Skip to main content

Advertisement

Log in

Identifying Teachers’ Beliefs Prior to CPD Training Focusing on an Inquiry-Based Approach in Science Education

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Teachers bring with them a variety of beliefs when they arrive at continual professional development (CPD) training courses focusing on the inquiry-based approach to science education. These beliefs influence the way they understand, accept and ultimately implement the content of the training. The purpose of the present study was to identify the beliefs held by participating teachers about the effectiveness of science instruction prior to CPD training focusing on inquiry-based science instruction. The goal was to use the results to adjust the instruction in accordance with the findings. The research focused on perceiving (a) the way teachers comprehend learning, (b) what they target for modification in students’ learning, (c) how they comprehend knowledge and (d) how they see their role in science instruction. Q methodology was used to investigate the beliefs of 34 science teachers prior to their CPD training by having them rank and sort a series of 51 statements. The analysis showed three types of beliefs about the effectiveness of science instruction: (Factor 1) the belief that students are curious, active independent researchers and thinkers, (Factor 2) the belief that teachers are providers of a stimulating environment for cooperation and (Factor 3) the belief that students need to have basic knowledge which they individually construct. Based on the results, the study identifies particular issues which need to be addressed during CPD training in order to fully embrace inquiry in the science classroom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akerson, V. L., & Donnelly, L. A. (2008). Relationships among learner characteristics and preservice elementary teachers’ views of nature of science. Journal of Elementary Science Education, 20(1), 45–58.

    Article  Google Scholar 

  • Alverman, D. E., Qian, G., & Hynd, C. E. (1995). Effects of interactive discussion and text type on learning counterintuitive science concepts. Journal of Educational Research, 88, 146–154.

    Article  Google Scholar 

  • Ambrose, S., Bridges, M., Lovett, M., DiPietro, M., & Norman, M. (2010). How learning works: Research–based principles for smart teaching. San Francisco: Jossey-Bass.

    Google Scholar 

  • Ausubel. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Barron, B., & Darling-Hammond, L. (2008). Teaching for meaningful learning: A review of research on inquiry-based and cooperative learning. In L. Darling-Hammond, B. Baron, P. D. Pearson, A. H. Schoenfeld, E. K. Stage, T. D. Zimmermann, G. N. Cervetti, J. Tilson (Eds) Powerful learning: What we know about teaching for understanding (pp. 11–70). San Francisco: Jossey-Bass.

  • Berg, T., & Brouwer, W. (1991). Teacher awareness of student alternate conceptions about rotational motion and gravity. Journal of Research in Science Teaching, 28(1), 3–18.

    Article  Google Scholar 

  • Blanchard, M. R., Southerland, S. A., & Granger, E. M. (2009). No silver bullet for inquiry: Making sense of teacher change following an inquiry-based research experience for teachers. Journal of Research in Science Teaching, 93(2), 322–360.

    Google Scholar 

  • Bolte, C., Streller, S., Holbrook, J., Rannikmae, M., Hofstein, A., Mamlok Naaman, R., & Rauch, F. (2012). Introduction into PROFILES—professional reflection-oriented focus on inquiry-based learning and education through science. In C. Bolte, J. Holbrook, & F. Rauch (Eds.), Inquiry-based science education in Europe: Reflections from the PROFILES Project. Berlin: Freie Universität Berlin (pp. 31–42). Klagenfurt: Alpen-Adria-Universität Klagenfurt.

    Google Scholar 

  • Bonwell, C. C., & Eison, J. A. (1991). Active learning: Creating excitement in the classroom (ASHE–ERIC Higher Education Rep. No. 1). Washington, DC: The George Washington University, School of Education and Human Development.

    Google Scholar 

  • Boulton-Lewis, G. M., Smith, D. J. H., McCrindle, A. R., Burnett, P. C., & Campbell, K. J. (2001). Secondary teachers’ conceptions of teaching and learning. Learning and Instruction, 11, 35–51.

    Article  Google Scholar 

  • Brooks, J. G., & Brooks, M. G. (1999). In search of understanding: The case for constructivist classrooms. Alexandria: Association for Supervision and Curriculum Development.

    Google Scholar 

  • Brown, S. R. (1996). Q methodology and qualitative research. Qualitative Health Research, 6(4), 561–567.

    Article  Google Scholar 

  • Bryan, L.A. (2003). Nestedness of beliefs: Examining a prospective elementary teacher’s belief system about science teaching and learning. Journal of Research in Science Teaching, 40, 835–868.

  • Caleon, I. S., Tan, Y. S. M., & Cho, Y. H. (2017). Does teaching experience matter? The beliefs and practices of beginning and experienced physics teachers. Research in Science Education, 45, 117–149.

    Google Scholar 

  • Campbell, J., Brownlee, J., & Smith, D. (1996). The differential impact of teacher’s approaches to teaching on secondary students’ approaches to learning. Education Research and Perspectives, 23, 95–111.

    Google Scholar 

  • Capps, D. K., & Crawford, B. A. (2013a). Inquiry-based professional development: What does it take to support teachers in learning about inquiry and nature of science? International Journal of Science Education, 35(12), 1947–1978.

    Article  Google Scholar 

  • Capps, D. K., & Crawford, B. A. (2013b). Inquiry-based instruction and teaching about nature of science: Are they happening? Journal of Science Teacher Education, 24, 497–526.

    Article  Google Scholar 

  • Capps, D. K., Crawford, B. A., & Constas, M. A. (2012). A review of empirical literature on inquiry professional development: Alignment with best practices and a critique of the findings. Journal of Science Teacher Education, 23(3), 291–318.

    Article  Google Scholar 

  • Capps, D. K., Shemwell, J. T., & Young, A. M. (2016). Over reported and misunderstood? A study of teachers’ reported enactment and knowledge of inquiry-based science teaching. International Journal of Science Education, 38(6), 934–959.

    Article  Google Scholar 

  • Carey, S. (1986). Cognitive science and science education. American Psychologist, 41(10), 1123–1130.

    Article  Google Scholar 

  • Chen, C. H. (2008). Why do teachers not practice what they believe regarding technology integration? The Journal of Educational Research, 102(1), 65–75.

    Article  Google Scholar 

  • Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching, 37(9), 916–937.

    Article  Google Scholar 

  • Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In N. Lederman & S. Abell (Eds.), Handbook of Research on Science Education (Vol. II). Abingdon: Routledge.

    Google Scholar 

  • Crawford, B. A., & Capps, D. K. (2018). Teacher cognition of engaging children in scientific practices. In Y. Judy Dori, Z. M. Mevarech, & D. R. Baker (Eds.), Cognition, Metacognition, and Culture in STEM Education. Berlin: Springer.

    Google Scholar 

  • Crawford, B. A., Capps, D. K., van Driel, J., Lederman, N. G., Laderman, J., Luft J., Wong, S., Ling Tan, A., Lim, S., Loughran, J., Loughran, J., & Smith, K. (2014). Learning to teach science as inquiry: Developing an evidence-based framework for effective teacher professional development. In: C. Bruguière, A. Tiberghien, & P. Clément (Eds.), Teacher Professional Development. Topics and trends in current science education: 9th ESERA conference selected contributions (pp 193–212).

  • Cronin-Jones, L. L. (1991). Science teacher beliefs and their influence on curriculum implementation: Two case studies. Journal of Research in Science Teaching, 28(3), 235–250.

    Article  Google Scholar 

  • Davis, S., & Luce-Kapler. (2008). Engaging minds: Changing teaching in complex times. New York: Lawrence Erlbaum Associates.

    Google Scholar 

  • DeBoer, G. E. (2004). Historical perspectives on inquiry teaching in schools. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education. Dordrecht: Kluwer.

    Google Scholar 

  • Dewey, J. (1938). Experience and education. New York: Collier Books.

    Google Scholar 

  • Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12.

    Article  Google Scholar 

  • Enderle, P., Dentzau, M., Roseler, K., Southerland, S., Granger, E., Hughes, R., & Saka, Y. (2014). Examining the influence of RETs on science teacher beliefs and practice. Science Education, 98, 1077–1108.

    Article  Google Scholar 

  • Fibonacci project. (2018). http://www.fibonacci-project.eu/. Accessed 3 June 2018.

  • Fives, H., & Buehl, M. M. (2014). Exploring differences in practicing teachers’ valuing of pedagogical knowledge based on teaching ability beliefs. Journal of Teacher Education, 65(5), 435–448.

    Article  Google Scholar 

  • Forsthuber, B., Motiejunaite, A., & de Almeida Coutinho, A. S. (2011). Science education in Europe: National policies, practices and research. Brussels: The Education, Audiovisual and Cultural Executive Agency (EACEA P9 Eurydice).

    Google Scholar 

  • Gallagher, J. J. (1991). Prospective and practicing secondary school science teachers’ beliefs about the philosophy of science. Science Education, 75, 121–133.

    Article  Google Scholar 

  • Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28–42). New York: Routledge.

    Google Scholar 

  • Ginns, I. S., & Watters, J. J. (1999). Beginning elementary school teachers and the effective teaching of science. Journal of Science Teacher Education, 10(4), 287–313.

    Article  Google Scholar 

  • Glynn, S. M., Yeany, R. H., & Britton, B. K. (1991). The psychology of learning. New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hargreaves, L., & Galton, M. (2002). Transfer and transition. In L. Hargreaves & M. Galton (Eds.), Transfer from the Primary Classroom: 20 years on. London: RotledgeFalmer.

    Google Scholar 

  • Held, L. (2014). Induktívno-deduktívna dimenzia prírodovedného vzdelávania (Inductive-deductive dimension of science education). Trnava: Typi Universitatis Tyrnaviensis.

    Google Scholar 

  • Hutner, T. L., & Markman, A. B. (2016). Proposing an operational definition of science teacher beliefs. Journal of Science Teacher Education., 27(6), 675–691.

    Article  Google Scholar 

  • Jardine, D., Clifford, P., & Friesen, S. (2008). Back to the basics of teaching learning: Thinking the world together. New York: Routledge.

    Google Scholar 

  • Kerlinger, F. N. (1972). Základy výzkumu chování (Foundations of Behavioral Research). Praha: Academia.

    Google Scholar 

  • King, K., Shumow, L., & Lietz, S. (2001). Science education in an urban elementary school: Case studies of teacher beliefs and classroom practices. Science Education, 85(2), 89–110.

    Article  Google Scholar 

  • Kleickmann, T., Tröbst, S., Jonen, A., Vehmeyer, J., & Möller, K. (2016). The effects of expert scaffolding in elementary science professional development on teachers’ beliefs and motivations, instructional practices, and student achievement. Journal of Educational Psychology, 108(1), 21–42.

    Article  Google Scholar 

  • Koballa, T., Jr., Graber, W., Coleman, D. C., & Kemp, A. C. (2000). Prospective gymnasium teachers’ conceptions of chemistry learning and teaching. International Journal of Science Education, 22(2), 209–224.

    Article  Google Scholar 

  • Kober, N. (2015). Reaching students: What research says about effective instruction in undergraduate science and engineering. In Board on Science Education, Division of Behavioural and Social Sciences and Education. Washington, DC: National Academies Press.

    Google Scholar 

  • Kurlaender, M., Howell, J. S. (2012). Academic preparation for college: Evidence on the importance of academic rigor in high school. Advocacy & Policy Center Affinity Network Background Paper. College Board Advocacy & Policy Center.

  • La Main a la pate. (2018). https://www.fondation-lamap.org/en/international. Accessed 3 June 2018.

  • Levitt, K. E. (2002). An analysis of elementary teachers’ beliefs regarding the teaching and learning of science. Science Education, 86(1), 1–22.

    Article  Google Scholar 

  • Luft, J. A., & Roehrig, G. H. (2007). Capturing science teachers’ epistemological beliefs: The development of the teacher beliefs interview. Electronic Journal of Science Education, 11(2), 38–63.

  • Lyons, J. (2005). Perceptual belief and nonexperiential looks. Epistemology, 19(1), 237–256.

    Google Scholar 

  • Mansour, N. (2009). Science teachers’ beliefs and practices: Issues, implications and research agenda. International Journal of Environmental & Science Education, 4(1), 25–48.

    Google Scholar 

  • Mansour, N. (2013). Consistencies and inconsistencies between science teachers’ beliefs and practices. International Journal of Science Education, 35(7), 1230–1275.

    Article  Google Scholar 

  • McGinnis, R., Parker, P., & Graeber, A. (2004). A cultural perspective of the induction of five reform-minded beginning mathematics and science teachers. Journal of Research in Science Teaching, 41, 720–747.

    Article  Google Scholar 

  • Meschede, N., et al. (2017). Teachers’ professional vision, pedagogical content knowledge and beliefs: On its relation and differences between pre-service and in-service teachers. Teaching and Teacher Education, 66, 158–170.

    Article  Google Scholar 

  • Miles, M.B., Huberman, A.M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook. Thousand Oaks, CA: SAGE Publications, Inc.

  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.

    Article  Google Scholar 

  • Miranda, R. J., & Damico, J. B. (2013). Science teachers’ beliefs about the influence of their summer research experiences on their pedagogical practices. Journal of Science Teacher Education, 24(8), 1241–1261.

    Article  Google Scholar 

  • Moller, K. (2014). Vom naturwissenschaftlichen Sachunterricht zum Fachunterricht: Der Übergang von der Grundschule in die weiterfuhrende Schule [From elementary to secondary science: The transition from elementary to secondary school]. Zeitschrift fur Didaktik der Naturwissenschaften, 20(1), 33–43.

    Article  Google Scholar 

  • National curriculum in England: Science programmes of study. (2015). https://www.gov.uk/government/publications/national-curriculum-in-england-science-programmes-ofstudy/national-curriculum-in-england-science-programmes-of-study. Accessed Nov 2018.

  • Nespor, J. (1987). The role of beliefs in the practice of teaching. Journal of Curriculum Studies, 19, 317–328.

    Article  Google Scholar 

  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

    Google Scholar 

  • Nolan, D. (2010). The case for active learning classrooms. http://vcue.berkeley.edu/ActiveLearningClassrooms_FinalReport.pdf. Accessed 5 May 2018.

  • Osborne, J. F. (1996). Beyond constructivism. Science Education, 80(1), 53–82.

    Article  Google Scholar 

  • Osborne, J. (2014). Scientific practices and inquiry in the science classroom. Handbook of Research on Science Education (pp. 593–613), Vol. II.

  • Osborne, R., & Freyberg, P. (1983). Roles for the science teacher. In Learning in science: The implications of children’s science (pp. 91–99). Birkenhead: Heinemann.

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ideas-about-science should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.

    Article  Google Scholar 

  • Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307–332.

    Article  Google Scholar 

  • Perkins, D. (2009). Making learning whole: How seven principles of teaching can transform education. San Francisco: Jossey-Bass.

    Google Scholar 

  • Pollen. Project. (2018). from http://cordis.europa.eu/project/rcn/78779_en.html. Accessed 5 May 2018.

  • Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85–129.

    Article  Google Scholar 

  • PQMethod. (2018). http://schmolck.org/qmethod/. Accessed 3 Dec 2016.

  • Prince, M. J., & Felder, R. M. (2006). Inductive teaching and learning methods: Definitions, comparisons, and research bases. Journal of Engineering Education, 95(2), 123–138.

    Article  Google Scholar 

  • PriSciNet project. (2018). http://prisci.net/. Accessed 5 May 2018.

  • Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula (Ed.), Handbook of Research on Teacher Education (pp. 102–119). New York: Macmillan.

    Google Scholar 

  • Roberts, D., & Bybee, R. (2014). Scientific literacy, science literacy and science education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (pp. 545–558). New York: Routledge.

    Google Scholar 

  • Rocard, M., et al. (2007). Science education now: A renewed pedagogy for the future of Europa. Brusel: European Commission.

    Google Scholar 

  • Samuelowicz, K., & Bain, J. D. (2001). Revising academics’ beliefs about teaching and learning. Higher Education, 41, 299–325.

    Article  Google Scholar 

  • Savasci, F. (2006). Science teacher beliefs and classroom practices related to constructivist teaching and learning. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/. Accessed 4 Apr 2018.

  • Savasci, F., & Berlin, D. F. (2012). Science teacher beliefs and classroom practice related to constructivism in different school settings. Journal of Science Teacher Education, 23(1), 65–86.

    Article  Google Scholar 

  • Sawyer, K. (2006). The Cambridge handbook of the learning sciences. New York: Cambridge University Press.

    Google Scholar 

  • Schmolck, P., & Atkinson, J. (1997). PQMethod (2.33). Retrieved from http://schmolck.userweb.mwn.de/qmethod. Accessed 3 Apr 2018.

  • Schommer-Aikins, M. (2004). Explaining the epistemological belief system: Introducing the embedded systemic model and coordinated research approach. Educational Psychologist, 39, 19–29.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–22.

    Article  Google Scholar 

  • Sinatra, G. M., Broughton, S. H., & Lombardi, D. (2014). Emotions in science education. In R. Pekrun & L. Linnenbrink-Garcia (Eds.), International handbook of emotions in education. New York: Routledge.

    Google Scholar 

  • Sustain project. (2018). http://ibse.truni.sk/projekt-sustain. Accessed 5 May 2018.

  • Swarat, S., Ortony, A., & Revelle, W. (2012). Activity matters: Understanding student interest in school science. Journal of Research in Science Teaching, 49(4), 515–537.

    Article  Google Scholar 

  • Tsai, C. C. (2002). Nested epistemologies: science teachers’ beliefs of teaching, learning and science. International Journal of Science Education, 24(8), 771–783.

    Article  Google Scholar 

  • van Driel, J. H. (2014). Professional learning of science teachers. In C. Bruguière, A. Tiberghien, P. Clément (Eds.), Topics and Trends in Current Science Education, 9th ESERA Conference Selected Contributions (pp. 139–158).

  • van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interactions. Journal of Technology and Teacher Education, 10, 571–596.

    Google Scholar 

  • van Exel, J., & de Graaf, G. (2005). Q methodology: A sneak preview. https://www.researchgate.net/profile/Gjalt_Graaf/publication/228574836_Q_Methodology_A_Sneak_Preview/links/02bfe50f946fc9978b000000.pdf. Accessed 5 Apr 2018.

  • Voss, T., Kleickmann, T., Kunter, M., & Hachfeld, A. (2013). Mathematics teachers’ beliefs. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (Results from the COACTIV project) (pp. 249–272). New York: Springer.

    Chapter  Google Scholar 

  • Wallace, C. S., & Kang, N. (2004). An investigation of experienced secondary science teachers’ beliefs about inquiry: An examination of competing belief sets. Journal of Research in Science Teaching, 41(9), 936–960.

    Article  Google Scholar 

  • Watts, S., & Stenner, P. (2012). Doing Q methodological research: Theory, method, and interpretation. Thousand Oaks: SAGE Publications, Inc..

    Google Scholar 

  • Wong, S. S., & Luft, J. A. (2015). Secondary science teachers’ beliefs and persistence: A longitudinal mixed-methods study. Journal of Science Teacher Education, 26, 619–645.

    Article  Google Scholar 

  • Yager, R. E. (2000). The constructivist learning model. The Science Teacher, 67(1), 44–45.

    Google Scholar 

  • Zhu, Z., & Geelan, D. (2013). Chinese secondary physics teachers’ beliefs and instructional decisions in relation to inquiry-based teaching. Electronic Journal of Science Education, 17(2), 1–24.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Slovak Research and Development Agency: APVV-70-0040 project.

Funding

This study was funded by Slovak Research and Development Agency (APVV-70-0040 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Kotuľáková.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Additional information

Edited by: Christine Howitt

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix. Q statements

Area 1 statements: Focusing on a goal in science education: process versus content

1

The student creates his/her own understanding of studied phenomena by doing inquiry and working with various information.

50

Scientific phenomena are complicated, and therefore they have to be explained well.

2

An appropriate learning environment represents a sufficient amount of information.

49

Students cannot learn science without a teacher and a textbook.

3

Knowledge gained from doing inquiry-based activities is more stable than that learnt from different (secondary) sources.

48

Students learn the best by observing a teacher and by studying textbooks.

4

In science, it is important to continue to learn and develop our knowledge constantly.

47

In science, it is important to learn facts and laws.

5

Learning starts with identifying the unknown (a student finds out that he/she is lacking some information and/or explanation).

46

Learning starts with the teacher’s explanation supported by examples from real life.

6

Learning is an active individual process when a student constructs new meaning from what he/she has read, heard or experienced.

45

Learning starts with an understanding of the teacher’s explanation. It is completed by solving exercises and various tasks.

7

The systematic exploration of the surrounding world can be applied at any age when done in an appropriate way.

44

Students cannot think hypothetically, and therefore inquiry activities are not suitable learning methods for them.

Area 2 statements: Targeting to modify the pupils’ knowledge: development of science processes skills versus learning facts and laws

8

It is important to concentrate on the development of science process skills such as inferring, interpreting, concluding, etc.

43

The students need basic scientific knowledge for their further study.

9

The students should develop skills in order to work with data and information in an objective way.

42

The goal of science education is to provide students basic knowledge about natural phenomena.

10

One of the important goals in science education is to teach pupils to work with various sources of information.

41

It is important that students can work with textbooks.

11

The teacher should place sufficient emphasis on developing the students’ ability to select information from various sources of information.

40

Students cannot select relevant information from various sources, and therefore it is better to use textbooks and other recommended material.

12

The students should have an opportunity to verify the correctness or validity of the studied scientific laws, various natural phenomena, or their own ideas about the surrounding world through a variety of information sources (their own research, an encyclopaedia, the Internet, discussions with experts).

39

Students should learn about natural phenomena only from reliable sources (the Internet, an encyclopaedia, textbooks, etc.)

13

It is good if students keep asking questions about studied phenomena and express their doubts.

38

Students do not understand most natural phenomena since they are too complicated, and so it is good if they have a few trustworthy and comprehensible sources of information (such as a textbook, teacher, etc.)

Area 3 statements: (In)stability of science knowledge: ability to use arguments (dynamic knowledge) versus stable science knowledge

14

Students learn the best when they can discuss the issues studied, and when they present evidence and continue to ask each other questions.

37

Students learn the most from the explanation provided by a teacher and from opportunities to practice what they have learnt (by doing appropriate exercises).

15

It is good to learn about scientific concepts by searching for evidence and using it in argumentation with classmates.

36

Students are not able to present arguments, and therefore they cannot really discuss the material.

16

It is important for students to discuss hypothetical situations.

35

Knowledge of science develops when a teacher provides enough examples which illustrate the studied phenomena.

17

If a student cannot discuss the topic (scientific phenomenon) that has been explained to him/her, then he/she has not really understood it.

34

Discussion is for the higher level of science education. It is sufficient if students at the primary level learn basic science facts.

18

Students need to be able to discuss the studied phenomena.

33

Science education is to provide basic knowledge in a form of facts which students can use in the future.

19

It is important that students ask meaningful and relevant questions about the studied phenomena. It is important that they are curious.

32

Students are more willing to accept information from a teacher and a textbook than from discussion, argumentation, and their own research activity. They trust information provided by a teacher more.

Area 4 statements: The role of a teacher in science education: the teacher as a curious researcher versus teachers as a source of information

20

The teacher is an example for the students about how to think and inquire about the studied phenomena.

31

Teaching is effective when the teacher tells pupils what to do and what they need to know.

21

The teacher’s task is to correct students’ knowledge by providing opportunities to investigate and use arguments.

30

The teacher’s task is to provide non-contradicting facts.

22

Teachers should prepare learning situations and present new information which obliges students to re-evaluate their understanding and opinions about the surrounding world.

29

The teacher’s task is to provide correct and exact knowledge for students so they will not have to change it anymore.

23

Mistakes are important indicators for a teacher. They show how a student thinks about the issues studied.

28

Student’s mistakes (preconceptions) need to be identified and corrected immediately, for instance by clear explanation, so that they do not persist.

24

If a teacher finds out that a student understands the studied phenomenon incorrectly (discovers misconceptions), he/she should learn about the reason leading to the misconception through the discussion first.

27

If a teacher finds out that a pupil does not understand the concept correctly, the teacher should explain it to him/her.

25

The teacher can accept a pupil’s incorrect concept (misconception, preconception) of science at a certain stage of the concept’s development.

26

The teacher’s role is to mediate information and then presume the correct, though simplified, knowledge of the student about the studied phenomena.

51

The quality of science education depends on money

Q Výroky

Oblasť 1: Zameraná na ciele prírodovedného vzdelávania: proces verzus obsah

1

V prírodovednom vzdelávaní si má žiak vlastným skúmaním tvoriť vlastné vysvetlenia pozorovaných javov.

50

Obsah prírodovedných predmetov je potrebné dobre vysvetliť, lebo je náročný.

2

Vhodné vyučovacie prostredie je také, ktoré žiakovi poskytne dostatok informácií na to, aby javu porozumel.

49

Učebnica a učiteľ sú pre žiakov dôležitým zdrojom informácií, sami sa len veľmi ťažko môžu dopracovať k dôležitým prírodovedným poznatkom.

3

Poznatky, ktoré žiak získa vlastnou výskumnou aktivitou sú stabilnejšie ako tie, ktoré prijme zo sekundárnych zdrojov informácií.

48

Žiak sa najviac naučí pozorovaním učiteľa a z učebníc.

4

V prírodných vedách je dôležitá snaha svoje poznanie neustále pretvárať.

47

V prírodných vedách sú dôležité fakty a zákony.

5

Učenie sa začína identifikáciou chýbajúceho poznania (žiak zistí, že mu chýba informácia a/alebo vysvetlenie).

46

Učenie sa začína prezentovaním nových informácií, ktoré sú podporené príkladmi z praxe.

6

Učenie je aktívny individuálny proces, v ktorom si žiak vytvára nové významy z prečítaného, povedaného a z priamej skúsenosti.

45

Učenie je proces, pri ktorom žiak pochopí, čo učiteľ vysvetľuje, pričom si vedomosti doplní riešením úloh.

7

Skúmanie okolitého sveta je možné aplikovať v každom veku primeraným spôsobom.

44

Žiaci nevedia systematicky skúmať a preto je vhodné im informácie zrozumiteľne sprostredkovať.

Oblasť 2: Zameraná na zmenu žiakovho poznávania: rozvoj spôsobilostí vedeckej práce verzus učenie sa faktom a zákonom

8

V prírodovednom vzdelávaní je potrebné sa zamerať na rozvoj spôsobilosti žiaka uvažovať, interpretovať informácie a formulovať závery.

43

V prírodovednom vzdelávaní je potrebné sa zamerať na to, aby žiaci získali dostatočný vedomostný základ pre ďalšie štúdium.

9

Žiak by mal vedieť pracovať s údajmi a informáciami objektívnym spôsobom.

42

Je dôležité, aby žiak disponoval základnými poznatkami o prírodných javoch.

10

Je dôležité naučiť žiakov pracovať s rôznymi informačnými zdrojmi.

41

Žiaci sa majú naučiť pracovať s učebnicou.

11

Učiteľ by mal dávať dostatočný dôraz na rozvoj spôsobilosti žiaka selektovať informácie pochádzajúce z rôznych informačných zdrojov.

40

Žiaci nevedia selektovať informácie z rôznych informačných zdrojov, preto je vhodné využívať najmä učebnicu a iné schválené učebné materiály.

12

Žiaci by mali mať v škole možnosť overiť správnosť, pravdivosť či platnosť prírodných zákonov a iných javov alebo ich vlastných prírodovedných predstáv, a to prostredníctvom rôznorodých informačných zdrojov (vlastného výskumu, encyklopédie, internetu, diskusie s odborníkmi).

39

Žiaci by mali mať možnosť dozvedieť sa o javoch prebiehajúcich v prírode z rôznych informačných zdrojov (učebnice, internetu, encyklopédií, diskusie s odborníkmi a pod.).

13

Je dobré, ak žiaci neprijímajú všetky informácie ihneď, nekriticky a majú rôzne otázky. Je dobré pochybovať.

38

Žiaci základnej školy nechápu väčšinu prírodných javov v ich vedeckej podobe, je preto dobré, ak majú niekoľko málo pre nich dôveryhodných a zrozumiteľných informačných zdrojov (učebnica, učiteľ a pod.)

Oblasť 3: (Ne)stabilita prírodovedného poznania: argumentačná spôsobilosť verzus ustálené vedecké poznanie

14

Dôležitou súčasťou učenia sa žiakov je diskutovanie o veciach, vysvetľovanie ich vrstovníkom, uvádzanie dôkazov a vzájomné kladenie si otázok.

37

Je potrebné, aby mali žiaci možnosť dostatočne si pochopenie učiva precvičiť na vhodných úlohách.

15

Je vhodné, ak žiaci nachádzajú dôkazy a využívajú ich v argumentácií so spolužiakmi.

36

Žiaci nevedia správne argumentovať a počúvať sa, diskusia medzi žiakmi je teda málo efektívna.

16

Je dôležité, aby žiaci diskutovali o hypotetických/možných situáciách.

35

Je vhodné, ak učiteľ poskytne dostatok príkladov, na ktorých je možné vysvetlený jav pozorovať.

17

Predstava o prírodnom jave, ktorú žiak prijme na základe učiteľovho výkladu a nevie o nej diskutovať, nie je skutočne osvojená.

34

Diskutovanie o prírodných javoch patrí do vyššieho prírodovedného vzdelávania. V ZŠ stačí, ak žiak disponuje základnými prírodovednými poznatkami.

18

Je potrebné, aby žiak vedel, kedy mu chýbajú informácie/argumenty

33

Prírodovedné vzdelávanie má žiakovi poskytnúť základné poznanie v podobe overených faktov, o ktoré sa bude v budúcnosti opierať.

19

Je dôležité, aby žiaci kládli zmysluplné a relevantné otázky o prírodných javoch, ktorými sa v škole zaoberajú. Je dôležité, aby boli zvedaví.

32

Žiaci ochotnejšie prijímajú poznatky od učiteľa a z učebnice ako z diskusie, argumentácie a vlastnej výskumnej aktivity. Poznatkom, ktoré poskytuje učiteľ, viac dôverujú.

Oblasť 4: Úloha učiteľa v základnom prírodovednom vzdelávaní: príklad skúmajúcej osoby verzus zdroj korektného poznania

20

Učiteľ je pre žiaka príkladom, ako o javoch premýšľať a skúmať ich.

31

Učenie je efektívne, keď učiteľ povie žiakom, čo majú robiť a čo potrebujú vedieť.

21

Učiteľovou úlohou je korigovať poznanie žiaka poskytovaním priestoru na skúmanie a argumentovanie.

30

Učiteľovou úlohou je korigovať poznanie žiaka poskytovaním neprotirečivých faktov.

22

Úlohou učiteľa je viesť vyučovanie tak, aby bol žiak neustále nútený upravovať svoje predstavy a názory o svete na základe rôznych nových informácií.

29

Úlohou učiteľa je sprostredkovať žiakovi také korektné poznanie, ktoré už nebude potrebné meniť.

23

Chyby žiakov sú pre učiteľa dôležitým ukazovateľom toho, ako o učive žiaci uvažujú.

28

Chyby žiakov je potrebné identifikovať a okamžite opraviť, napríklad dôsledným výkladom, aby sa nesprávne poznatky neutvrdzovali.

24

Ak učiteľ zistí, že žiak vníma prírodný jav nesprávne, mal by o tom so žiakmi diskutovať, aby ich dôvodom porozumel.

27

Ak učiteľ zistí, že žiak vníma prírodný jav nesprávne, mal by ho na to upozorniť a poskytnúť mu správne vysvetlenie.

25

V určitom momente vývinu žiakovej prírodovednej predstavy učiteľ môže akceptovať jej nedokonalú podobu.

26

Úlohou učiteľa je žiakovi sprostredkovať a následne očakávať správnu, aj keď zjednodušenú informáciu o skúmanom jave.

Nepárový výrok

51

Spôsob realizácie prírodovedného vzdelávania závisí od zmeny financovania školstva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotuľáková, K. Identifying Teachers’ Beliefs Prior to CPD Training Focusing on an Inquiry-Based Approach in Science Education. Res Sci Educ 51 (Suppl 1), 183–211 (2021). https://doi.org/10.1007/s11165-019-9841-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-019-9841-0

Keywords

Navigation