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Abstract 
 

Recent breakthroughs in recurrent deep neural networks with long short-term memory 

(LSTM) units has led to major advances in artificial intelligence. State-of-the-art LSTM models 

with significantly increased complexity and a large number of parameters, however, have a 

bottleneck in computing power resulting from limited memory capacity and data communication 

bandwidth. Here we demonstrate experimentally that LSTM can be implemented with a memristor 

crossbar, which has a small circuit footprint to store a large number of parameters and in-memory 

computing capability that circumvents the ‘von Neumann bottleneck’. We illustrate the capability 

of our system by solving real-world problems in regression and classification, which shows that 

memristor LSTM is a promising low-power and low-latency hardware platform for edge inference. 

  



 2 

Introduction.  

The recent success of artificial intelligence largely results from the advances of deep neural 

networks with various microstructures\cite{lecun2015nature}, among which long short- term 

memory (LSTM) is an important unit\cite{lstm1997,lstm2000}. Enabling the learning process to 

remember or forget the history of observations, LSTM-based recurrent neural networks (RNNs) 

are responsible for recent achievements in analyzing temporal sequential data for applications 

such as data prediction \cite{gomez2005evolino, bao2017prediction}, natural language 

understanding \cite{jia2016data, karpathy2015unreasonable} machine translation 

\cite{google2016tranlate}, speech recognition \cite{microsoft2017speech}, and video 

surveillance \cite{lanz2017survillence}, etc. However, when implemented in conventional 

digital hardware, LSTM networks have complicated structures and hence drawbacks for 

inference latency and power consumption. These issues become more prominent as more 

applications involve the processing of temporal data near the source in the era of the Internet of 

Things (IoT). Although there has been an increased level of efforts in designing novel 

architectures to accelerate LSTMs based neural networks\cite{Chang2017, euge2017lstm_fpga, 

Cong2017lstm_fpga,ustc2017lstm_fpga, Conti2017, Gao2018DeltaRNN, Rizakis2018}low 

parallelism and limited bandwidth between computing and memory units are still outstanding 

issues. It is therefore imperative to seek an alternative computing paradigm for LSTM networks.  

A memristor is a two-terminal ‘memory resistor’ \cite{chua1971memristor, 

strukov2008memristor}, which performs computation via physical laws at the same location 

where information is stored \cite{yang2013nnreview}. This feature removes the need for data 

transfer between memory and computation entirely. Built into a crossbar architecture, 

memristors have been successfully employed in feed-forward fully-connected neural networks 
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\cite{li2018analog, ibm2018mixed, strukov2015training, burr2015training, yu2016binary, 

wu2017face,hu2018dpe,li2018traininig} that showed significant advantages in power 

consumption and inference latency over CMOS-based counterparts \cite{xu2018scaling, 

cshwang2018review}. Short-term memory effects of some memristors were also utilized for 

reservoir computing \cite{lu2017reservoir}. On the other hand, most state-of-the-art deep neural 

networks are built with more sophisticated microstructures than fully-connected networks, in 

which LSTMs are responsible for the recent success of temporal data processing. The memristor 

crossbar implementation of an LSTM, to the best of our knowledge, has yet to be reported, 

primarily because of the relative scarcity of large memristor arrays.   

In this work, we demonstrate our experimental implementation of LSTM networks in 

memristor crossbars. The memristors were monolithically integrated onto transistors forming 

one-transistor one-memristor (1T1R) cells. By connecting a memristor fully-connected network 

to a memristor recurrent LSTM network, we executed in-situ training and inference with the 

multilayer LSTM-based RNN for both regression and classification problems. The memristor 

LSTM network experiments succeeded in predicting airline passenger numbers and identifying 

an individual human based on gait. This work shows that the LSTM networks built in memristor 

crossbars represent a promising alternative computing paradigm with high speed-energy 

efficiency. 

Results 

Memristor crossbar for LSTM. Neural networks containing LSTM units are recurrent, i.e. they 

not only fully connect the nodes in different layers, but also recurrently connect the nodes in the 

same layer at different time steps, as shown in Figure 1a. The recurrent connections in LSTM units 

also involve gated units to control the remembering and forgetting, which enable the learning of 
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long-term dependencies \cite{lstm1997,lstm2000}. The data flow in a standard LSTM unit is 

shown in Figure 1b and is characterized by Equation 1 (linear matrix operations) and Equation 2 

(gated nonlinear activations), or equivalently by Equations 3-5 in Methods. 

 

where xt is the input vector at the present step, ht and ht−1 are the output vectors at the present and 

previous time steps respectively, 𝐜̂# is the internal cell state, and "⊙ " is the element-wise 

multiplication. s is the logistic sigmoid function, which yields %̂# , 𝐟(#, 𝐨*#	for the input, forget and 

output gates. The model parameters are stored in weights W, recurrent weights U and bias 

parameters b for cell activation (a) and each gate (i, f, o) respectively. Because of this complicated 

structure, state-of-the-art deep RNNs involving LSTM units include massive quantities of model 

parameters that typically exceeds the normal capacity of on-chip memory (usually static random 

access memory, SRAM), and sometimes even off-chip main memory (usually dynamic random 

access memory, DRAM). Consequently, the inference and training with the network will require 

the parameters to be transferred to the processing unit from a separate chip for the computation, 

and the data communication between chips heavily limits the performance of LSTM based RNNs 

on conventional hardware. 

To address this issue, we have adopted a memristor crossbar for an RNN and store the large 
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number of parameters required by an LSTM-RNN as the conductances of the memristors. The 

topography of this neural network architecture with the data flow direction is shown in Figure 1c. 

The linear matrix multiplications are performed in situ in a memristor crossbar, removing the need 

of transferring weight values back and forth. The model parameters are stored within the same 

memristor crossbar that performs the analog matrix multiplications. We connected an LSTM layer 

to a fully-connected layer for the experiments described here, and the layers can be cascaded into 

more complicated structures in the future. For demonstration purposes, the gated unit in the LSTM 

layer and the nonlinear unit in the fully-connected layer were implemented in software in the 

present work, but they can be implemented by analog circuits \cite{Smagulova2018memrsitor} 

without digital conversions to further significantly reduce the energy consumption and inference 

latency. 

The analog matrix unit in our LSTM was implemented in a 128×64 1T1R crossbar with 

memristors monolithically integrated on top of a commercial foundry fabricated transistor 

array\cite{li2018analog} (Figures 2a-2c). The integrated Ta/HfO2 memristors exhibited stable 

multilevel conductance that has enabled matrix multiplication in the analog domain 

\cite{Jiang2016Ta, li2018analog, hu2018dpe, li2018traininig}. With transistors controlling the 

compliance current, the integrated memristor array was programmed by loading a pre-defined 

conductance matrix with a write-and-verify approach (ex-situ training)\cite{ li2018analog, 

hu2018dpe} or by a simple two-pulse scheme in a fully-connected neural network (in-situ 

training)\cite{li2018traininig }. Inference in the LSTM layer was executed by applying voltages 

on the row wires of the memristor crossbar and reading out the electrical current through the virtual 

grounded column wires. The readout current vector is the dot product of the memristor 

conductance matrix with the input voltage-amplitude-vector, which was obtained directly by 
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physical laws (Ohm’s law for multiplication and Kirchhoff’s current law for summation). Each 

parameter in the LSTM model was encoded by the conductance difference between two 

memristors in the same column, and subtraction was calculated in the crossbar by applying 

voltages with the same amplitude but different polarities on the corresponding row wires (Fig. 2a). 

The applied voltage amplitude on the rows that connect to the memristors for the bias 

representation is fixed across all the samples and time steps. The readout currents comprise four 

parts that represent the vectors 𝐚-#, %̂#, 𝐟(#	and 𝐨*# as described in Equation 1, which were nonlinearly 

activated and gated (Equation 2) and converted to voltages. The voltage vector (ht) was then fed 

into the next layer (a fully-connected layer in this work) and recurrently to the LSTM layer itself 

at the next time step (ht-1 at time t) (Figure 1c).  

The neural network was trained in-situ within the memristor crossbar to compensate for 

possible hardware imperfection, such as limited device yield, variation and noise in conductance 

states \cite{yi2016noise_nc}, wire resistance, and analog peripheral asymmetry, etc. Before the 

training, all memristor conductances were initialized by one set voltage pulse across the memristor 

devices and synchronized gate voltages with a fixed amplitude. During the training, initial 

inferences were performed on a batch of sequential data (mini-batch) and yielded sequential 

outputs. After that, the memristor conductances were adjusted to make the inference outputs closer 

to the target outputs (evaluated by a loss function, see Methods). The intended conductance update 

values (∆G) were calculated using the back-propagation through time (BPTT) 

algorithm\cite{sgdm, mozer1989bptt, werbos1988bptt} (see Methods for details). Th existing 

conductances in the memristor crossbar were updated with a two-pulse scheme that  has previously 

been demonstrated to be effective in achieving linear and symmetric memristor conductance 

updates \cite{li2018traininig}. 
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Regression experiment. We first applied the memristor LSTM in predicting the number of airline 

passengers for the next month, a typical example of a regression problem. We built a two-layer 

RNN in a 128×64 1T1R memristor crossbar with each layer in a partition of the array. The input 

of the RNN was the number of air passengers in the present month, and the output was the 

projected number for the subsequent month. The RNN network structure is illustrated in Figure 

3a. We used 15 LSTM units with a total of 2,040 memristors (34×60 array) representing 1,020 

synaptic weights (Figure 3b), which took one data input, one fixed input for bias and 15 recurrent 

inputs from themselves. The second layer of the network was a fully-connected (FC) layer with 15 

inputs from the LSTM layer and another input as the bias. The recurrent weights in the LSTM 

units represented the learned knowledge on when and what to remember and forget, and therefore 

the output of the network was dependent on both present and previous inputs. 

The dataset we chose for this prediction task included the airline passenger number per 

month ranging from Jan 1949 to Dec 1960 with 144 observations\cite{airline_url}, in which the 

first 96 samples were selected as the training set, and the remaining 48 samples as the testing set 

(Figure 3c). During the inference, the number of passengers was linearly converted to a voltage 

amplitude (smaller than 0.2 V in order not to disturb the memristor conductances). The final output 

electrical current was scaled back to reflect the number of airline passengers. The training process 

is to minimized the mean square error (Equation 7) between the data in the training set and the 

network output, by the stochastic gradient descent through BPTT algorithm (see Methods). The 

raw voltages applied on the memristor crossbar and the raw output currents during the inference 

after 800 epochs are shown in Figures 3d-3g. The corresponding conductance and weight values 

are shown in Supplementary Figure 1, although they were not used for either inference or training 

process. The experimental training result in Figure 3c shows that the network learned to predict 
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both the training data and the unseen testing data after 800 epochs of training.  

Classification experiment. We further applied our memristor LSTM-RNN to identify an 

individual human by the person’s gait. The gait as a biometric feature has a unique advantage when 

identifying a human from a distance, as other biometrics (e.g. face) occupy too few pixels to be 

recognizable. It becomes increasingly important in circumstances in which face recognition is not 

feasible because of camouflage and/or lack of illumination. For employing gait in a surveillance 

application scenario, it is preferable to deploy many cameras and perform the inference locally 

rather than sending the raw video data back to a server in the cloud.  Inference near the source 

should be performed with low-power and small communication bandwidth, but still achieve low-

latency.  

The memristor LSTM-RNN utilized a feature vector extracted from a video frame as the 

input, and outputs the classification result as electrical current at the end of the sequence. (Figure 

4a). We implemented the two-layer RNN by partitioning a 128×64 memristor crossbar (Figure 

4b), in which 14 LSTM units in the first layer were fully connect to the 50-dimensional input 

vector with 64×56 connections (implemented in a 128×56 memristor crossbar). The 14 LSTM 

units further fully connected to eight output nodes. The classification result was represented by the 

maximum dimension in the output vectors of the output nodes in the fully-connected layer. 

To demonstrate the core operation of the memristor LSTM memristor network, the feature 

vectors for the input of the LSTM-RNN were extracted from video frames by software. Human 

silhouettes with 128×88 pixels were first pre-extracted from the raw video frames in the USF-

NIST gait dataset \cite{usf2002gait} and then processed into 128-dimensional width-profile-

vectors \cite{kale2004widthvector}. The vectors were then down-sampled to 50 dimensions to fit 

the size of our crossbar (Figure 4c). We chose the video sequences from eight different people out 
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of 75 in the original dataset. The videos cover various scenarios with people wearing two different 

pairs of shoes on two different surface types (grass or concrete) taken from two different 

viewpoints (eight co-variance). The videos sequences were further segmented into 664 sequences 

each with 25 frames, as described in detail in Supplementary Figure 2. The training was performed 

on 597 sequences randomly drawn from the dataset, while the remaining 67 unseen sequences 

were used for the classification test. In state-of-the-art deep neural networks, the feature vectors 

that feed into the LSTM layer are usually extracted by multiple convolutional layers and/or fully 

connected layers without much human knowledge. The feature extraction step could also be 

implemented in a memristor crossbar when multiple arrays are available in the near future 

\cite{li2018analog}. 

The training and inference processes were experimentally performed in the memristor 

crossbar, with a procedure similar to that in the regression experiment (see Methods). The goal of 

the training was to minimize the cross-entropy in the Bayesian probability (Equation 8 in 

Methods), which was the loss function, that is calculated from the last time step electrical current 

and the ground truth (Figure 4a). The desired weight update values were optimized with root mean 

square propagation (RMSprop) \cite{rmsprop} based on the calculated weight gradient by the 

BPTT algorithm, and applied to the memristor crossbar after the inference operation on one mini-

batch of 50 training sequences. The mean cross-entropy during the inference of each mini-batch 

was calculated and shown in Figure 4d, from which one sees the effectiveness of the training with 

the memristor crossbar. The classification test was conducted on the separate testing set after 

training on each epoch. The classification accuracy increased steadily during the training, and the 

maximum accuracy within the 50 epochs of training was 79.1%, which closely matched the defect-

free simulation (Figure 4e), confirming that the in-situ training adapted to the hardware 
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imperfections without hand-tuned parameters. 

Discussion 

In summary, we have built multilayer RNNs with a memristor LSTM layer and a memristor fully-

connected layer. The successful demonstrations on both regression and classification tasks 

exhibited the versatility of connecting the memristor neural network layers with different 

configurations. The results open up a new direction for integrating multiple memristor crossbars 

with different configurations on the same chip, which will minimize data transfer and significantly 

reduce the inference latency and power consumption in a deep recurrent neural network. 

Methods 

1T1R array integration. The transistor array was fabricated in a commercial foundry using the 2 

µm technology node. We then integrated our memristors in a university cleanroom. The transistors 

were used as selector devices to mitigate the sneak path problem in the crossbar and to enable 

precise conductance tuning. Two layers of metal wires were also fabricated in the foundry back-

end-of-the-line (BEOL) process as row and column wires to reduce the wire resistance (about 0.3 

Ω between cells). The low wire resistance in the array is one of the key factors that provided 

accurate matrix multiplication. The memristors were fabricated on top of the transistor array in the 

UMass Amherst cleanroom, with sputtered palladium as the bottom electrode, atomic layer 

deposited hafnia as the switching layer and sputtered tantalum as the top electrode. 

Inference in the two layer LSTM-RNN. The network in this work had two layers, with the first 

layer being the LSTM and the second a fully-connected layer. The algorithm can extend to more 

layers because of the cascaded structure. The input to the network was xt, and the LSTM cell 

activation at was calculated as shown EQUATION 3. 
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The input gate, forget gate and the output gate that control the output are defined in 

EQUATION 4 

 

The output of the LSTM layer (as the hidden layer output in the two-layer RNN) was 

determined by EQUATION 5. EQUATION 3, 4, 5 are equivalent to EQUATION 1, 2 in the main text, in 

which the linear and nonlinear operations are separated for easier comprehension. 

 

The final output of the RNN was read out by a fully-connected layer, and the function of 

which is characterized by EQUATION 6 

 

where f is the nonlinear activation function in the fully-connected layer. Specifically, we used the 

logistic sigmoid function in the airline prediction experiment and the softmax function in the 

human gait identification experiment. 

Training with back-propagation through time (BPTT) The goal of the training process was to 

minimize a loss function, which was a function of the network output yt and their targets yt (ground 
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truth or labels). Specifically, we chose mean square loss error over all time steps for the airline 

prediction experiment (EQUATION 7) and cross-entropy loss on the last time step for the human 

gait identification experiment (EQUATION 8). 

 

where n indexes over the sample, N is the batch size, t is the temporal sequence number, and T is 

the total of the time steps in the sequence. 

The training, i.e. model optimization, was based on the weight gradients of the loss 

function. Since the weights stayed the same in the same mini-batch over all the time steps, the 

gradients were accumulated before each weight update. The gradient of the loss function L    on 

sample n at sequence t is denoted as δvt = ./
.𝐯1
		, and is calculated by the backpropagation 

through time (BPTT) algorithm \cite{mozer1989bptt, werbos1988bptt}. The last layer output 

delta was calculated by EQUATION 9 for the airline prediction task and by EQUATION 10 for the gait 

identification task. 

 

where σ! is the derivative of the logistic sigmoid function. 
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The previous layer deltas were calculated with the chain rule. 
 

 
 
 

The computationally expensive steps described in EQUATION 11 and EQUATION 18 were 

calculated in the crossbar. The weight gradients were calculated based on the delta rule. 

 

The parameters (weights or bias) gradients were accumulated as described in EQUATION 
21. 
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The stochastic gradient descent with momentum (SGDM) optimizer that we used in the 

airline prediction problem yielded the desired weight update value by EQUATION 22. 

 

where η and α are the hyper-parameters for momentum and learning rate, respectively. 

In the gait identification experiment, we used the root mean square propagation (RMSprop) 

optimizer, which gives the desired weight update values by EQUATION 23. 

 

where β, E, α and η are hyper-parameters, GRAD◦2 is the element-wise square operation on matrix 

GRAD and ⊘ indicates the element-wise division operation. 

Hyperparameters. The following table shows the hyperparameters during the training 

experiment. They include both the hyperparameters for the neural network, and the physical 

parameters to operate the memristor crossbar. 
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Table 1: Training hyperparameters and physical parameters of the memristor crossbar for the regression 
and classification experiments 

 
 

Parameter Airline prediction Gait identification Description 

α 0.01 0.01 Learning rate 

η 0.9 0 Momentum 

β N/A 0.9 Decay for RMSprop 

e N/A 1 × 10−8 Denominator shift for RMSprop 

G/W 1 × 10−4 3 × 10−4 Conductance-to-weight ratio 

∆Vgate/∆G 1.02 × 104 1.02 × 104 Gate-voltage-to-conductance ratio 

Vgate, 0 1.0 1.0 Initial gate voltage 

Vset 2.5 2.5 Set voltage 

Vreset 1.7 1.7 Reset voltage 

Vread 0.2 0.2 Read voltage 

Vgate, max 1.6 1.6 Maximum set gate voltage 

Vgate, min 0.7 0.7 Minimum set gate voltage 

Vgate, reset 5.0 5.0 Reset gate voltage 

 
Data availability. The data that support the plots within this paper and other finding of this 
study are available from the corresponding author upon reasonable request. 
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Figure 1: Schematic architecture of memristor accelerated long short-term memory 
(LSTM) network.  a, Schematic of a multilayer recurrent neural network (RNN) with input 
nodes, recurrent hidden nodes and output nodes. The recurrent nodes (e.g. LSTM units) fully 
connect to both the input nodes and the previous state of the recurrent nodes. b, The structure of a 
standard LSTM cell (blue dashed box in a), which includes input, forget, and output gates to resolve 
the vanishing or exploding gradient problems in standard RNN units and learn long-term 
dependencies. c, The data flow in the present architecture. Input and output (I/O) data, X and Y, 
are sent to/from the integrated chip (blue box) through off-chip peripheral circuits. The figure 
shows a two-layer RNN which is composed of a LSTM layer and a fully-connected layer. For 
both layers, the synaptic connections (parameters) are stored in-situ in the crossbar as 
conductances, minimizing the data communication. In this work, the gated unit in the LSTMs 
and the nonlinear unit in the fully connected layers were implemented in software. The LSTM 
layer and fully connected layer can be cascaded to produce more hardware layers in hardware in 
future work.  
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Figure 2: LSTM units implemented in a memristor crossbar. a, One die one the integrated 
1T1R chip with various array sizes (from 4×4 to 128×64) and testing circuits. b, Part of the 
128×64 one-transistor one-memristor (1T1R) integrated array is used for the LSTM. The input 
vectors (x) are converted to small analog voltages (V), which are applied on the row wires 
of the memristor crossbar while the column wires are grounded. The currents in different 
columns, which represent the solutions of matrix-vector multiplication, are labelled as ât, ̂ it, 
f̂ t, ôt, respectively. The current vectors are then nonlinearly activated and gated to yield the 
LSTM output vector ht, which is fed an inputs to the next layer, and the present layer of the 
next time step. Scale bar, 500 µm c, Enlarged images of two 1T1R cells, with a circuit 
diagrams that show the electrical connections. During the inference, voltages are applied on 
the row wires (green), and currents are read from the column wires (blue). High voltages (~5 
V) are applied on the gate wires to turn on all the transistors. Scale bar, 10 µm.  
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Figure 3: Regression experiment for predicting the next month’s number of airline 
passengers. a, Architecture of the two-layer recurrent neural network (RNN) configured for 
prediction. The input xt is the observed number of passengers month t, and the output yt is 
the predicted number for the month t + 1. We used 15 LSTM units with 2,040 memristors to 
represent the required 1,020 synaptic weights. The output node was fully connected to the 
15 LSTM output nodes by 32 memristors, and the final prediction was the nonlinear 
activation of the fully-connected (FC) layer output after filtering by the logistic sigmoid 
function. b, Partition of the 128×64 1T1R memristor array. A 34×60 sub-array was used for 
the LSTM layer and a 32×1 sub-array was used for the FC layer. c, The in-situ training and 
test results of the two-layer RNN. Two-thirds of the data are used for training, while the 
remaining was used as the test set. The network precisely predicted the future airline 
passenger numbers after training for 800 epochs. d-g, Raw voltage inputs and electrical 
current outputs for the LSTM layer (d, f) and fully-connected layer (e, g). The data 
presented in (c) is after activation and scaling of the data in (g). 
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Figure 4: Classification experiment for human identification by its gait. a, The two-layer 
recurrent neural network (RNN) configuration for classification. In the RNN, there were 14 
LSTM units, with 7,168 memristors representing the synaptic weights. The eight output nodes 
were fully connected with the 14 LSTM nodes by 228 memristors, and a person was identified 
by the maximum electrical current output in the last time step. The training of the network is to 
minimized the cross-entropy between the predicted softmax probability in the final step (yN) and 
ground truth, where N was the length of the temporal sequence. b, Partition of the 128×64 1T1R 
memristor crossbar, in which a 128×56 sub-array was used for the LSTM layer and a 28×8 sub-
array was used for the fully-connected layer. c, We used the width profiles of the human 
silhouettes extracted from a video as the inputs for the RNN. The pre-processing of the images is 
illustrated in SUPPLEMENTARY FIGURE 2. d, The cross-entropy loss steadily decreases during the 
training, showing the effectiveness of training of RNN with LSTM units. e, Classification 
accuracy on the unseen testing set during the 50 epochs of in-situ training. The gray lines are the 
results from 50 repeated simulations of a defect-free crossbar with randomly initialized weights. 
Experimentally (blue line), we approached a maximum of 79.1% accuracy, which closely 
matched the defect-free simulation, showing that the training step included significant defect 
tolerance. The experimental conductance and weight values awerere readout as shown in 
SUPPLEMENTARY FIGURE 3, and the raw current output and calculated Bayesian probability in the 
classification test after training is shown in SUPPLEMENTARY FIGURE 4 for reference.  
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Supplementary Figures 
 

 
 
Supplementary Figure 1: Additional data for the regression experiment. a, Conductance 
map of the 34×60 memristor array in the LSTM layer after the in-situ training. b, Measured 
conductance of the 32 memristors in the fully-connected layer after training. c, Map of synaptic 
weight calculated from the conductances shown in (a). d, Synaptic weights calculated from the 
conductances shown in (b). 
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Supplementary Figure 2: Pre-processing of the gait identification dataset. a, One frame from 
the raw video. b, The extracted silhouette (ref. \cite{usf2002gait} in the main text) from the 
video, which was further converted to a width profile vector. Each dimension of the width profile 
vector represents the width of the silhouette at the corresponding height.  c, The width profile 
vectors at each frame in the video.  d, The total width in the width vector profile in each frame 
shows a periodic trend, which after processing a low-pass spectrum by an inverse Fourier 
transformation of the low-passed spectrum is used to detect the gait cycles. e, One video is 
divided into multiple samples according to the gait cycles. 
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Supplementary Figure 3: Additional data for the classification experiment. a, Conductance 
map of the 128×56 memristors in the LSTM layer after the in-situ training. b, Conductance map 
of the 28×8 fully-connected layer after training. c, Map of synaptic weights calculated from the 
conductances shown in (a). The LSTM synaptic weights are constituted by the weights (Wa, Wi, 
Wf and Wo) connected to the input, and the recurrent weights (Ua, Ui, Uf and Uo) connected to 
the LSTM outputs from the previous time step d, Map of the synaptic weights that calculated 
from the conductances shown in (b).  
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Supplementary Figure 4: Output from the human identification inference. a, Raw electrical 
current output after the in-situ training. Different curves represent the current output from 
different columns (col1 to col8). The maximum current output is identified as the inference result 
of the memristor RNN. b, The Bayesian probability computed from the data in (a) by the 
softmax function. 
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