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Many innovations are inspired by past ideas in a nontrivial way. Tracing these origins and identifying scientific
branches is crucial for research inspirations. In this paper, we use citation relations to identify the descendant chart,
i.e., the family tree of research papers. Unlike other spanning trees that focus on cost or distance minimization,
we make use of the nature of citations and identify the most important parent for each publication, leading to a
treelike backbone of the citation network. Measures are introduced to validate the backbone as the descendant
chart. We show that citation backbones can well characterize the hierarchical and fractal structure of scientific
development, and lead to an accurate classification of fields and subfields.
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I. INTRODUCTION

Many innovations are inspired by past ideas in a nontrivial
way. Examples in statistical physics include the connection
between spin glasses and combinatorial problems [1,2], the
application of critical phenomena in earthquake modeling
[3,4], and the analyses of the spread of disease using
percolation theory [5,6]. To draw these connections is easy,
but to map individual fields onto a descendant chart, i.e., a
family tree of research branches, is more complicated. An even
more difficult task is to uncover the macroscopic tree based
on the microscopic relations between publications. Despite
the difficulties, descendant charts are crucial for revealing
the nontrivial connections between branches, which stimulate
inspirations. Accurate descendant charts also provide a natural
classification of papers.

A solid basis to study descendant charts is represented by
the citation network, which can be seen as the original map of
scientific development. In recent years, citation and authorship
networks have been used to evaluate the impact of academic
papers and scientists [7,8]. Although useful information is
retrieved, most studies focus on contemporary impact and
ignore the intrinsic hierarchical structure of citations encoding
the generation of scientific advances. Unlike the horizontal
exploration in conventional paper classifications [9], we
explore the vertical, i.e., temporal, dimension in citation
networks to identify the descendant charts of publications.

Toward this end, we identify a backbone of the citation
network by removing all but the most relevant citation for each
paper. The backbone hence results in a treelike structure and
is found solely based on citation relations with no additional
information. Similar concepts of spanning trees are extensively
studied in transportation networks and oscillator networks, as
minimum spanning trees in terms of traveling cost [10,11],
and trees that maximize betweenness [12] or synchronizability
[13]. Although the citation backbone can be constructed by
these definitions, we see no direct correspondence between
them and scientific descendant trees. Instead, one should make
use of the nature of citation relations and identify the important
parent and thus the offspring for each paper, which constitutes
a backbone specific for citation networks.

In this paper, we identify the descendant chart for publi-
cations in journals of the American Physical Society (APS),
based on their citation network from 1893 to 2009. Our ob-
jectives are threefold. First, we introduce a potential approach
to identify the most relevant parent (among the set of original
references) for each publication, which leads to a backbone
of the citation network. Second, we introduce measures to
validate the citation backbones as representative descendant
charts and compare our approach with two other simple
procedures (i.e., the selection of a random parent or the longest
path to the root). Finally, we show that citation backbones
possess features of hierarchy and self-similarity, and lead to
a valid classification of papers in linear time, compared to
conventional polynomial-time algorithms [14,15]. The present
work pinpoints the importance of scientific descendant charts,
as well as their intrinsic difference from other spanning
trees.

II. METHODS

To start our analyses, we first denote the references of a
paper as its parents, and the articles citing the paper as its
offspring. The set of parents and the offspring of a paper i are
denoted by Pi and Oi with pi and oi elements, respectively.
Intuitively, the offspring of an important paper should share
a similar focus introduced by its influential parent. Less
relevant parents will, by contrast, lead to a more heterogeneous
descendance. We thus quantify the impact of parent α on i by
Iα→i = ∑

i ′∈Oα\{i} sii ′ , where sii ′ is the similarity between i

and i ′. We refer to papers in the set of Oα\{i} as the peers
of i rooted in α (see Fig. 1 for an illustration). The higher
the overall similarity between i and the papers in Oα\{i}, the
higher the impact of α on i.

A simple way to measure the similarity between i and peer
i ′ is to count the number of their common references, i.e., sii ′ =
|Pi ∩ Pi ′ |. However, this similarity measure favors peers with
many references, resulting in an impact biased toward parents
with a large offspring. This suggests to define a similarity
measure based on a random walk from the peers to i. We
thus consider a two-step random walk from each peer i ′ to i
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FIG. 1. A schematic diagram that shows two peers i ′ = i ′
1,i

′
2

(shaded) of i rooted from parent α. To compute each saut
ii′ , we consider a

random walk from i ′ through papers cited by both i ′ and i. Specularly,
to compute each sread

ii′ we consider a random walk from i ′ through
papers citing both i ′ and i.

that passes through their common references, and we define a
contribution to sii ′ as

saut
ii ′ = 1

pi ′

∑
j∈Pi∩Pi′

1

oj

. (1)

The superscript represents the authors’ interpretations, as this
similarity is measured through the references chosen by the
authors of i. A second contribution is instead given by a random
walk through articles citing i and represents the readers’
interpretation of i. In analogy with saut

ii ′ , we define

sread
ii ′ = 1

oi ′

∑
j∈Oi∩Oi′

1

pj

. (2)

As defined in both Eqs. (1) and (2), the higher the random-walk
probability from i ′ to i, the higher the similarity between i ′
and i.

Finally, by combining linearly sread
ii ′ and saut

ii ′ and summing
over all the peers rooted in α, we obtain the impact of α on i

as

Iα→i =
∑

i ′∈Oα\{i}

[
f sread

ii ′ + (1 − f )saut
ii ′

]
(3)

with f to adjust the relative weights on the two contributions.
The subsequent analysis is simplified by setting f = 0.5 unless
otherwise specified. We note that citations between peers [16]
do not contribute to the above measure, as these citations may
correspond to relations other than similarity. For instance, if
many peers rooted from parent α cited i, it implies that α

complements i instead of being merely an influential parent
of i. The same is true if i cites many peers rooted from α,
which suggests α is a complement of its peers instead of a
mere influential parent.

By keeping only the reference α with highest Iα→i for all i,
we obtain a citation backbone denoted as the SIM backbone.
Cases of equal scores are extremely rare and do not affect
results (in such situations, we arbitrarily choose the latest
reference with the highest Iα→i). In addition, we examine also
the RAN and the LON backbone, which selects, respectively, a
random parent and the reference giving rise to the longest path
to the root (most likely the latest published parent). Other than
serving as a benchmark, the RAN backbone can be informative
as the random parent is one of the original references. The

LON backbone instead represents a natural choice if progress
is always based on recent developments, as one may follow the
step-by-step evolution of science represented by the maximum
number of steps needed to reach the root.

III. STATISTICAL PROPERTIES OF THE BACKBONE

We will examine the citation network among the journals
of the American Physical Society, from the years 1893 to
2009. The dataset is composed of 4.67 × 106 citations between
4.49 × 105 publications. In rare cases there are references
to contemporary or even posterior published papers. These
citations are removed and the network is strictly acyclic.

We note that all papers without reference are potentially
the roots of the backbone. As this number is generally greater
than 1 and we are limited to the simplest case with one
selected ancestor per paper, there may appear multiple roots
and hence isolated trees in the backbone. In the subsequent
discussion, we will refer to the output of the SIM, RAN, and
LON algorithms as backbone, and its isolated components as
trees. Since the seemingly isolated roots may be connected by
citations other than the APS network, the number of isolated
trees would be lower if more comprehensive citation data were
used. Nevertheless, such isolated trees may represent a crude
classification of papers. Table I summarizes general statistical
properties of the group of trees as obtained by SIM, RAN, and
LON approaches.

IV. THE STRUCTURE OF THE BACKBONE

In this section, we will discuss and derive measures to
validate the citation backbones as representative of descendant
charts. Three aspects will be studied. First, we examine the
linkage between different generations of papers. Second, we
quantify the paper classification as given by the clustering and
branching structure in the backbones. Finally, we examine the
possible self-similarity in citation backbones.

A. Hierarchy

We first examine the probability of observing an original
citation between two papers as a function of their distance in
the backbone. If the backbone is meaningful, we expect this
quantity to decrease fast as the distance increases. To compute
the distance between i and j , we find the first common ancestor

TABLE I. Statistical properties of the isolated trees in the SIM,
RAN, and LON backbones. Values for RAN are averaged over 100
realizations. We also show the average interval (in years) between the
date of publication of a paper and its parent.

SIM RAN LON

Number of isolated trees 3953 6594 2630
Size:

largest tree 26 115 30 358 428 147
2nd largest tree 25 386 15 697 592
3rd largest tree 21 794 11 362 471

〈�t〉 parent-offspring 9.5 y 7.4 y 2.1 y
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FIG. 2. (Color online) Conditional probability P (l|d) of observ-
ing a citation between two papers at distance d on the SIM (red
squares), the RAN (black plus), and the LON (green circles) backbone.
Results for RAN are averaged over 100 realizations of the backbone
(the variance is negligible). Inset: conditional probability P (d|l) that
two papers are at distance d assuming there is a citation.

α′ in the backbone and count the number of steps diα′ and djα′

required to go from i to α′ and from j to α′. The distance
dij is then set as dij = diα′ + djα′ . We consider dij = ∞ for
paper i and j in isolated trees. In Fig. 2, we plot P (l|d) as a
function of d for all SIM, RAN, and LON backbones, where l

denotes the presence of a link, i.e., a citation. As we can see,

P (l|1) = 1 by definition and all P (l|d) display a power-law
decay for small d. The SIM backbone shows a faster decay than
other algorithms, suggesting that citations are more localized
in the neighborhood of a paper in the SIM backbone. A similar
quantity P (d|l) (see the inset of Fig. 2 ) also indicates that the
SIM backbone is the best representative of the APS network
since citations are concentrated at d = 2 and decay faster as
the distance increases.

In addition to P (l|d), we further consider P (l|diα′ ,djα′ ),
where α′ is again the first common ancestor of i and j in
the backbone. This allows us to see whether citations are
localized on the specific branch of each paper or spread over
different ramifications on the tree. For any pair (i,j ), we take
i as the later published paper such that the only potential
citation is i → j . We show in Figs. 3(a)–3(c) the results of
P (l|diα′ ,djα′ ) for the three backbones as a function of diα′ and
djα′ . One notes that increasing diα′ on the line of djα′ = 0
corresponds to the vertical trace toward the root, while points
with djα′ 	= 0 correspond to the various “ramifications” in the
backbone. Both SIM and RAN give a meaningful structure
where citations are localized on the descendant chart of the
immediate and next immediate ancestor, i.e., the triangle
in the bottom left-hand corner. Citations between different
ramifications are rare. The LON backbone instead displays a
less coherent structure in which citations crossing different
lines of research are common. To examine the difference
between SIM and RAN, we also show the scaled difference
of their P (l|diα′ ,djα′ ) as given in the vertical axis of Fig. 3(d).
This comparison clearly indicates that SIM gives rise to the
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FIG. 3. (Color online) Heat maps that show P (l|diα′ ,djα′ ) as a function of diα′ and djα′ for (a) the SIM backbone, (b) the RAN backbone, and
(c) the LON backbone, with citation i → j . Since papers only cite references published before them, the observed dark triangle in LON suggests
a rather homogeneous temporal interval between papers and their best LON ancestor, such that citations with djα′ > diα′ are highly improbable.
Results for RAN are averaged over 100 realizations of the backbone (the variance is negligible). (d) Scaled difference of P (l|diα′ ,djα′ ) between
SIM and RAN .
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most meaningful hierarchy as citations are mainly found on
the descendant chart of the more relevant ancestors instead of
crossing different charts.

B. Clustering

In addition to the crude classification as given by the iso-
lated trees, the branches in a single tree are also informative to
identify research fields and subfields. From the clustering point
of view, the method we have introduced is computationally
efficient [with complexity O(N ) as long as connectivity is
not extensive] compared to modularity maximization-based
algorithms [17,18] or hierarchical clustering algorithms [19]
[with complexity at least O(N2)]. Moreover, the clustering
naturally explores the temporal dimension by preserving the
ancestor-descendant relations.

In order to map the backbone into clusters, we consider two
simple approaches that involve only a single parameter. The
first approach makes use of the publication year of papers and
naturally follows the order of publication. We first make a cut
at the year Yc such that papers printed before Yc are removed.
We then consider each unconnected component as a different
branch, i.e., a different cluster, in the original backbone, and
as a classification for papers.

The second approach is dependent on the cluster size, which
we consider to be a typical research branch. Starting from the
leaves of the backbone (i.e., papers with no offspring), we
trace toward the root until a branching point is reached. The
branching point is defined as a node of the network from which
at least (i) two ramifications start and (ii) two ramifications are
extended more than S steps. When a branching point satisfies
these requirements, all ramifications originating from it are
considered as different branches, resulting in a classification
of papers. Here we quantify the validity of clustering as a
function of parameter Yc and S.

In order to evaluate the quality of a given clustering, we
use two different measures. The first one—which we call
exclusivity—is a modified modularity measure specific for
directed acyclic graphs. The rationale behind this measure is
to compute the fraction of links of the original network falling
inside the same cluster and compare it with the expected value
for a random directed acyclic graph. We denote the set of
papers assigned to branch x as X and define the exclusivity as

E =
〈〈

pi
x

pi

− ni
x

ni

〉
i∈X

〉
x

, (4)

where pi is again the number of references of i, pi
x is the

number of i’s references in branch x, ni is the number of papers
published before i, and ni

x is the number of papers published
before i in branch x. The term ni

x/ni thus corresponds to the
expected fraction of links from i to an element in X in the
random case. To reduce the noise from small clusters, we have
excluded branches with fewer than 10 papers.

The second measure we use is the effective number of
PACS—NP —which counts the average number of heteroge-
neous PACS in individual branches. Good paper classifications
result in small values of NP . We first denote rx

p to be the fraction
of paper in branch x, which is labeled by the PACS number p,
and note that

∑
p rx

p � 1 as papers are always labeled by more

than one PACS number. NP is then defined as

NP =
〈

1∑
p

(
f x

p

)2

〉
x

, (5)

where f x
p = rx

p/
∑

p′ r
x
p′ . Therefore, NP = 1 when there is

only one PACS in the branch, which corresponds to the
optimal classification of papers. On the other hand, NP attains
its maximum when all PACS numbers in X have an equal
share (i.e., equal f x

p ) and a large NP thus corresponds to
high heterogeneity inside single clusters. We remark that in
evaluating NP , only the first four digits are used to distinguish
PACS numbers.

In Fig. 4, we plot the E and Np as a function of the
two parameters Yc and S. Both measures are biased by the
cluster size but in an opposite way. While Np indicates better
clustering (and thus a lower value) when isolated clusters are
of a smaller size, E indicates better clustering (and thus a
higher value) when clusters are of a larger size. Even with the
compensation by nx

i /ni in Eq. (5), we still observe a small
bias of E on cluster size. These biases may influence our
comparison of the identified clusters from the SIM, RAN, and
LON backbones, as they have different sizes. Nevertheless, the
combination of the two independent measures clearly indicates
that SIM is the best choice to obtain a meaningful clustering
besides the bias introduced by cluster sizes. Moreover, the
exclusivity of the SIM backbone is higher for any value of
the parameter S, which further supports the validity of the
comparison despite the presence of the bias.

C. Self-similarity

Other than the hierarchical and clustering properties,
the backbones may possess self-similarity. Intuitively, self-
similarity may be induced when branches of research succes-
sively generate branches of significant advances. The existence
of fractality in the backbone would provide support for its
relevance with the evolution of science.

To show the self-similarity in networks, one can measure
their fractal dimension by the box-covering method [12,20,21].
In this approach, the fractal dimension d is defined as the
power-law exponent in

N (lB) ∼ ldB, (6)

where N (lB) is the minimum number of boxes, each of radius
lB , required to cover the whole network. To obtain the exact
N (lB) is difficult, thus we employ the random sequential box-
covering algorithm [21], which gives an approximate N (lB)
with the same scaling. Specifically, we start with all nodes
being “uncovered” and repeat the following procedures until
all nodes become “covered”: (i) randomly pick a seed node,
(ii) find all “uncovered” nodes within a distance of lB from the
seed, and (iii) increase N (lB) by 1 if there exists at least one
“uncovered” node and mark all of them as “covered.” Note
that a “covered” node can also be a seed in the subsequent
searches. For the same tree, we show the minimum of N (lB)
among 20 random sequences as our final value for each value
of lB .

We show in Fig. 5 the results of N (lB) as a function of lB
for the largest tree in the SIM, RAN, and LON backbone. The
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FIG. 4. (Color online) The exclusivity E and the effective number of PACS NP as a function of cut-year Yc and branch depth S for the SIM
(red squares), the RAN (black plus), and the LON (green circles) backbone. Both quantities show that SIM gives a more meaningful division
into branches. Results for RAN are averaged over 100 realizations of the backbone (the variance is negligible).

results are compared to N (lB) of the original citation network.
As we can see, N (lB) from the LON backbone has the greatest
resemblance to power laws, while that of the RAN backbone
shows the fastest decay in N (lB). The LON tree has a long tail
of N (lB), as it is longest and largest in size (see Table I). Only
the largest tree of a particular realization of the RAN backbone
is shown, as similar results are observed in other realizations.
Although a long tail is not observed in the SIM tree, it shows
a power-law-like behavior up to an intermediate value of lB .
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FIG. 5. (Color online) N (lB ) as a function of lB for the largest tree
in the original network and its SIM, LON, and RAN backbone, taken
as the minimum over 20 random sequences of seed nodes for the
box-covering algorithms. The SIM backbone is obtained at f = 0.5.
Inset: N (lB ) as a function of lB for the three largest trees in the SIM
backbone.

Similar behaviors are also observed in the other isolated trees
of the SIM backbone, as shown in the inset of Fig. 5.

We interpret the results as follows. The observed resem-
blance to power laws from the SIM and LON backbone may
suggest the presence of self-similarity in their descendant
chart. While the LON backbone does not possess a meaningful
hierarchy or clustering compared to the SIM backbone, its
step-by-step structure indeed shows the highest fractality. We
note that a rather short power law is also observed in the
original network, though characterized by a different exponent
from the SIM and LON backbones. On the other hand, such
fractality is not observed in the RAN backbone.

V. POTENTIAL APPLICATIONS

In this section, we briefly describe the implications and
potential applications of the citation backbone as a descendant
chart of research papers.

As the backbone is a sketch of the skeleton of scientific
development, it can be applied to identify seminal papers.
Preliminary results show that a simple measure based on the the
number of relevant offspring, i.e., followers in the backbone,
is sufficient to give a meaningful ranking that is not trivially
correlated with the original number of incoming citations
(between the two rankings, Kendall’s correlation coefficient
is 0.19 and there is an overlap of only seven papers in the top
20 ranks). This serves as a simple yet meaningful definition
of the impact of a publication. More refined definitions that
take into account the reputation of each relevant offspring
and/or the structural role of a given paper in the backbone
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can give an even better selection of fundamental papers.
Moreover, our formulation of tunable weight on authors’ and
readers’ interpretations in Eq. (3) can be easily incorporated
in common ranking algorithms such as Page Rank, where an
even repartition of citation importance is assumed instead.

The second application corresponds to the classification
of papers. As we have mentioned before, such clustering
divides papers into research fields or subfields and offers a
basis for a synthetic picture of the state-of-the-art. There are
several advantages over conventional classifications, including
(i) lower computational complexity, (ii) additional information
of subclustering as given by the internal tree structure, and (iii)
predictions of future development by considering the rate of
growth of subbranches. This last feature is particularly useful
to filter the most active directions in the large amount of
literature at our disposal.

VI. CONCLUSIONS

We have shown that a simple backbone constructed by
the most relevant citations can well characterize the original
citation network. Conversely, nontrivial information stored in
the citation network can be simply extracted from its backbone.
While conventional spanning trees are based on contemporary
information, we demonstrated the significance of temporal
dimension in citation backbones.

Specifically, we have introduced both a simple approach to
identify the most relevant reference for each publication and
effective measures to quantify the validity of the resulting
backbone. Our results show that the essential features of
hierarchy and paper clustering in the original network are well

captured by our citation backbone, while this is not the case
for other simple approaches. On the other hand, we showed
that a resemblance to self-similarity is observed in citation
backbones.

In terms of applications, the backbone can be considered
as a descendant chart of research papers, which constitutes a
useful basis for identifying seminal papers and paper clusters,
and in general a synthetic picture of different research fields.
In particular, paper classification by means of the backbone is
computationally efficient when compared to the conventional
clustering approaches, and provides additional information on
the cluster structure besides a mere cluster label.

While we only investigated the citation network of the
American Physical Society, the same approach can be readily
applied to other citation networks. It would also be interesting
to examine the potentials of the present approach on other
directed acyclic graphs.
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