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Inferring tumour purity and stromal and immune
cell admixture from expression data
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Wandaliz Torres-Garcia1, Victor Treviño4, Hui Shen5, Peter W. Laird5, Douglas A. Levine6, Scott L. Carter7,

Gad Getz7, Katherine Stemke-Hale3, Gordon B. Mills3 & Roel G.W. Verhaak1

Infiltrating stromal and immune cells form the major fraction of normal cells in tumour tissue

and not only perturb the tumour signal in molecular studies but also have an important role in

cancer biology. Here we describe ‘Estimation of STromal and Immune cells in MAlignant

Tumours using Expression data’ (ESTIMATE)—a method that uses gene expression

signatures to infer the fraction of stromal and immune cells in tumour samples. ESTIMATE

scores correlate with DNA copy number-based tumour purity across samples from 11

different tumour types, profiled on Agilent, Affymetrix platforms or based on RNA sequencing

and available through The Cancer Genome Atlas. The prediction accuracy is further

corroborated using 3,809 transcriptional profiles available elsewhere in the public domain.

The ESTIMATE method allows consideration of tumour-associated normal cells in genomic

and transcriptomic studies. An R-library is available on https://sourceforge.net/projects/

estimateproject/.
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M
alignant solid tumour tissues consist of not only tumour
cells but also tumour-associated normal epithelial and
stromal cells, immune cells and vascular cells. Stromal

cells are thought to have important roles in tumour growth,
disease progression1,2 and drug resistance3. Infiltrating immune
cells act in a context-dependent manner, and whereas antitumor
effects of infiltrating T-lymphocytes have been observed in
ovarian cancer4–6, associations with tumour growth, invasion
and metastasis were described in colorectal cancer7,8. The
comprehensive understanding of tumour-associated normal
cells in tumour tissues may provide important insights into
tumour biology and aid in the development of robust prognostic
and predictive models.

Gene expression profiling of cancer has resulted in the
identification of molecular subtypes and the development of
models for prediction prognosis and has enriched our knowledge
of the molecular pathways of tumorigenesis9–13. Increasing
evidence suggests that the infiltration of tumour-associated
normal cells influences the analysis of clinical tumour samples
by genomic approaches, such as gene expression profiles or copy
number data, and biological interpretation of the results requires
considerable attention to sample heterogeneity14–16. Several
methods have been proposed to estimate the fraction of tumour
cells in clinical tumour samples by using DNA copy number
array data14,15 or by using next-generation sequencing data17.
DNA copy number-based estimation of tumour purity is rapidly
gaining traction in predicting the purity of tumour samples;
however, such methods are limited to samples with available copy
number profiles. Previous studies have attempted to deconvolve
gene expression data into gene expression profiles from their
constituent cellular fractions, whereas others have focused on

deconvolution of microarray data obtained from normal tissue
into cell-type-specific profiles, by calculating enrichment
scores18–22. These methods take advantage of the differences in
transcriptome properties of distinct cell types.

Here we present a new algorithm that takes advantage of the
unique properties of the transcriptional profiles of cancer samples
to infer tumour cellularity as well as the different infiltrating
normal cells, called ESTIMATE (Estimation of STromal and
Immune cells in MAlignant Tumour tissues using Expression
data). We focus on stromal and immune cells that form the major
non-tumour constituents of tumour samples and identify specific
signatures related to the infiltration of stromal and immune cells
in tumour tissues1. By performing single-sample gene set-
enrichment analysis (ssGSEA)13,23, we calculate stromal and
immune scores to predict the level of infiltrating stromal and
immune cells and these form the basis for the ESTIMATE score
to infer tumour purity in tumour tissue. Finally, we describe the
biological characteristics of stromal and immune scores in The
Cancer Genome Atlas (TCGA) data sets24–29.

Results
Estimation of infiltrating cells and tumour purity. An overview
of ESTIMATE algorithm is shown in Fig. 1. We devised two gene
signatures: (1) a ‘stromal signature’ that was designed to capture
the presence of stroma in tumour tissue, and (2) an ‘immune
signature’ that aimed to represent the infiltration of immune cells
in tumour tissue (Supplementary Data 1). To generate these
signatures, we performed the following steps (Fig. 1). Genes
associated with the quantity of infiltrating immune cells in
tumour tissue were identified using leukocyte methylation
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Figure 1 | An overview of the ESTIMATE algorithm. The ESTIMATE algorithm uses gene expression data to output the estimated levels of infiltrating

stromal and immune cells and estimated tumour purity. Infiltrating stromal- and immune cell-related genes were identified by five gene filterings.
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scores, which were previously shown to correlate with the pre-
sence of leukocytes in ovarian carcinomas15. Gene expression
profiles of normal hematopoietic samples were compared with
those of other normal cell types. The overlap between the two
gene sets constituted the immune signature. Stromal-related
genes were selected among non-hematopoiesis genes by
comparison of the tumour cell fraction and matched stromal
cell fraction after laser-capture microdissection in breast,
colorectal and ovarian cancer data sets30–32. Genes with high
variability in cancer cell lines and genes highly expressed in
glioma stem-like cells were filtered to make up the stromal
signature. We used single-sample ssGSEA13,23 of these two
signatures to generate scores that reflect the presence of each cell
type in tumour samples and combined represent a measurement
of tumour purity.

In order to evaluate the reliability of the stromal and the
immune signatures, we obtained three ovarian carcinoma tumour
samples and performed microbead-based cell sorting to separate
tumour and non-tumour cell fractions. The epithelial, tumour
cell-containing, cell fraction was enriched using an EpCAM
antibody. Transcriptional profiles were obtained from the bulk
tumour samples as well as the EpCAM-positive and EpCAM-

negative cell fractions. Although tumour cells may not necessarily
express EpCAM and some normal epithelial cells may express
EpCAM33, a significant reduction in stromal signature scores
(paired t-test, P¼ 0.0042) and a declining trend in immune
signature scores (paired t-test, P¼ 0.072) were observed in all
three EpCAM-positive cell fractions compared with the EpCAM-
negative cell fractions, suggesting that these signatures are
associated with the amount of non-epithelial cells in tumour
samples (Fig. 2a).

In the three data sets used in the process of gene selection,
there was a significant reduction in the stromal and immune
scores in the tumour cell fraction (Fig. 2b; Supplementary Fig.
S1). Similarly, the microdissected stroma-enriched fraction in the
three independent public data sets, which were not used in
construction of the gene signature was significantly decreased
(ovarian cancer (GSE29156), P¼ 2.5� 10� 5; breast cancer
(GSE10797), P¼ 1.9� 10� 7; lung cancer (GSE33363), P¼ 5.7
� 10� 7 by paired t-test; Fig. 2c). Although immune scores in the
tumour cell-enriched fraction were lower than those in bulk
tumour- or stroma-enriched fraction (ovarian cancer, P¼ 0.0030;
breast cancer P¼ 3.2� 10� 7; lung cancer P¼ 0.0044 by paired
t-test; Fig. 2d), one tumour-enriched sample retained a high
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Figure 2 | Stromal and immune scores for tumour cell and stromal fractions of tumour samples. Stromal and immune scores were generated using

expression data sets obtained from tumour cell or stromal cell-enriched samples. (a,b) Heatmaps display stromal (upper row) and immune score

(lower row) per sample (each column) using ovarian cancer samples after (a) microbead-based cell sorting and (b) laser-capture microdissection

(red¼ high, blue¼ low score). (c,d) Box and whisker plots display reduced (c) stromal and (d) immune scores for the tumour cell-enriched samples

(tumour part) after laser-capture microdissection compared with matched stromal cell-enriched (ovary, breast) or bulk tumour samples (lung).

Box represents the median (thick line) and the quartiles (line). Whisker expresses 1.5 interquartile range (IQR) of the lower or the upper quartile.
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immune score (Fig. 2b), suggesting that immune cells were
retained in the microdissected tumour cell-enriched fraction. This
observation may reflect the challenges in microdissecting tumour
and immune cells that intermix in many tumours. It could also be
related to differences between infiltrating immune cells and
immune cells surrounding the tumour4–6.

To evaluate the association of the stromal and immune scores
with tumour purity, we compared ESTIMATE scores with
predictions of tumour purity based on the ABSOLUTE
method15. ABSOLUTE establishes the fraction of tumour
cells in a tumour sample based on somatic DNA copy number
alterations and has been shown to provide highly accurate
prediction of tumour purity. Immune and stromal signature
scores of TCGA Agilent array-based expression profiles of
ovarian cancer (n¼ 417; 28 samples used to define the
immune signature were not included in this analysis) showed
a significant correlation of both stromal and immune scores with
ABSOLUTE tumour purity predictions (Pearson’s correlation
coefficient or r, � 0.65 and � 0.60; distance r, 0.65 and 0.58)
(Fig. 3a,b). Importantly, ESTIMATE scores showed an
increased correlation with tumour purity compared with
stromal-only and immune-only scores (Pearson’s r, � 0.69;
distance r, 0.69) (Fig. 3c). There was a positive correlation
between stromal and immune scores (Pearson’s r, 0.62; distance
r, 0.58), and samples with low tumour purity showed
high stromal and immune scores (Fig. 3d). Specific samples

were associated with high stromal but not high immune scores,
and vice versa, suggesting variable infiltrating patterns
(Supplementary Data 2).

To illustrate the broad utility of the ESTIMATE algorithm, we
applied this model to 10 TCGA tumour types for which both
DNA copy number and gene expression data sets were available,
profiled on four different platforms (Table 1)24,26–29. These 10
tumour types were among the first cancers to be characterized
by TCGA and were included in TCGA’s Pan-Cancer effort.
To confirm the accuracy of the ESTIMATE algorithm,
receiver operating characteristic (ROC) curve analysis34

using ABSOLUTE-based tumour purity was performed.
Tumour samples were divided into high- and low-purity
groups based on several cutoff values of ABSOLUTE-based
tumour purity (0.9, 0.8, 0.7 and 0.6), and the area under t
he ROC curve (AUC) for each cutoff was measured.
For example, a cutoff of 0.7 for tumour purity resulted in
Agilent-based ESTIMATE score AUC of 0.89 in the TCGA
ovarian cancer data set used as the training set (Fig. 3f). Next,
we applied the ROC analysis to other data sets by using the
same procedure. Similar AUC values were observed across
different expression platforms as well as different tumour types
(Fig. 4a; Supplementary Figs S2–S6).

Immune cells not only infiltrate the tumour cell region
but have also been demonstrated to associate with stromal cells,
in a cancer-type-specific manner4. The correlation between
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Figure 3 | The association between tumour purity variables in TCGA’s ovarian cancer data set. (a–d) Scatterplots between tumour purity and
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stromal and immune scores varied across cancer types,
ranging from high (GBM, Pearson’s r¼ 0.8) to modest
(KIRC, Pearson’s r¼ 0.38; Fig. 3d; Supplementary Fig. S7). This
suggests that the stromal and immune signatures do not
measure the same phenotype and reflects the variable

association between immune cells and tumour stroma across
cancers. Pathology-based estimates of the percentage of tumour
cells, stromal cells and infiltrating lymphocytes, evaluated from
hematoxylin-eosin-stained slides, were less correlated with
ESTIMATE, stromal and immune scores (Fig. 5).

Table 1 | A list of The Cancer Genome Atlas data sets.

Tumour type Affymetrix Agilent RNAseq* RNAseqV2*

Bladder urothelial carcinoma � � � 122 (95)
Breast cancer � 530 (488) 774 (723) 515 (482)
Colon and rectal adenocarcinoma � 224 (218) 83 (81) 264 (255)
Glioblastoma multiforme 529 (417) 403 (319) � 154 (123)
Head and neck squamous cell carcinoma � � � 303 (293)
Clear cell renal cell carcinoma � 72 (42) 469 (329) 480 (329)
Lung adenocarcinoma � � � 230 (228)
Lung squamous cell carcinoma 133 (115) 155 (130) 223 (129) 220 (129)
Ovarian serous cystadenocarcinoma 585 (469) 558 (442) � 262 (248)
Uterine corpus endometrial carcinoma � � 333 (253) 370 (281)
Total 1,247 (1,001) 1,942 (1,639) 1,882 (1,515) 2,920 (2,463)

The number in parenthesis expresses the number of samples whose tumour purity was calculated by using both gene expression data (ESTIMATE) and copy number data (ABSOLUTE).
*RNAseq and RNAseqV2 are expression data based on Reads Per Kilobase per Milion mapped reads (RPKM) and RNA-Seq by Expectation Maximization (RSEM), respectively.
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Prediction of tumour purity using ESTIMATE. In order to
facilitate tumour purity prediction using ESTIMATE signatures,
we transformed the scoring system to a [0,1] range. First, a
regression curve for ESTIMATE score and tumour purity based
on ABSOLUTE in the TCGA data set was established. By
applying the nonlinear least squares method to the modified
TCGA Affymetrix data (n¼ 995) (Supplementary Fig. S8a),
ESTIMATE-based tumour purity prediction model was devel-
oped. There was a high correlation between ESTIMATE-based
and DNA copy number-based tumour purity (Pearson’s r¼ 0.74)
(Supplementary Fig. S8b).

Validating the capacity of ESTIMATE to predict tumour
purity was performed using an independent data set (n¼ 195)
composed of seven publicly available data sets including
both Affymetrix microarray expression data and matched
SNP array copy number data (Supplementary Table S1).
Moreover, ESTIMATE-based tumour purities were highly
correlated with the ABSOLUTE-based tumour purities in the
independent validation set (Pearson’s r¼ 0.87) (Fig. 4b;
Supplementary Fig. S8c). When four cutoff values (ABSO-
LUTE-based tumour purity of 0.9, 0.8, 0.7 and 0.6)
were applied, the average and standard deviation of the
accuracy per cutoff was 0.87±0.050 (Supplementary Table
S2). ESTIMATE provided tumour purity predictions in
individual samples with a 95% confidence interval of the
validity of the prediction (Fig. 4c).

To show the specificity of the tumour purity prediction, we
used copy number and expression data from 27 cancer cell

lines samples (GSE34211). The root-mean-square error of
ESTIMATE and ABSOLUTE were 0.006 and 0.051, respectively,
indicating consistent absence of immune and stromal signals
(Supplementary Fig. S9). Next, we calculated ESTIMATE scores
using the expression profiles from 10 normal ovarian epithelium
samples (GSE18520). The ESTIMATE-predicted tumour
purity was 0.68±0.12 (Supplementary Table S3), suggesting
that normal ovarian epithelium may have some stromal or
immune cell components. In addition, to clarify whether
alteration of gene expression levels related to cell adhesion,
migration or wound-healing processes that occur within tumour
cells would affect our stromal, immune and ESTIMATE scores,
we used public microarray data (GSE17708) from 26 lung
adenocarcinoma cell lines treated or untreated by transforming
growth factor beta 1. Although our stromal scores slightly
increased, the estimated tumour purity was unaffected
(Supplementary Fig. S10).

We investigated the correlation of the stromal, immune
and ESTIMATE scores with methylation-based estimates of
the fraction of leukocytes in tumour tissues15. A high
correlation between our immune score and leukocyte
methylation score was observed across all tumour
types (Pearson’s r¼ 0.75±0.091) (Supplementary Fig. S11).
Interestingly, stromal scores were not strongly correlated with
leukocyte methylation score (Pearson’s r¼ 0.51±0.089). These
findings showed that our immune scores were specifically
associated with the presence of leukocytes across different
tumour types.
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Figure 5 | Correlation of scores with histological findings. Scatterplots between stromal, immune, ESTIMATE scores and ABSOLUTE-based tumour
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Patterns of stromal and immune cell scores across different
tumour types. Using both TCGA and non-TCGA data sets
from 10 different tumour types (Supplementary Table S1), we
examined the distribution of stromal and immune score per
tumour type (Fig. 6; Supplementary Fig. S12, Supplementary
Table S4). As reported previously, lung adenocarcinomas
showed lower purity compared with other tumour types15.
The relatively high levels of stroma found in clear cell renal
cell carcinoma and breast carcinoma may be associated with the
high levels of adipocyte content that is characteristic
of both tumour types35,36. In high-grade serous ovarian
carcinoma, high stromal or immune scores reflect the presence
of mesenchymal or immunoreactive gene expression subtypes
that have been reported previously30,37. Clear cell renal
cell carcinomas are considered to be immunogenic tumours,
and this characteristic is captured by the relatively high levels of
immune signature expression38. Immunogenicity is not
known as a property of lung squamous cell carcinoma;
however, this disease is characterized by a high percentage
(495%) of patients with a history of smoking, which has
been linked to lung inflammation39,40. Lung squamous cell
carcinomas showed relatively high immune cell scores
and have recently been associated with susceptibility to
immunomodulatory therapeutics such as ipilimumab40.
Further investigation is needed to show that the presence of
infiltrating immune cells is a biomarker for immunotherapy
response. The similarity in the distribution of stromal and
immune scores between lung squamous cell carcinoma and head
and neck squamous cell carcinoma suggests that these tumours
may harbour a similar genomic profile but also share
comparable tumour cellularities28.

The impact of tumour purity on somatic mutations. To
examine the impact of tumour purity on the ability to detect
genetic alterations, we assigned samples with ESTIMATE scores
in the top 25% to a low-purity subgroup, and samples with
the bottom 25% ESTIMATE scores to a high-purity subgroup,
per tumour type. We observed a reduced number of mutations
per megabase in low-purity head and neck squamous cell
carcinomas and clear cell renal cell carcinomas, (unpaired t-test
with Benjamini–Hochberg FDR correction, adjusted P¼ 0.055
and 0.055) but not in other tumour types, suggesting that
the sequencing coverage used for TCGA samples is
sufficient to comprehensively detect somatic sequence variants
(Supplementary Fig. S13). Next, we evaluated the mutation
spectrum of high- and low-purity subgroups by measuring the
relative contribution of the two types of transition base sub-
stitution (A4G/G4A and T4C/C4T) and the four classes of
transversion base substitutions (C4A/A4C, C4G/G4C,
T4A/A4T and T4G/G4T). Two of the ten TCGA data sets
(head and neck squamous cell carcinoma, lung squamous cell
carcinoma) showed a significantly decreased fraction of T4A
substitutions in the low-purity group compared with the high-
purity group (unpaired t-test with Benjamini–Hochberg FDR
correction, adjusted P¼ 0.015 and 0.015, respectively)
(Supplementary Table S5). The ratio of transitions and trans-
versions was significantly associated with purity level in head and
neck squamous cell carcinoma (adjusted P¼ 0.018).

Discussion
We have developed a new algorithm to infer the level of
infiltrating stromal and immune cells in tumour tissues and
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tumour purity using gene expression data. The predictive ability
of this method has been validated in large and independent data
sets. Genomic, transcriptomic and proteomic analyses using
clinical tumour tissue are affected by the fraction of tumour cells
present, and methods for evaluation of the non-tumour portions
of tumour samples could provide an important context to
genomic data analysis15. ESTIMATE scores were significantly
correlated with the tumour purity of clinical cancer samples as
well as cancer cell line samples and provide an accessible and
straightforward approach to obtain a measure of the amount of
tumour cells in a biological sample. The ESTIMATE algorithm
may be further optimized by including signature of endothelial
cells and tumour-type-specific normal epithelial cells.

Tumour purity of clinical tumour samples is routinely
determined by pathologists through visual evaluation of hema-
toxylin- and eosin-stained slides. In this study, histological
estimates of the percentage of tumour cells, stromal cells and
infiltrating lymphocytes did not correlate well with ESTIMATE,
stromal and immune scores, consistent with the weak correlation
between DNA copy number-based tumour purity and histological
tumour purity15. This discrepancy between genomic- or
transcriptomic-based and pathology-based estimates might be
affected by the sensitivity of histopathological examination to
interobserver bias and variability in accuracy15,41 or the
difference in tissue sections42 in the same sample between
nucleic acid extraction and histological evaluation.

The contribution of immune cells to ovarian carcinoma is well
recognized5,6, and we chose to use the TCGA ovarian carcinoma
samples as the basis for development of the immune signature, as
four types of principal information were available: tumour tissue for
cell-sorting experiments, estimates of the amount of desmoplasia,
immunohistochemistry-based counts of the number of leukocytes
and methylation leukocyte scores. Importantly, the performance of
ESTIMATE in both TCGA and non-TCGA ovarian carcinoma data
sets was not distinctively better compared with other tumour types,
and we thus believe that the method used to develop the signature is
not biased towards ovarian cancers.

The fibroblast/mesenchymal nature of stromal cells separates
their gene expression profile from that of the epithelial tumour
cells, thus providing a rationale to seek a signature that is
characteristic of stromal cells in general, despite the notion that
stromal cells may be tumour-type-specific. As expression data sets
from three cancer types (ovary, breast and colon) were used to
compare tumour cell fractions and matched stromal cell fractions
after laser-capture microdissection, we suggest that some of the
diversity in tumour-associated stroma among various cancer
types was captured. Importantly, the ESTIMATE accuracy among
ovarian, breast and colon cancer TCGA samples was not notably
better than that of other tumour types, suggesting that the
stromal signature can be broadly applied. The dependency of
ESTIMATE on infiltrating stromal and immune cells resulted in
some limitations, such as the inability to accurately infer tumour
cellularity of hematopoietic or stromal tumours (for example,
leukaemia, sarcoma and gastrointestinal stromal tumours)
because of the high and tumour-intrinsic expression of stromal-
or immune-related genes. Owing to the lack of data, we were
unable to evaluate ESTIMATE in the context of tumour types
such as prostate or pancreas cancer that may present with atypical
patterns of tumour-associated cells—that is, increased fractions of
normal epithelial cells. Additional methods may be needed to
predict cancer cell fractions for such malignancies. The diverse
pattern of the presence of stroma and immune cells across
tumour types further emphasizes the different context-dependent
ways in which tumour-associated normal cells function and more
broadly illustrates the impact of the tumour microenvironment
on tumorigenesis and homeostasis. Epithelial-to-mesenchymal

transitions in tumour cells have been frequently described43. It is
possibility that some overlap exists between the stromal
expression signature and a mesenchymal tumour cell
phenotype. However, the strong correlation with tumour purity
may suggest that epithelial-to-mesenchymal transition is often
confused with the increased presence of tumour-associated
stroma.

Low tumour purities may reduce the sensitivity of somatic
mutation detection44. We did not observe an association of tumour
purity with mutation rates except in head and neck squamous cell
carcinomas and clear cell renal cell carcinoma, suggesting that the
impact of tumour purity to identify somatic mutations is less
compared with other factors such as depth or coverage or the
mutation detection algorithm applied. We noted differences in
mutational profile and spectrum between high and low stromal/
immune subgroups in several tumour types. The consistent
reduction in T4A substitutions in some low-purity cases
suggests that the tumour microenvironment can have an impact
on mutational processes or alternatively that the types of mutations
in the tumour can alter stromal and immune infiltrations. Our
ESTIMATE method for the assessment of stromal and immune
cells in tumour tissues may provide an additional avenue to
increase our understanding of molecular phenotype.

Our results show that the levels of stromal and immune cells in
tumour tissue can be associated with clinical characteristics.
Further refinement of the lineage characteristics of infiltrating
cells, such as distinguishing between various types of leukocytes,
may reveal a more consistent pattern of clinical associations than
what we have currently described. Novel therapeutics such as
ipilumimab and nivolumab alters T-lymphocyte checkpoint
control and may be particularly effective in tumours with
intrinsically high levels of infiltrating leukocytes. Whether
ESTIMATE immune scores could serve as a biomarker for
immunotherapy response is a topic for further investigation.

The ESTIMATE method can be applied for assessment of the
presence of stromal cells and the infiltration of immune cells in
tumour samples using gene expression data. The method is
publicly available through the SourceForge software repository
(https://sourceforge.net/projects/estimateproject/). The applica-
tion of ESTIMATE to publicly available microarray expression
data sets, as well as new microarray or RNA-seq-based
transcriptome profiles, may help in elucidating the facilitating
roles of the microenvironment to neoplastic cell and provide new
insights into context in which genomic alterations occur.

Methods
Data preparation. TCGA level 3 gene expression levels were obtained from the
TCGA Data Portal45 in March 2013. In this study, we used 10 tumour types from
four platforms: Affymetrix HT-HG-U133A (one-colour type—that is, one RNA
sample is labelled with a fluorophore and hybridized to a microarray), Agilent
G4502A (two-colour type—that is, one sample and one reference are labelled with
different fluorophores and hybridized together on a same microarray), RNAseq
(quantified as Reads Per Kilobase per Million mapped reads)46 and RNAseqV2
(quantified through RNA-seq by Expectation Maximization)47 (Table 1). The
tumour types selected for our study were among the first tumour types analysed
through TCGA and were selected as cancer types studied in TCGA’s Pan-Cancer
project. In addition, we used 31 data sets of microarray expression or SNP array
copy numbers from Gene Expression Omnibus48 and ArrayExpress49, glioblastoma
expression data set from the Repository of Molecular Brain Neoplasia Data50,
cancer cell line expression data set from Cancer Cell Line Encyclopedia (CCLE)51

and a glioma stem-like cell expression data set from researchers at MD Anderson
Cancer Center (Supplementary Table S1).

Microbead-based cell sorting. First, the tissue of a fresh frozen ovarian cancer
sample was diced into 1-mm pieces. The tissue was further enzymatically dis-
sociated with 0.8mg/ml HBSS Liberase Research Grade (#05-401-119-001; Roche)
and incubated at 37 �C for 1 h, followed by mechanical dissociation using an 18-G
needle. To isolate single cells, the resulting cell suspension was filtered using a 40-
mm filter. Lastly, the remaining cells were separated into an epithelial tumour cell
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fraction and a non-epithelial tumour-associated stromal fraction. For cell sorting,
we used antibody-coated microbeads that recognize the epithelial cell surface
marker EpCAM (#130-061-101; Miltenyi Biotec), which results in an EpCAM-
positive tumour cell fraction and an EpCAM-negative tumour-associated stromal
cell fraction. To test the efficiency of our procedure we performed gene expression
profiling on three bulk tumours, three EpCAM-positive fractions and three
EpCAM-negative fractions after cell sorting using Illumina BeadChip Human HT-
12 v4 according to the manufacturer’s instructions. This study was approved by the
institutional ethics review board at The University of Texas MD Anderson Cancer
Centre (Lab 07-0108). All patients provided written informed consent for the
collection of samples and subsequent analysis.

Microarray data processing. Probes from Affymetrix HG-U133A, HG-
U133Plus2.0 and HT_HG-U133A GeneChip platforms were mapped to a tran-
script database and combined in one probe set per gene, as described previously52.
Expression levels from these Affymetrix data sets were individually established
using RMA and quantile normalization53. Raw data from Affymetrix Human
133� 3 P array were processed using the Bioconductor rma package with the
default setting. On the Agilent G4112F platform, data normalization was carried
out in GeneSpring GX 11.5 (Agilent Technologies) by setting the raw signal
threshold to 1.0 and using 75th percentile normalization54. Quantile normalization
was performed for Illumina Human HT-12 v4 microarray data using the
Bioconductor preprocessCore package. On Affymetrix Human 133� 3P array,
Agilent G4112F and Illumina Human HT-12 v4 probes measuring the same gene
were averaged to obtain one expression value per gene and sample.

Gene selection. A flowchart of gene selection in this study is shown in
Supplementary Fig. S1. To analyse expression data measured from six different
platforms, we extracted 10,412 common genes. In the gene selection process, we
used the significance analysis of microarray55 method to detect differentially
expressed genes (more than twofold and qo0.0001) between two groups.

First, by comparing normal hematopoietic cells (two CD14 monocytes, two
dendritic cells, two CD56 NK cells, two CD4 T-cells, two CD8 T-cells and two
CD19 B-cells) to other normal cells in the GSE1133 data set, we divided 10,412
common genes into two groups: 1,222 genes that were upregulated in normal
hematopoietic cells (named ‘normal hematopoietic cell-related genes’) and 9,190
other genes. Second, to extract genes associated with infiltrating immune cells in
tumour tissues, we adopted leukocyte methylation signature scores that describe
the level of immune cell infiltration in ovarian cancer tissues using methylation
data15. Of 489 samples in TCGA ovarian cancer-unified expression data56, 403
samples include a leukocyte methylation signature score. We defined the
respective high and low immune cell infiltration groups as those having a
leukocyte score higher than the 97th percentile (n¼ 14) and those with a score
lower than the 3rd percentile (n¼ 14). We compared the two groups. As a result,
we extracted 447 upregulated genes in the high immune cell infiltration group
and found 161 genes that overlapped between the 1,222 normal hematopoietic
cell-related genes and the 447 genes related to infiltrating immune cell-related
genes. Third, we compared the tumour portion with their matched stromal part
after laser-capture microdissection including ovarian cancer (GSE9890), breast
cancer (GSE14548) and colorectal cancer (GSE35602) in order to evaluate the
possibility that stroma-forming cells in tumour tissue differ among various
tumour types. For those three respective data sets, we extracted 245, 300 and
1,147 upregulated genes in stromal samples and picked up 338 stromal-related
genes that overlapped in at least two data sets. Fourth, to exclude genes with high
variability across tumour types, we calculated the median absolute deviation
(MAD) based on 451 samples from the CCLE expression data set, which
consisted of breast, brain, colon, endometrial, kidney, lung and ovarian cancer
types. We defined genes with MAD o0.5 as genes with low variability13 in the
CCLE data set and selected 172 overlapping genes related to the presence of
stroma in tumour tissue samples. Furthermore, as brain tumours are derived from
non-epithelial cells, brain tumours highly express some stromal markers that have
been previously reported. Therefore, we calculated the average expression level
per gene and ranked the genes in the order of the average expression level in the
glioma stem-like cell data set to exclude genes highly expressed in stromal tissue
in brain tumours. We decided that genes ranked lower than the median rank as
low expression in glioma stem-like cells. After that, we extracted 141 stromal
genes. To unify the number of genes between those related to stroma and to
immune cell infiltration, we extracted 141 genes related to immune cell
infiltration by selecting the top-ranked 141 genes after sorting by the significance
analysis of microarray score obtained by comparison of the high to low immune
cell infiltration groups. Genes included in the two signatures are listed in
Supplementary Data 1. In the evaluation of the two signatures across the TCGA
data sets, we observed that the stromal signature prior to including the two
additional filtering steps was not able to provide equivalent predictive ability
compared with that of the immune signature. As tuning the signature based on its
performance in the TCGA data sets of other tumour types increased the risk of
overfitting, we validated the effectiveness of the signatures on the independent
data set (Fig. 4b; Supplementary Fig. S8c).

ESTIMATE. ESTIMATE outputs stromal, immune and ESTIMATE scores by
performing ssGSEA13,23,37. For a given sample, gene expression values were rank-
normalized and rank-ordered. The empirical cumulative distribution functions of
the genes in the signature and the remaining genes were calculated. A statistic was
calculated by an integration of the difference between the empirical cumulative
distribution function, which is similar to the one used in gene set-enrichment
analysis but based on absolute expression rather than differential expression.

We defined ssGSEA based on the signatures related to stromal tissue and
immune cell infiltration as stromal and immune scores and combined the stromal
and immune scores as the ‘ESTIMATE score’. The formula for calculating
ESTIMATE-based tumour purity was developed in TCGA Affymetrix data
(n¼ 1,001) including both the ESTIMATE score and ABSOLUTE-based tumour
purity. To develop a precise prediction model for tumour purity, we excluded six
outliers from all Affymetrix data by computing a multivariate outlier criterion
based on the generalized extreme studentized deviate test57,58 using the
Bioconductor Parametric and Resistant Outlier Detection (PARODY) package
(Supplementary Fig. S8a). Next, we entered both the ESTIMATE score and tumour
purity to Eureqa Formuliza 0.97 Beta using the default setting59. Eureqa attempts to
design a mathematical formula that fits observed data employing an evolutionary
algorithm60. We obtained a fitted formula to predict tumour purity based on the
ESTIMATE score. Finally, we applied this formula to the nonlinear least squares
method (nls function for stats package) to determine the final formula for
predicting tumour purity, as follows:

Tumour purity¼ cos (0.6049872018þ 0.0001467884� ESTIMATE score). (1)

HAPSEG and ABSOLUTE. ABSOLUTE-based tumour purity in the TCGA data
sets was obtained from each TCGA working group. To calculate ABSOLUTE-based
tumour purity in other data sets, we ran HAPSEG version 1.1.1 and ABSOLUTE
version 1.0.4. As indicated on the website61, we ran Birdseed v1 using Affymetrix
Power Tools62 and input the resulting apt-probeset-summarize and apt-probeset-
genotype files into HAPSEG. After that, we ran ABSOLUTE at the default setting.
In the subsequent analyses, we used samples for which the tumour purity levels
were called by ABSOLUTE.

SNP array data for HAPSEG and ABSOLUTE. We downloaded SNP array data
from Gene Expression Omnibus48 and ArrayExpress49. We used Affymetrix CEL
files (including per-probe intensity values) from two platforms (Affymetrix
GeneChip Human Mapping 250K Sty array and Genome-Wide Human SNP array
6.0) in this study. Samples that had passed the 93% call-rate threshold (GeneChip
Human Mapping 500 K array) or the 86% threshold (Genome-Wide Human SNP
array 6.0)63 were applied to the ABSOLUTE algorithm15.

Leukocyte methylation score. We downloaded leukocyte methylation score data
(syn1809223)15 that predicts the fraction of leukocyte in tumour tissue based on
genome-wide DNA methylation data from Synapse BETA64 and investigated the
correlation of stromal, immune and ESTIMATE scores with leukocyte methylation
scores for each tumour type.

Histological purity estimates. We downloaded Biotab clinical information per
sample from the TCGA Data portal. Basically, each tumour specimen was
embedded in optimal cutting temperature medium, and histologic sections were
obtained as top and bottom portions for pathological review. Of ‘biospeci-
men_slide’ data for each tumour type, we used ‘percentage of infiltrating lym-
phocyte’, ‘percentage of stromal cells’ and ‘percentage of tumour cells’ to examine
the association of our stromal, immune and ESTIMATE scores and histological
findings. For samples with multiple slide data, we used the mean of each value in
performing correlation analysis.

Mutation analysis. We downloaded mutation annotation format files
(syn1710680) and mutation rates (syn1713813) based on MuSIC65 for 10 different
types of tumours from Synapse BETA64. From the mutation annotation format
files, we extracted mutation status for 10,412 common genes that were used as
background in the ESTIMATE algorithm. Of the several mutation types, we
used ‘Frame_Shift_Del/Ins,’ ‘In_Frame_Del/Ins,’ ‘Missense_Mutation’ and
‘ Nonsense_Mutation’ in this study. We converted the mutation status per gene
that was converted into binary data (1, mutated; 0, wild type) to use in the
mutation analysis. To examine the impact of infiltrating normal cells on genetic
alterations, we extracted high and low ESTIMATE score subgroups from the
expression data per tumour type. The high and low ESTIMATE score subgroups
were defined, respectively, as samples with scores higher than the 75th percentile
and within the 25th percentile of the ESTIMATE score range. We combined the
expression data in the two subgroups with somatic mutation binary data. Samples
without either expression or mutation were excluded from this analysis. Mutation
frequency was evaluated by the number of mutations per Mbp26–29. To investigate
the mutation spectrum between the two subgroups per tumour type, we selected
single-nucleotide alterations and converted them into the six classes of base
substitution (C4A, C4G, C4T, T4A, T4C and T4G)66,67. We then calculated
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the relative contribution of each of the six classes of base substitutions and
compared them between the two subgroups.

Next, we extracted the respective high and low stromal/immune score
subgroups based on the 75th and 25th percentiles of each score per tumour type
and combined each subgroup’s expression data and mutation data.

Statistical analysis. We conduced all computations with R 2.13.2 (ref. 68) and
used standard statistical tests as appropriate. Where appropriate, P-values were
corrected for multiple testing using the Benjamini–Hochberg false discovery rate
method69.
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