-connected layer. c, We used the width profiles of the human
silhouettes extracted from a video as the inputs for the RNN. The pre-processing of the images is
illustrated in SUPPLEMENTARY FIGURE 2. d, The cross-entropy loss steadily decreases during the
training, showing the effectiveness of training of RNN with LSTM units. e, Classification
accuracy on the unseen testing set during the 50 epochs of in-situ training. The gray lines are the
results from 50 repeated simulations of a defect-free crossbar with randomly initialized weights.
Experimentally (blue line), we approached a maximum of 79.1% accuracy, which closely
matched the defect-free simulation, showing that the training step included significant defect
tolerance. The experimental conductance and weight values awerere readout as shown in
SUPPLEMENTARY FIGURE 3, and the raw current output and calculated Bayesian probability in the
classification test after training is shown in SUPPLEMENTARY FIGURE 4 for reference.

LSTM
(14)

LSTM
(14)

LSTM
(14)

xN-2

yN
a

d

e

c

Classification result

FC(8) FC(8) FC(8)

xN-1 xN

100 101 102 103

No of Updates

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Cr
os

s-
En

tro
py

 L
os

s

softmax

Experiment

0 20 40 60
Width (px)

0

10

20

30

40

50

0 20 40 60
Width (px)

0 20 40 60
Width (px)

0 10 20 30 40 50
Epoch #

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

Experiment

Defect-free simulation

LSTM layer
(128×56)

FC layer (28×8)b

5

Supplementary Figures

Supplementary Figure 1: Additional data for the regression experiment. a, Conductance
map of the 34×60 memristor array in the LSTM layer after the in-situ training. b, Measured
conductance of the 32 memristors in the fully-connected layer after training. c, Map of synaptic
weight calculated from the conductances shown in (a). d, Synaptic weights calculated from the
conductances shown in (b).

15 30 45 60

17

34 0

200

400

600

800
a

15 30 45 60
17 -400

-200
0
200
400

0 5 10 15
-200

0

200

400

0 5 10 15 20 25 30
0

200

400

b

Conductance (µS)
W

eight Value (µS)

Co
nd

uc
ta

nc
e

(µ
S)

W
eig

ht
 V

alu
e

(µ
S)

c d

6

Supplementary Figure 2: Pre-processing of the gait identification dataset. a, One frame from
the raw video. b, The extracted silhouette (ref. \cite{usf2002gait} in the main text) from the
video, which was further converted to a width profile vector. Each dimension of the width profile
vector represents the width of the silhouette at the corresponding height. c, The width profile
vectors at each frame in the video. d, The total width in the width vector profile in each frame
shows a periodic trend, which after processing a low-pass spectrum by an inverse Fourier
transformation of the low-passed spectrum is used to detect the gait cycles. e, One video is
divided into multiple samples according to the gait cycles.

a

b

11 22 33 44 55 66 77 88

16

32

48

64

80

96

112

128

16

32

48

64

80

96

112

128
20 40 60

Width (px)

b

c

20 40 60 80 100 120 140 160
Frame #

16
32
48
64
80
96

112
128

y

0

10

20

30

40

50

60

W
idt

h
(p

x)

d

0 20 40 60 80 100 120 140 160 180
Frame #

2000

3000

4000

5000

W
idt

h
su

m
m

at
ion

 (p
x)

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Sample #6 Sample #7 Sample #8 Sample #9
e

7

Supplementary Figure 3: Additional data for the classification experiment. a, Conductance
map of the 128×56 memristors in the LSTM layer after the in-situ training. b, Conductance map
of the 28×8 fully-connected layer after training. c, Map of synaptic weights calculated from the
conductances shown in (a). The LSTM synaptic weights are constituted by the weights (Wa, Wi,
Wf and Wo) connected to the input, and the recurrent weights (Ua, Ui, Uf and Uo) connected to
the LSTM outputs from the previous time step d, Map of the synaptic weights that calculated
from the conductances shown in (b).

c

a

14 28 42 56

1

50

64 -400

-300

-200

-100

0

100

200

300

400
W

eight Value (µS)

2 4 6 8

2

4

6

8

10

12

14 -400

-300

-200

-100

0

100

200

300

400

W
eight Value (µS)

14 28 42 56

1

50

64

114

128 0

100

200

300

400

500

600

700

800

Conductance (µS)

2 4 6 8

5

10

15

20

25

28 0

100

200

300

400

500

600

700

800

Conductance (µS)

b

d

8

Supplementary Figure 4: Output from the human identification inference. a, Raw electrical
current output after the in-situ training. Different curves represent the current output from
different columns (col1 to col8). The maximum current output is identified as the inference result
of the memristor RNN. b, The Bayesian probability computed from the data in (a) by the
softmax function.

a

b

0

0.2

0.4

0.6

0.8

1

Ba
ye

sia
n

pr
ob

ab
ilit

y

Person #1 Person #3Person #2 Person #4 Person #5 Person #6 Person #7 Person #8

col1 col2 col3 col4 col5 col6 col7 col8

Person #1
-400

-200

0

200

400

Cu
rre

nt
 (

A)

Person #3Person #2 Person #4 Person #5 Person #6 Person #7 Person #8

col1 col2 col3 col4 col5 col6 col7 col8

	Can_LSTM_Text_05292018_cl
	Can_LSTM_Figures_05292018

