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hester, M13 9PL, UK(Dated: January 16, 2009)This arti
le reviews the basi
 theoreti
al aspe
ts of graphene, a one atom thi
kallotrope of 
arbon, with unusual two-dimensional Dira
-like ele
troni
 ex
itations.The Dira
 ele
trons 
an be 
ontrolled by appli
ation of external ele
tri
 and magneti
�elds, or by altering sample geometry and/or topology. We show that the Dira
ele
trons behave in unusual ways in tunneling, 
on�nement, and integer quantumHall e�e
t. We dis
uss the ele
troni
 properties of graphene sta
ks and show thatthey vary with sta
king order and number of layers. Edge (surfa
e) states in grapheneare strongly dependent on the edge termination (zigzag or arm
hair) and a�e
t thephysi
al properties of nanoribbons. We also dis
uss how di�erent types of disordermodify the Dira
 equation leading to unusual spe
tros
opi
 and transport properties.The e�e
ts of ele
tron-ele
tron and ele
tron-phonon intera
tions in single layer andmultilayer graphene are also presented.ContentsI. Introdu
tion 1II. Elementary ele
troni
 properties of graphene 4A. Single layer: tight-binding approa
h 41. Cy
lotron mass 52. Density of states 5B. Dira
 fermions 61. Chiral Tunneling and Klein paradox 72. Con�nement and zitterbewegung 9C. Bilayer graphene: tight-binding approa
h 10D. Epitaxial graphene 11E. Graphene sta
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al latti
e defe
ts 29C. Impurity states 30D. Lo
alized states near edges, 
ra
ks, and voids 30E. Self-doping 31F. Ve
tor potential and gauge �eld disorder 321. Gauge �eld indu
ed by 
urvature 322. Elasti
 strain 333. Random gauge �elds 34G. Coupling to magneti
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alization 34I. Transport near the Dira
 point 36J. Boltzmann Equation des
ription of DC transport indoped graphene 37
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knowledgments 48Referen
es 48I. INTRODUCTIONCarbon is the materia prima for life on the planet andthe basis of all organi
 
hemistry. Be
ause of the �exi-bility of its bonding, 
arbon-based systems show an un-limited number of di�erent stru
tures with an equallylarge variety of physi
al properties. These physi
al prop-erties are, in great part, the result of the dimensionalityof these stru
tures. Among systems with only 
arbonatoms, graphene - a two-dimensional (2D) allotrope of
arbon - plays an important role sin
e it is the basis forthe understanding of the ele
troni
 properties in otherallotropes. Graphene is made out of 
arbon atoms ar-ranged on a honey
omb stru
ture made out of hexagons(see Fig. 1), and 
an be thought as 
omposed of benzenerings stripped out from their hydrogen atoms (Pauling,1972). Fullerenes (Andreoni, 2000) are mole
ules where
arbon atoms are arranged spheri
ally, and hen
e, fromthe physi
al point of view, are zero-dimensional obje
tswith dis
rete energy states. Fullerenes 
an be obtained
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2from graphene with the introdu
tion of pentagons (that
reate positive 
urvature defe
ts), and hen
e, fullerenes
an be thought as wrapped up graphene. Carbon nan-otubes (Charlier et al., 2007; Saito et al., 1998) are ob-tained by rolling graphene along a given dire
tion andre
onne
ting the 
arbon bonds. Hen
e, 
arbon nan-otubes have only hexagons and 
an be thought as one-dimensional (1D) obje
ts. Graphite, a three dimen-sional (3D) allotrope of 
arbon, be
ame widely knownto mankind after the invention of the pen
il in 1564(Petroski, 1989) and its usefulness as an instrument forwriting 
omes from the fa
t that graphite is made outof sta
ks of graphene layers that are weakly 
oupledby van der Waals for
es. Hen
e, when one presses apen
il against a sheet of paper one is a
tually produ
-ing graphene sta
ks and, somewhere among them, there
ould be individual graphene layers. Although grapheneis the mother for all these di�erent allotropes and hasbeen presumably produ
ed every time someone writeswith a pen
il, it was only isolated 440 years after its in-vention (Novoselov et al., 2004). The reason is that, �rst,no one a
tually expe
ted graphene to exist in the freestate and, se
ond, even with the bene�t of hindsight, noexperimental tools existed to sear
h for one-atom-thi
k-�akes among the pen
il debris 
overing ma
ros
opi
 ar-eas (Geim and Ma
Donald, 2007). Graphene was even-tually spotted due to the subtle opti
al e�e
t it 
reates ontop of a 
leverly 
hosen SiO2 substrate (Novoselov et al.,2004) that allows its observation with an ordinary opti-
al mi
ros
ope (Abergel et al., 2007; Blake et al., 2007;Casiraghi et al., 2007). Hen
e, graphene is relativelystraightforward to make, but not so easy to �nd.The stru
tural �exibility of graphene is re�e
ted in itsele
troni
 properties. The sp2 hybridization between ones-orbital and two p-orbitals leads to a trigonal planarstru
ture with a formation of a σ-bond between 
arbonatoms whi
h are separated by 1.42 Å. The σ-band is re-sponsible for the robustness of the latti
e stru
ture in allallotropes. Due to the Pauli prin
iple these bands have a�lled shell and hen
e, form a deep valen
e band. The un-a�e
ted p-orbital, whi
h is perpendi
ular to the planarstru
ture, 
an bind 
ovalently with neighboring 
arbonatoms leading to the formation of a π-band. Sin
e ea
hp-orbital has one extra ele
tron, the π-band is half-�lled.Half-�lled bands in transition elements have played animportant role in the physi
s of strongly 
orrelated sys-tems sin
e, due to its strong tight binding 
hara
ter, theCoulomb energies are very large, leading to strong 
ol-le
tive e�e
ts, magnetism, and insulating behavior dueto 
orrelation gaps or Mottness (Phillips, 2006). In fa
t,Linus Pauling proposed in the 1950's that, on the basisof the ele
troni
 properties of benzene, graphene shouldbe a resonant valen
e bond stru
ture (RVB) (Pauling,1972). RVB states have be
ome very popular in the lit-erature of transition metal oxides, and parti
ularly instudies of 
uprate oxides super
ondu
tors (Maple, 1998).This point of view, should be 
ontrasted with 
ontem-poraneous band stru
ture studies of graphene (Walla
e,

Figure 1 (Color online) Graphene (top left) is a honey
omblatti
e of 
arbon atoms. Graphite (top right) 
an be vieweda sta
k of graphene layers. Carbon nanotubes are rolled-up 
ylinders of graphene (bottom left). Fullerenes (C60) aremole
ules 
onsisting of wrapped graphene by the introdu
-tion of pentagons on the hexagonal latti
e (Castro Neto et al.,2006a).1947) that found it to be a semimetal with unusual lin-early dispersing ele
troni
 ex
itations 
alled Dira
 ele
-trons. While most of the 
urrent experimental data ingraphene supports the band stru
ture point of view, therole of the ele
tron-ele
tron intera
tions in graphene is asubje
t of intense resear
h.It was P. R. Walla
e who in 1946 wrote the �rst pa-pers on the band stru
ture of graphene and showed theunusual semimetalli
 behavior in this material (Walla
e,1947). At that point in time, the thought of apurely 2D stru
ture was a mere fantasy and Walla
e'sstudies of graphene served him as a starting pointto study graphite, a very important material for nu-
lear rea
tors in the post-World War II era. Dur-ing the following years, the study of graphite 
ul-minated with the Slon
zewski-Weiss-M
Clure (SWM)band stru
ture of graphite whi
h provided a detaileddes
ription of the ele
troni
 properties in this mate-rial (M
Clure, 1957; Slon
zewski and Weiss, 1958) andwas very su

essful in des
ribing the experimental data(Boyle and Nozières, 1958; Dillon et al., 1977; M
Clure,1958, 1964; Soule et al., 1964; Spry and S
herer, 1960;Williamson et al., 1965). Interestingly enough, from1957 to 1968, the assignment of the ele
tron and holestates within the SWM model were the opposite towhat is a

epted today. In 1968, S
hroeder et al.(S
hroeder et al., 1968) established the 
urrently a
-
epted lo
ation of ele
tron and hole po
kets (M
Clure,1971). The SWMmodel has been revisited in re
ent yearsbe
ause of its inability to des
ribe the van der Waals-likeintera
tions between graphene planes, a problem that re-



3quires the understanding of many-body e�e
ts that gobeyond the band stru
ture des
ription (Rydberg et al.,2003). These issues, however, do not arise in the 
ontextof a single graphene 
rystal but they show up with greatimportan
e when graphene layers are sta
ked on top ofea
h other, as in the 
ase, for instan
e, of the bilayergraphene. Sta
king 
an 
hange the ele
troni
 properties
onsiderably and the layering stru
ture 
an be used inorder to 
ontrol the ele
troni
 properties.One of the most interesting aspe
ts of the grapheneproblem is that its low energy ex
itations are mass-less, 
hiral, Dira
 fermions. In neutral graphene the
hemi
al potential 
rosses exa
tly the Dira
 point. Thisparti
ular dispersion, that is only valid at low ener-gies, mimi
s the physi
s of quantum ele
trodynami
s(QED) for massless fermions ex
ept by the fa
t thatin graphene the Dira
 fermions move with a speed vFwhi
h is 300 times smaller than the speed of light,
c. Hen
e, many of the unusual properties of QED
an show up in graphene but at mu
h smaller speeds(Castro Neto et al., 2006a; Katsnelson and Novoselov,2007; Katsnelson et al., 2006). Dira
 fermions behave invery unusual ways when 
ompared to ordinary ele
tronsif subje
ted to magneti
 �elds, leading to new physi
alphenomena (Gusynin and Sharapov, 2005; Peres et al.,2006
) su
h as the anomalous integer quantum Hall ef-fe
t (IQHE) measured experimentally (Novoselov et al.,2005a; Zhang et al., 2005). Besides being qualitativelydi�erent from the IQHE observed in Si and GaAlAs(heterostru
tures) devi
es (Stone, 1992), the IQHE ingraphene 
an be observed at room temperature be
auseof the large 
y
lotron energies for �relativisti
� ele
trons(Novoselov et al., 2007). In fa
t, the anomalous IQHE isthe trademark of Dira
 fermion behavior.Another parti
ularly interesting feature of Dira
fermions is their insensitivity to external ele
trostati
potentials due to the so-
alled Klein paradox, that is,the fa
t that Dira
 fermions 
an be transmitted withprobability one through a 
lassi
ally forbidden region(Calogera
os and Dombey, 1999; Itzykson and Zuber,2006). In fa
t, Dira
 fermions behave in a very un-usual way in the presen
e of 
on�ning potentials lead-ing to the phenomenon of zitterbewegung, or jittery mo-tion of the wavefun
tion (Itzykson and Zuber, 2006).In graphene these ele
trostati
 potentials 
an be eas-ily generated by disorder. Sin
e disorder is unavoid-able in any material, there has been great interest intrying to understand how disorder a�e
ts the physi
s ofele
trons in graphene and its transport properties. Infa
t, under 
ertain 
onditions, Dira
 fermions are im-mune to lo
alization e�e
ts observed in ordinary ele
-trons (Lee and Ramakrishnan, 1985) and it has been es-tablished experimentally that ele
trons 
an propagatewithout s
attering over large distan
es of the order ofmi
rometers in graphene (Novoselov et al., 2004). Thesour
es of disorder in graphene are many and 
an varyfrom ordinary e�e
ts 
ommonly found in semi
ondu
-tors, su
h as ionized impurities in the Si substrate, to

adatoms and various mole
ules adsorbed in the graphenesurfa
e, to more unusual defe
ts su
h as ripples asso
i-ated with the soft stru
ture of graphene (Meyer et al.,2007a). In fa
t, graphene is unique in the sense that itshares properties of soft membranes (Nelson et al., 2004)and at the same time it behaves in a metalli
 way, sothat the Dira
 fermions propagate on a lo
ally 
urvedspa
e. Here, analogies with problems of quantum grav-ity be
ome apparent (Fauser et al., 2007). The softnessof graphene is related with the fa
t that it has out-of-plane vibrational modes (phonons) that 
annot be foundin 3D solids. These �exural modes, responsible for thebending properties of graphene, also a

ount for the la
kof long range stru
tural order in soft membranes lead-ing the phenomenon of 
rumpling (Nelson et al., 2004).Nevertheless, the presen
e of a substrate or s
a�olds thathold graphene in pla
e, 
an stabilize a 
ertain degree oforder in graphene but leaves behind the so-
alled ripples(whi
h 
an be viewed as frozen �exural modes).It was realized very early on that graphene shouldalso present unusual mesos
opi
 e�e
ts (Katsnelson,2007a; Peres et al., 2006a). These e�e
ts have theirorigin in the boundary 
onditions required for thewavefun
tions in mesos
opi
 samples with various typesof edges graphene 
an have (Akhmerov and Beenakker,2007; Nakada et al., 1996; Peres et al., 2006
;Wakabayashi et al., 1999). The most studied edges,zigzag and arm
hair, have drasti
ally di�erent ele
troni
properties. Zigzag edges 
an sustain edge (surfa
e) statesand resonan
es that are not present in the arm
hair 
ase.Moreover, when 
oupled to 
ondu
ting leads, the bound-ary 
onditions for a graphene ribbon strongly a�e
ts its
ondu
tan
e and the 
hiral Dira
 nature of the fermionsin graphene 
an be exploited for appli
ations where one
an 
ontrol the valley �avor of the ele
trons besidesits 
harge, the so-
alled valleytroni
s (Ry
erz et al.,2007). Furthermore, when super
ondu
ting 
onta
ts areatta
hed to graphene, they lead to the development ofsuper
urrent �ow and Andreev pro
esses 
hara
teristi
of super
ondu
ting proximity e�e
t (Heers
he et al.,2007). The fa
t that Cooper pairs 
an propagate so wellin graphene attests for the robust ele
troni
 
oheren
e inthis material. In fa
t, quantum interferen
e phenomenasu
h as weak lo
alization, universal 
ondu
tan
e �u
tu-ations (Morozov et al., 2006), and the Aharonov-Bohme�e
t in graphene rings have already been observedexperimentally (Re
her et al., 2007; Russo et al., 2007).The ballisti
 ele
troni
 propagation in graphene 
an beused for �eld e�e
t devi
es su
h as p-n (Cheianov et al.,2007a; Cheianov and Fal'ko, 2006; Fogler et al., 2007a;Huard et al., 2007; Lemme et al., 2007; Tworzydlo et al.,2007; Williams et al., 2007; Zhang and Fogler, 2007) andp-n-p (Ossipov et al., 2007) jun
tions, and as �neutrino�billiards (Berry and Modragon, 1987; Miao et al., 2007).It has also been suggested that Coulomb intera
tionsare 
onsiderably enhan
ed in smaller geometries, su
has graphene quantum dots (Milton Pereira Junior et al.,2007), leading to unusual Coulomb blo
kade e�e
ts



4(Geim and Novoselov, 2007) and perhaps to magneti
phenomena su
h as the Kondo e�e
t. The amazingtransport properties of graphene allow for their use ina plethora of appli
ations ranging from single mole
uledete
tion (S
hedin et al., 2007; Wehling et al., 2007)to spin inje
tion (Cho et al., 2007; Hill et al., 2007;Ohishi et al., 2007; Tombros et al., 2007).Be
ause of its unusual stru
tural and ele
troni
 �ex-ibility, graphene 
an be tailored 
hemi
ally and/orstru
turally in many di�erent ways: deposition ofmetal atoms (Calandra and Mauri, 2007; U
hoa et al.,2007) or mole
ules (Leenaerts et al., 2007; S
hedin et al.,2007; Wehling et al., 2007) on top; inter
alation(as it is done in graphite inter
alated 
ompounds(Dresselhaus and Dresselhaus, 2002; Dresselhaus et al.,1983; Tanuma and Kamimura, 1985)); in
orporation ofnitrogen and/and boron in its stru
ture (Martins et al.,2007; Peres et al., 2007a) (in analogy with what hasbeen done in nanotubes (Stephan et al., 1994)); usingdi�erent substrates that modify the ele
troni
 stru
-ture (Calizo et al., 2007; Das et al., 2007; Faugeras et al.,2007; Giovannetti et al., 2007; Var
hon et al., 2007;Zhou et al., 2007). The 
ontrol of graphene properties
an be extended in new dire
tions allowing for 
reationof graphene-based systems with magneti
 and super
on-du
ting properties (U
hoa and Castro Neto, 2007) thatare unique in their 2D properties. Although the graphene�eld is still in its infan
y, the s
ienti�
 and te
hnolog-i
al possibilities of this new material seem to be un-limited. The understanding and 
ontrol of the proper-ties of this material 
an open doors for a new frontierin ele
troni
s. As the 
urrent status of the experimentand potential appli
ations have re
ently been reviewed(Geim and Novoselov, 2007), in this arti
le we mostly
on
entrate on the theory and more te
hni
al aspe
ts ofele
troni
 properties of this ex
iting new material.II. ELEMENTARY ELECTRONIC PROPERTIES OFGRAPHENEA. Single layer: tight-binding approa
hGraphene is made out of 
arbon atoms arranged inhexagonal stru
ture as shown in Fig. 2. The stru
tureis not a Bravais latti
e but 
an be seen as a triangularlatti
e with a basis of two atoms per unit 
ell. The latti
eve
tors 
an be written as:
a1 =

a

2
(3,

√
3) , a2 =

a

2
(3,−

√
3) , (1)where a ≈ 1.42 Å is the 
arbon-
arbon distan
e. There
ipro
al latti
e ve
tors are given by:

b1 =
2π

3a
(1,

√
3) , b2 =

2π

3a
(1,−

√
3) . (2)Of parti
ular importan
e for the physi
s of graphene arethe two points K and K ′ at the 
orners of the graphene

Brillouin zone (BZ). These are named Dira
 points forreasons that will be
ome 
lear later. Their positions inmomentum spa
e are given by:
K =

(

2π

3a
,

2π

3
√

3a

)

, K ′ =

(

2π

3a
,− 2π

3
√

3a

)

. (3)The three nearest neighbors ve
tors in real spa
e aregiven by:
δ1 =

a

2
(1,

√
3) δ2 =

a

2
(1,−

√
3) δ3 = −a(1, 0)(4)while the six se
ond-nearest neighbors are lo
ated at:

δ′
1 = ±a1, δ

′
2 = ±a2, δ

′
3 = ±(a2 − a1).The tight-binding Hamiltonian for ele
trons ingraphene 
onsidering that ele
trons 
an hop both to near-est and next nearest neighbor atoms has the form (we useunits su
h that ~ = 1):

H = − t
∑

〈i,j〉,σ

(

a†σ,ibσ,j + h.c.
)

− t′
∑

〈〈i,j〉〉,σ

(

a†σ,iaσ,j + b†σ,ibσ,j + h.c.
)

, (5)where ai,σ (a†i,σ) annihilates (
reates) an ele
tron withspin σ (σ =↑, ↓) on site Ri on sublatti
e A (an equiva-lent de�nition is used for sublatti
e B), t (≈ 2.8 eV) is thenearest neighbor hopping energy (hopping between dif-ferent sublatti
es), t′ 1is the next nearest neighbor hop-ping energy (hopping in the same sublatti
e). The en-ergy bands derived from this Hamiltonian have the form(Walla
e, 1947):
E±(k) = ±t

√

3 + f(k) − t′f(k) ,

f(k) = 2 cos
(√

3kya
)

+ 4 cos

(√
3

2
kya

)

cos

(

3

2
kxa

)

,(6)where the plus sign applies to the upper (π) and theminus sign the lower (π∗) band. It is 
lear from (6) thatthe spe
trum is symmetri
 around zero energy if t′ =
0. For �nite values of t′ the ele
tron-hole symmetry isbroken and the π and π∗ bands be
ome asymmetri
. InFig. 3 we show the full band stru
ture of graphene withboth t and t′. In the same �gure we also show a zoomin of the band stru
ture 
lose to one of the Dira
 points(at the K or K' point in the BZ). This dispersion 
anbe obtained by expanding the full band stru
ture, eq.(6),1 The value of t

′ is not well known but ab initio 
al
ulations(Rei
h et al., 2002) �nd 0.02t . t
′ . 0.2t depending on thetight-binding parameterization. These 
al
ulations also in
ludethe e�e
t of a third nearest neighbors hopping, whi
h has a valueof around 0.07 eV. A tight binding �t to 
y
lotron resonan
e ex-periments (Dea
on et al., 2007) �nds t

′
≈ 0.1 eV.
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1
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k
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1

2

3

M

δ δ

δ

A B

K’Figure 2 (Color online) Left: Latti
e stru
ture of graphene,made out of two interpenetrating triangular latti
es (a1 and
a2 are the latti
e unit ve
tors, and δi, i = 1, 2, 3 are the near-est neighbor ve
tors); Right: 
orresponding Brillouin zone.The Dira
 
ones are lo
ated at the K and K' points.
lose to the K (or K′) ve
tor, eq.(3), as: k = K+q, with
|q| ≪ |K| (Walla
e, 1947):

E±(q) ≈ ±vF |q| + O((q/K)2) , (7)where q is the momentum measured relatively to theDira
 points and vF represents the Fermi velo
ity, givenby vF = 3ta/2, with a value vF ≃ 1 × 106 m/s. Thisresult was �rst obtained by Walla
e (Walla
e, 1947).The most striking di�eren
e between this result andthe usual 
ase, ǫ(q) = q2/(2m) where m is the ele
tronmass, is that the Fermi velo
ity in (7) does not dependon the energy or momentum: in the usual 
ase we have
v = k/m =

√

2E/m and hen
e the velo
ity 
hanges sub-stantially with energy. The expansion of the spe
trumaround the Dira
 point in
luding t′ up to se
ond order in
q/K is given by:
E±(q) ≃ 3t′±vF |q|−

(

9t′a2

4
± 3ta2

8
sin(3θq)

)

|q|2 , (8)where
θq = arctan

(

qx
qy

)

, (9)is the angle in momentum spa
e. Hen
e, the presen
e of t′shifts in energy the position of the Dira
 point and breaksele
tron-hole symmetry. Noti
e that up to order (q/K)2the dispersion depends on the dire
tion in momentumspa
e and has a three fold symmetry. This is the so-
alledtrigonal warping of the ele
troni
 spe
trum (Ando et al.,1998; Dresselhaus and Dresselhaus, 2002).1. Cy
lotron massThe energy dispersion (7) resembles the energy ofultra-relativisti
 parti
les; these parti
les are quantumme
hani
ally des
ribed by the massless Dira
 equation(see se
tion II.B for more on this analogy). An immedi-ate 
onsequen
e of this massless Dira
-like dispersion isa 
y
lotron mass that depends on the ele
troni
 density

Figure 3 (Color online) Left: Energy spe
trum (in units of
t) for �nite values of t and t′, with t =2.7 eV and t′ = 0.2t.Right: zoom-in of the energy bands 
lose to one of the Dira
points.as its square root (Novoselov et al., 2005a; Zhang et al.,2005). The 
y
lotron mass is de�ned, within the semi-
lassi
al approximation (Ash
roft and Mermin, 1976), as

m∗ =
1

2π

[

∂A(E)

∂E

]

E=EF

, (10)with A(E) the area in k−spa
e en
losed by the orbit andgiven by:
A(E) = πq(E)2 = π

E2

v2
F

. (11)Using (11) in (10) one obtains:
m∗ =

EF

v2
F

=
kF

vF
. (12)The ele
troni
 density, n, is related to the Fermi momen-tum, kF , as k2

F /π = n (with 
ontributions from the twoDira
 points K and K ′ and spin in
luded) whi
h leadsto:
m∗ =

√
π

vF

√
n . (13)Fitting (13) to the experimental data (see Fig.4) pro-vides an estimation for the Fermi velo
ity and thehopping parameter as vF ≈ 106ms−1 and t ≈ 3 eV,respe
tively. The experimental observation of the√

n dependen
e of the 
y
lotron mass provides evi-den
e for the existen
e of massless Dira
 quasiparti-
les in graphene (Dea
on et al., 2007; Jiang et al., 2007a;Novoselov et al., 2005a; Zhang et al., 2005) - the usualparaboli
 (S
hrödinger) dispersion implies a 
onstant 
y-
lotron mass.2. Density of statesThe density of states per unit 
ell, derived from (6), isgiven in Fig. 5 for both t′ = 0 and t′ 6= 0, showing in



6

Figure 4 (Color online) Cy
lotron mass of 
harge 
arriers ingraphene as a fun
tion of their 
on
entration n. Positive andnegative n 
orrespond to ele
trons and holes, respe
tively.Symbols are the experimental data extra
ted from tempera-ture dependen
e of the SdH os
illations; solid 
urves is thebest �t to Eq. (13). m0 is the free ele
tron mass. Adaptedfrom Novoselov et al., 2005a.both 
ases a semimetalli
 behavior (Bena and Kivelson,2005; Walla
e, 1947). For t′ = 0 it is possible to derivean analyti
al expression for the density of states per unit
ell, whi
h has the form (Hobson and Nierenberg, 1953):
ρ(E) =

4

π2

|E|
t2

1√
Z0

F

(

π
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,

√
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




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∣
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


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


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∣

∣
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∣

∣
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∣

∣

∣
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∣

∣
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−
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4
;−3t≤E≤−t ∨ t ≤ E≤3t(14)where F(π/2, x) is the 
omplete ellipti
 integral of the�rst kind. Close to the Dira
 point the dispersion is ap-proximated by (7) and the expression for the density ofstates per unit 
ell is given by (with a degenera
y of fourin
luded):

ρ(E) =
2Ac

π

|E|
v2

F

(15)

where Ac is the unit 
ell area given by Ac = 3
√

3a2/2. Itis worth noting that the density of states for graphene isvery di�erent from the density of states of 
arbon nan-otubes (Saito et al., 1992a,b). The latter show 1/
√
Esingularities due to the 1D nature of their ele
troni
spe
trum, whi
h 
omes about due to the quantizationof the momentum in the dire
tion perpendi
ular to thetube axis. From this perspe
tive, graphene nanoribbons,whi
h also have momentum quantization perpendi
ularto the ribbon length, have properties very similar to 
ar-bon nanotubes.
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Figure 5 (Color online) Density of states per unit 
ell as afun
tion of energy (in units of t) 
omputed from the energydispersion (6), t′ = 0.2t (top) and for t′ = 0 (bottom). Alsoshown is a zoom in of the density of states 
lose to the neu-trality point of one ele
tron per site. For the 
ase t′ = 0 theele
tron-hole nature of the spe
trum is apparent and the den-sity of states 
lose to the neutrality point 
an be approximatedby ρ(ǫ) ∝ |ǫ|.B. Dira
 fermionsLet us 
onsider Hamiltonian (5) with t′ = 0 and 
on-sider the Fourier transform of the ele
tron operators:
an =

1√
Nc

∑

k

e−ik·Rna(k), , (16)where Nc is the number of unit 
ells. Using this transfor-mation, let us write the �eld an as a sum of two terms,
oming from expanding the Fourier sum around K ′ and
K. This produ
es an approximation for the representa-tion of the �eld an as a sum of two new �elds, writtenas

an ≃ e−iK·Rna1,n + e−iK′·Rna2,n ,

bn ≃ e−iK·Rnb1,n + e−iK′·Rnb2,n , (17)where the index i = 1 (i = 2) refers to the K (K')point. These new �elds, ai,n and bi,n are assumed to



7vary slowly over the unit 
ell. The pro
edure for de-riving a theory that is valid 
lose to the Dira
 point
onsists in using this representation in the tight-bindingHamiltonian and expanding the operators up to a lin- ear order in δ. In the derivation one uses the fa
t that
∑

δ
e±iK·δ =

∑

δ
e±iK′·δ = 0. After some straightfor-ward algebra we arrive at (Semeno�, 1984):

H ≃ −t
∫

dxdyΨ̂†
1(r)

[(

0 3a(1 − i
√

3)/4

−3a(1 + i
√

3)/4 0

)

∂x +

(

0 3a(−i−
√

3)/4

−3a(i−
√

3)/4 0

)

∂y

]

Ψ̂1(r)

+ Ψ̂†
2(r)

[(

0 3a(1 + i
√

3)/4

−3a(1 − i
√

3)/4 0

)

∂x +

(

0 3a(i−
√

3)/4

−3a(−i−
√

3)/4 0

)

∂y

]

Ψ̂2(r)

= −ivF

∫

dxdy
(

Ψ̂†
1(r)σ · ∇Ψ̂1(r) + Ψ̂†

2(r)σ∗ · ∇Ψ̂2(r)
)

, (18)with Pauli matri
es σ = (σx, σy), σ∗ = (σx,−σy), and
Ψ̂†

i = (a†i , b
†
i ) (i = 1, 2). It is 
lear that the e�e
tiveHamiltonian (18) is made of two 
opies of the masslessDira
-like Hamiltonian, one holding for p around K andother for p aroundK ′. Noti
e that, in �rst quantized lan-guage, the two-
omponent ele
tron wavefun
tion, ψ(r),
lose to the K point, obeys the 2D Dira
 equation:
− ivF σ · ∇ψ(r) = Eψ(r) . (19)The wavefun
tion, in momentum spa
e, for the mo-mentum around K has the form:
ψ±,K(k) =

1√
2

(

e−iθk/2

±eiθk/2

)

, (20)for HK = vF σ · k, where the ± signs 
orrespond to theeigenenergies E = ±vFk, that is, for the π and π∗ band,respe
tively, and θk is given by (9). The wavefun
tionfor the momentum around K ′ has the form:
ψ±,K′(k) =

1√
2

(

eiθk/2

±e−iθk/2

)

, (21)for HK′ = vF σ∗ · k. Noti
e that the wavefun
tionsat K and K′ are related by time reversal symmetry:if we set the origin of 
oordinates in momentum spa
ein the M-point of the BZ (see Fig.2), time reversal be-
omes equivalent to a re�e
tion along the kx axis, thatis, (kx, ky) → (kx,−ky). Also note that if the phase θ isrotated by 2π the wavefun
tion 
hanges sign indi
atinga phase of π (in the literature this is 
ommonly 
alled aBerry's phase). This 
hange of phase by π under rotationis 
hara
teristi
 of spinors. In fa
t, the wavefun
tion is atwo 
omponent spinor.A relevant quantity used to 
hara
terize the eigenfun
-tions is their heli
ity de�ned as the proje
tion of themomentum operator along the (pseudo)spin dire
tion.The quantum me
hani
al operator for the heli
ity hasthe form:
ĥ =

1

2
σ · p

|p| . (22)

It is 
lear from the de�nition of ĥ that the states ψK(r)and ψK′(r) are also eigenstates of ĥ:
ĥψK(r) = ±1

2
ψK(r), (23)and an equivalent equation for ψK′(r) with inverted sign.Therefore ele
trons (holes) have a positive (negative) he-li
ity. Equation (23) implies that σ has its two eigen-values either in the dire
tion of (⇑) or against (⇓) themomentum p. This property says that the states of thesystem 
lose to the Dira
 point have well de�ned 
hi-rality or heli
ity. Noti
e that 
hirality is not de�ned inregards to the real spin of the ele
tron (that has not yetappeared in the problem) but to a pseudo-spin variableasso
iated with the two 
omponents of the wavefun
tion.The heli
ity values are good quantum numbers as longas the Hamiltonian (18) is valid. Therefore the existen
eof heli
ity quantum numbers holds only as an asymptoti
property, whi
h is well de�ned 
lose to the Dira
 points

K and K ′. Either at larger energies or due to the pres-en
e of a �nite t′ the heli
ity stops being a good quantumnumber.1. Chiral Tunneling and Klein paradoxIn this se
tion we want to address the s
attering of
hiral ele
trons in two dimensions by a square barrier(Katsnelson, 2007b; Katsnelson et al., 2006). The onedimensional s
attering of 
hiral ele
trons was dis
ussedearlier in the 
ontext of 
arbon nanotubes (Ando et al.,1998; M
Euen et al., 1999)We start by noti
ing that by a gauge transformationthe wavefun
tion (20) 
an be written as:
ψK(k) =

1√
2

(

1
±eiθk

)

. (24)We further assume that the s
attering does not mix themomenta around K and K ′ points. In Fig. 6 we depi
t
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Figure 6 (Color online) Top: S
hemati
 pi
ture of the s
at-tering of Dira
 ele
trons by a square potential. Bottom: def-inition of the angles φ and θ used in the s
attering formalismin the three regions I, II, and III.the s
attering pro
ess due to the square barrier of width
D.The wavefun
tion in the di�erent regions 
an be writ-ten in terms of in
ident and re�e
ted waves. In region Iwe have:

ψI(r) =
1√
2

(

1
seiφ

)

ei(kxx+kyy)

+
r√
2

(

1
sei(π−φ)

)

ei(−kxx+kyy) , (25)with φ = arctan(ky/kx), kx = kF cosφ, ky = kF sinφand kF the Fermi momentum. In region II we have:
ψII(r) =

a√
2

(

1
s′eiθ

)

ei(qxx+kyy)

+
b√
2

(

1
s′ei(π−θ)

)

ei(−qxx+kyy) , (26)with θ = arctan(ky/qx) and
qx =

√

(V0 − E)2/(v2
F ) − k2

y , (27)and �nally in region III we have a transmitted wave only:
ψIII(r) =

t√
2

(

1
seiφ

)

ei(kxx+kyy) , (28)with s = sgn(E) and s′ = sgn(E − V0). The 
oe�
ients
r, a, b and t are determined from the 
ontinuity of thewavefun
tion, whi
h implies that the wavefun
tion has
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Figure 7 (Color online) Angular behavior of T (φ) for twodi�erent values of V0: V0 = 200 meV dashed line, V0 = 285meV solid line. The remaining parameters are D = 110 nm(top), D = 50 nm (bottom) E = 80 meV, kF = 2π/λ, λ = 50nm.to obey the 
onditions ψI(x = 0, y) = ψII(x = 0, y) and
ψII(x = D, y) = ψIII(x = D, y). Unlike the S
hödingerequation we only need to mat
h the wavefun
tion butnot its derivative. The transmission through the barrieris obtained from T (φ) = tt∗ and has the form:
T (φ)=

cos2 θ cos2 φ

[cos(Dqx) cosφ cos θ]2+sin2(Dqx)(1−ss′sinφ sin θ)2
.(29)This expression does not take into a

ount a 
ontribu-tion from evanes
ent waves in region II, whi
h is usuallynegligible, unless the 
hemi
al potential in region II is atthe Dira
 energy (see se
tion IV.I).Noti
e that T (φ) = T (−φ) and for values of Dqxsatisfying the relation Dqx = nπ, with n an inte-ger, the barrier be
omes 
ompletely transparent sin
e

T (φ) = 1, independently of the value of φ. Also, fornormal in
iden
e (φ → 0 and θ → 0) and for anyvalue of Dqx one obtains T (0) = 1, and the barrieris again totally transparent. This result is a manifes-tation of the Klein paradox (Calogera
os and Dombey,1999; Itzykson and Zuber, 2006) and does not o

ur fornon-relativisti
 ele
trons. In this latter 
ase and for nor-mal in
iden
e, the transmission is always smaller thanone. In the limit |V0| ≫ |E|, eq. (29) has the followingasymptoti
 form
T (φ) ≃ cos2 φ

1 − cos2(Dqx) sin2 φ
. (30)In Fig. 7 we show the angular dependen
e of T (φ) fortwo di�erent values of the potential V0; it is 
lear thatthere are several dire
tions for whi
h the transmissionis one. Similar 
al
ulations were done for a graphenebilayer (Katsnelson et al., 2006) with its most distin
tivebehavior being the absen
e of tunneling in the forward(ky = 0) dire
tion.



9The simplest example of a potential barrier is a squarepotential dis
ussed previously. When intervalley s
at-tering and the la
k of symmetry between sublatti
es arenegle
ted, a potential barrier shows no re�e
tion for ele
-trons in
ident in the normal dire
tion (Katsnelson et al.,2006). Even when the barrier separates regions where theFermi surfa
e is ele
tron like on one side and hole like onthe other, a normally in
ident ele
tron 
ontinues propa-gating as a hole with 100% e�
ien
y. This phenomenonis another manifestation of the 
hirality of the Dira
 ele
-trons within ea
h valley, whi
h prevents ba
ks
attering ingeneral. The transmission and re�e
tion probabilities ofele
trons at di�erent angles depend on the potential pro-�le along the barrier. A slowly varying barrier is moree�
ient in re�e
ting ele
trons at non-zero in
ident angles(Cheianov and Fal'ko, 2006).Ele
trons moving through a barrier separating p- andn-doped graphene, a p-n jun
tion, are transmitted asholes. The relation between the velo
ity and the mo-mentum for a hole is the inverse of that for an ele
-tron. This implies that, if the momentum parallel tothe barrier is 
onserved, the velo
ity of the quasipar-ti
le is inverted. When the in
ident ele
trons emergefrom a sour
e, the transmitting holes are fo
used intoan image of the sour
e. This behavior is the same asthat of photons moving in a medium with negative re-�e
tion index (Cheianov et al., 2007a). Similar e�e
ts
an o

ur in graphene quantum dots, where the in-ner and outer regions 
ontain ele
trons and holes, re-spe
tively (Cserti et al., 2007b). Note that the fa
tthat barriers do not impede the transmission of nor-mally in
ident ele
trons does not pre
lude the existen
eof sharp resonan
es, due to the 
on�nement of ele
-trons with a �nite parallel momentum. This leads tothe possibility of fabri
ating quantum dots with po-tential barriers (Silvestrov and Efetov, 2007). Finally,at half-�lling, due to disorder graphene 
an be dividedin ele
tron and hole 
harge puddles (Katsnelson et al.,2006; Martin et al., 2007). Transport is determinedby the transmission a
ross the p-n jun
tions betweenthese puddles (Cheianov et al., 2007b; Shklovskii, 2007).There is a rapid progress in the measurement of trans-port properties of graphene ribbons with additional topgates that play the role of tunable potential barriers(Han et al., 2007; Huard et al., 2007; Lemme et al., 2007;Özyilmaz et al., 2007; Williams et al., 2007).A magneti
 �eld and potential �u
tuations break bothinversion symmetry of the latti
e and time reversal sym-metry. The 
ombination of these e�e
ts break also thesymmetry between the two valleys. The transmission
oe�
ient be
omes valley dependent, and, in general,ele
trons from di�erent valleys propagate along di�erentpaths. This opens the possibility of manipulating the val-ley index (Tworzydlo et al., 2007) (valleytroni
s) in a waysimilar to the 
ontrol of the spin in mesos
opi
 devi
es(spintroni
s). For large magneti
 �elds, a p-n jun
tionseparates regions with di�erent quantized Hall 
ondu
-tivities. At the jun
tion, 
hiral 
urrents 
an �ow at both

edges (Abanin and Levitov, 2007), indu
ing ba
ks
atter-ing between the Hall 
urrents at the edges of the sample.The s
attering of ele
trons near the Dira
 pointby graphene-super
ondu
tor jun
tions di�ers fromAndreev s
attering pro
ess in normal metals(Titov and Beenakker, 2006). When the distan
ebetween the Fermi energy and the Dira
 energy issmaller than the super
ondu
ting gap, the super
on-du
ting intera
tion hybridizes quasiparti
les from oneband with quasiholes in the other. As in the 
ase ofs
attering at a p-n jun
tion, the traje
tories of thein
oming ele
tron and re�e
ted hole (note that hole hereis meant as in the BCS theory of super
ondu
tivity) aredi�erent from those in similar pro
esses in metals withonly one type of 
arrier (Bhatta
harjee and Sengupta,2006; Maiti and Sengupta, 2007).2. Con�nement and zitterbewegungZitterbewegung, or jittery motion of the wavefun
tionof the Dira
 problem, o

urs when one tries to 
on�ne theDira
 ele
trons (Itzykson and Zuber, 2006). Lo
alizationof a wavepa
ket leads, due to the Heisenberg prin
iple, toun
ertainty in the momentum. For a Dira
 parti
le withzero rest mass, un
ertainty in the momentum translatesinto un
ertainty in the energy of the parti
le as well (thisshould be 
ontrasted with the non-relativisti
 
ase wherethe position-momentum un
ertainty relation is indepen-dent of the energy-time un
ertainty relation). Thus, fora ultra-relativisti
 parti
le, a parti
le-like state 
an havehole-like states in its time evolution. Consider, for in-stan
e, if one tries to 
onstru
t a wave pa
ket at sometime t = 0, and let us assume, for simpli
ity, that thispa
ket has a Gaussian shape of width w with momentum
lose to K:
ψ0(r) =

e−r2/(2w2)

√
πw

eiK·rφ , (31)where φ is spinor 
omposed of positive energy states (as-so
iated with ψ+,K of (20)). The eigenfun
tion of theDira
 equation 
an be written in terms of the solution(20) as:
ψ(r, t) =

∫

d2k

(2π)2

∑

a=±1

αa,kψa,K(k)e−ia(k·r+vF kt) , (32)where α±,k are Fourier 
oe�
ients. We 
an rewrite (31)in terms of (32) by inverse Fourier transform and �ndthat:
α±,k =

√
πwe−k2w2/2ψ†

±,K(k)φ . (33)Noti
e that the relative weight of positive energy stateswith respe
t to negative energy states, |α+/α−|, givenby (20) is one, that is, there are as many positive energystates as negative energy states in a wavepa
ket. Hen
e,these will 
ause the wavefun
tion to be delo
alized at any



10time t 6= 0. Thus, a wave pa
ket of ele
tron-like stateshas hole-like 
omponents, a result that puzzled many re-sear
hers in the early days of QED (Itzykson and Zuber,2006).
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Figure 8 (Color on line) Energy spe
trum (in units of t) for agraphene ribbon 600a wide, as a fun
tion of the momentum
k along the ribbon (in units of 1/(

√
3a)), in the presen
e of
on�ning potential with V0 = 1 eV, λ = 180a.Consider the tight-binding des
ription (Chen et al.,2007a; Peres et al., 2006b) of Se
. II.A when a potential

Vi on site Ri is added to the problem:
He =

∑

i

Vini , (34)where ni is the lo
al ele
troni
 density. For simpli
ity, weassume that the 
on�ning potential is 1D, that is, that
Vi vanishes in the bulk but be
omes large at the edgeof the sample. Let us assume a potential that de
aysexponentially away from the edges into the bulk with apenetration depth, λ. In Fig. 8 we show the ele
troni
spe
trum for a graphene ribbon of width L = 600a, inthe presen
e of a 
on�ning potential,

V (x) = V0

[

e−(x−L/2)/λ + e−(L/2−x)/λ
]

, (35)where x is the dire
tion of 
on�nement and V0 thestrength of the potential. One 
an 
learly see that inthe presen
e of the 
on�ning potential the ele
tron-holesymmetry is broken and, for V0 > 0, the hole part ofthe spe
trum is strongly distorted. In parti
ular, for k
lose to the Dira
 point, we see that the hole disper-sion is given by: En,σ=−1(k) ≈ −γnk
2 − ζnk

4 where nis a positive integer, and γn < 0 (γn > 0) for n < N∗(n > N∗). Hen
e, at n = N∗ the hole e�e
tive mass di-verges (γN∗ = 0) and, by tuning the 
hemi
al potential,
µ, via a ba
k gate, to the hole region of the spe
trum(µ < 0) one should be able to observe an anomaly in theShubnikov-de Haas (SdH) os
illations. This is how zit-terbewegung 
ould manifest itself in magnetotransport.C. Bilayer graphene: tight-binding approa
hThe tight-binding model developed for graphite 
anbe easily extended to sta
ks with a �nite number of

Figure 9 (Color online)(a) Latti
e stru
ture of the bilayerwith the various hopping parameters a

ording to the SWMmodel. The A-sublatti
es are indi
ated by the darker spheres.(b) Brillouin zone. Adapted from Malard et al., 2007.graphene layers. The simplest generalization is a bilayer(M
Cann and Fal'ko, 2006). A bilayer is interesting be-
ause the IQHE shows anomalies, although di�erent fromthose observed in a single layer (Novoselov et al., 2006),and also a gap 
an open between the 
ondu
tion andvalen
e band (M
Cann and Fal'ko, 2006). The bilayerstru
ture, with the AB sta
king of 3D graphite, is shownin Fig.9.The tight-binding Hamiltonian for this problem 
an bewritten as:
Ht.b. = −γ0

∑

<i,j>
m,σ

(a†m,i,σbm,j,σ + h.
.)
− γ1

∑

j,σ

(a†1,j,σa2,j,σ + h.
.),
− γ3

∑

j,σ

(a†1,j,σb2,j,σ + a†2,j,σb1,j,σ + h.
.)
− γ4

∑

j,σ

(b†1,j,σb2,j,σ + h.
.), (36)where am,i,σ (bm,iσ) annihilates an ele
tron with spin
σ, on sublatti
e A (B), in plane m = 1, 2, at site Ri.Here we use the graphite nomen
lature for the hop-ping parameters: γ0 = t is the in-plane hopping energyand γ1 (γ1 = t⊥ ≈ 0.4 eV in graphite (Brandt et al.,1988; Dresselhaus and Dresselhaus, 2002)) is the hop-ping energy between atom A1 and atom A2 (see Fig. 9),and γ3 (γ3 ≈ 0.3 eV in graphite (Brandt et al., 1988;Dresselhaus and Dresselhaus, 2002)) is the hopping en-ergy between atom A1 (A2) and atom B2 (B1), and
γ4 (γ4 ≈ −0.04 eV in graphite (Brandt et al., 1988;Dresselhaus and Dresselhaus, 2002)) that 
onne
ts B1and B2.In the 
ontinuum limit, by expanding the momentum
lose to the K point in the BZ, the Hamiltonian reads,

H =
∑

k

Ψ†
k · HK · Ψk (37)
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Figure 10 (Color online) Band stru
ture for bilayer graphenefor V = 0 and γ3 = 0.where (ignoring γ4 for the time being):
HK≡







−V vF k 0 3γ3ak
∗

vFk
∗ −V γ1 0

0 γ1 V vFk
3γ3ak 0 vF k

∗ V






, (38)where k = kx + iky is a 
omplex number, and we haveadded V whi
h is here half the shift in ele
tro-
hemi
alpotential between the two layers (this term will appearif a potential bias is applied between the layers), and

Ψ†
k =

(

a†1(k), a†2(k), b†1(k), b†2(k)
) (39)is a four 
omponent spinor.If V = 0 and γ3, vFk ≪ γ1, one 
an eliminate thehigh energy states perturbatively and write an e�e
tiveHamiltonian:

HK ≡
(

0
v2

F k2

γ1
+ 3γ3ak

∗

v2
F (k∗)2

γ1
+ 3γ3ak 0

)

. (40)The hopping γ4 leads to a k dependent 
oupling betweenthe sublatti
es or a small renormalization of γ1. Thesame role is played by the inequivalen
e between sublat-ti
es within a layer.For γ3 = 0, (40) gives two paraboli
 bands, ǫk,± ≈
±v2

Fk
2/t⊥ whi
h tou
h at ǫ = 0 (as shown in Fig.10).The spe
trum is ele
tron-hole symmetri
. There are twoadditional bands whi
h start at±t⊥. Within this approx-imation, the bilayer is metalli
, with a 
onstant density ofstates. The term γ3 
hanges qualitatively the spe
trumat low energies sin
e it introdu
es a trigonal distortion,or warping, of the bands (noti
e that this trigonal dis-tortion, unlike the one introdu
ed by large momentumin (8), o

urs at low energies). The ele
tron-hole sym-metry is preserved but, instead of two bands tou
hing at

k = 0, we obtain three sets of Dira
-like linear bands.One Dira
 point is at ǫ = 0 and k = 0, while the threeother Dira
 points, also at ǫ = 0, lie at three equivalentpoints with a �nite momentum. The stability of pointswhere bands tou
h 
an be understood using topologi
al

Figure 11 (Color online) Band stru
ture for bilayer graphenefor V 6= 0 and γ3 = 0.arguments (Mañes et al., 2007). The winding number ofa 
losed 
urve in the plane around a given point is aninteger representing the total number of times that the
urve travels 
ounter
lo
kwise around the point so thatthe wavefun
tion remains unaltered. The winding num-ber of the point where the two paraboli
 bands 
ometogether for γ3 = 0 has winding number +2. The trigo-nal warping term, γ3, splits it into a Dira
 point at k = 0and winding number −1, and three Dira
 points at k 6= 0and winding numbers +1. An in-plane magneti
 �eld, ora small rotation of one layer with respe
t to the othersplits the γ3 = 0 degenera
y into two Dira
 points withwinding number +1.The term V in (38) breaks the equivalen
e of the twolayers, or, alternatively, inversion symmetry. In this 
ase,the dispersion relation be
omes:
ǫ2±,k = V 2 + v2

F k
2 + t2⊥/2

±
√

4V 2v2
F k

2 + t2v2
Fk

2 + t4⊥/4 , (41)given rise to the dispersion shown in Fig. 11, and to theopening of a gap 
lose, but not dire
tly at, the K point.For small momenta, and V ≪ t, the energy of the 
on-du
tion band 
an be expanded:
ǫk ≈ V − (2V v2

F k
2)/t⊥ + (v4

F k
4)/(2t2⊥V ) . (42)The dispersion for the valen
e band 
an be obtained byrepla
ing ǫk by −ǫk. The bilayer has a gap at k2 ≈

(2V 2)/v2
F . Noti
e, therefore, that the gap in the biasedbilayer system depends on the applied bias and hen
e
an be measured experimentally (Castro et al., 2007a;M
Cann, 2006; M
Cann and Fal'ko, 2006). The abilityto open a gap makes bilayer graphene most interestingfor te
hnologi
al appli
ations.D. Epitaxial grapheneIt has been known for a long time that monolay-ers of graphene 
ould be grown epitaxially on metalsurfa
es by using 
atalyti
 de
omposition of hydro
ar-bons or 
arbon oxide (Campagnoli and Tosatti, 1989;



12Eizenberg and Blakely, 1979; Oshima and Nagashima,1997; Shelton et al., 1974; Sinitsyna and Yaminsky,2006). When su
h surfa
es are heated, oxygen or hy-drogen desorbs, and the 
arbon atoms form a graphenemonolayer. The resulting graphene stru
tures 
ouldrea
h sizes up to a mi
rometer, with few defe
ts and were
hara
terized by di�erent surfa
e-s
ien
e te
hniques andlo
al s
anning probes (Himpsel et al., 1982). For exam-ple, graphene grown on ruthenium has zigzag edges andalso ripples asso
iated with a (10 × 10) re
onstru
tion(Vázquez de Parga et al., 2007).Graphene 
an also be formed on the surfa
e ofSiC. Upon heating, the sili
on from the top layersdesorbs, and a few layers of graphene are left onthe surfa
e (Berger et al., 2004; Bommel et al., 1975;Coey et al., 2002; Forbeaux et al., 1998; Hass et al.,2007a; de Heer et al., 2007; Rollings et al., 2005). Thenumber of layers 
an be 
ontrolled by limiting time ortemperature of the heating treatment. The quality andthe number of layers in the samples depends on the SiCfa
e used for their growth (de Heer et al., 2007) (the 
ar-bon terminated surfa
e produ
es few layers but witha low mobility, whereas the sili
on terminated surfa
eprodu
es several layers but with higher mobility). Epi-taxially grown multilayers exhibit SdH os
illations witha Berry phase shift of π (Berger et al., 2006), whi
his the same as the phase shift for Dira
 fermions ob-served in a single layer as well as for some subbandspresent in multilayer graphene (see further) and graphite(Luk'yan
huk and Kopelevi
h, 2004). The 
arbon layerdire
tly on top of the substrate is expe
ted to be stronglybonded to it, and it shows no π bands (Var
hon et al.,2007). The next layer shows a (6
√

3 × 6
√

3) re
onstru
-tion due to the substrate, and has graphene properties.An alternate route to produ
e few layers graphene isbased on synthesis from nanodiamonds (A�oune et al.,2001).Angle resolved photo-emission experiments (ARPES)show that epitaxial graphene grown on SiC haslinearly dispersing quasiparti
les (Dira
 fermions)(Bostwi
k et al., 2007b; Ohta et al., 2007; Zhou et al.,2006b), in agreement with the theoreti
al expe
tation.Nevertheless, these experiments show that the ele
troni
properties 
an 
hange lo
ally in spa
e indi
ating a 
er-tain degree of inhomogeneity due to the growth method(Zhou et al., 2007). Similar inhomogeneities due to dis-order in the 
-axis orientation of graphene planes isobserved in graphite (Zhou et al., 2006a). Moreover,graphene grown this way is heavily doped due to the
harge transfer from the substrate to the graphene layer(with the 
hemi
al potential well above the Dira
 point)and therefore all samples have strong metalli
 
hara
-ter with large ele
troni
 mobilities (Berger et al., 2006;de Heer et al., 2007). There is also eviden
e for strongintera
tion between a substrate and the graphene layerleading to the appearan
e of gaps at the Dira
 point(Zhou et al., 2007). Indeed, gaps 
an be generated bythe breaking of the sublatti
e symmetry and, as in the

Figure 12 (Color online) Sket
h of the three inequivalent ori-entations of graphene layers with respe
t to ea
h other.
ase of other 
arbon based systems su
h as polya
ethy-lene (Su et al., 1979, 1980), it 
an lead to soliton-likeex
itations (Hou et al., 2007; Ja
kiw and Rebbi, 1976).Multilayer graphene grown on SiC have also been studiedwith ARPES (Bostwi
k et al., 2007a; Ohta et al., 2007,2006) and the results seem to agree quite well with bandstru
ture 
al
ulations (Mattaus
h and Pankratov, 2007).Spe
tros
opy measurements also show the transitions as-so
iated with Landau levels (Sadowski et al., 2006), andweak lo
alization e�e
ts at low magneti
 �elds, also ex-pe
ted for Dira
 fermions (Wu et al., 2007). Lo
al probesreveal a ri
h stru
ture of terra
es (Mallet et al., 2007)and interferen
e patterns due to defe
ts at or below thegraphene layers (Rutter et al., 2007).E. Graphene sta
ksIn sta
ks with more than one graphene layer, two 
on-se
utive layers are normally oriented in su
h a way thatthe atoms in one of the two sublatti
es, An, of the honey-
omb stru
ture of one layer are dire
tly above one half ofthe atoms in the neighboring layer, sublatti
e An±1. These
ond set of atoms in one layer sits on top of the (empty)
enter of an hexagon in the other layer. The short-est distan
e between 
arbon atoms in di�erent layers is
dAnAn±1

= c = 3.4Å. The next distan
e is dAnBn±1
=√

c2 + a2. This is the most 
ommon arrangement of near-est neighbor layers observed in nature, although a sta
k-ing order in whi
h all atoms in one layer o

upy posi-tions dire
tly above the atoms in the neighboring layers(hexagonal sta
king) has been 
onsidered theoreti
ally(Charlier et al., 1991) and appears in graphite inter
a-lated 
ompounds (Dresselhaus and Dresselhaus, 2002).The relative position of two neighboring layers allowsfor two di�erent orientations of the third layer. If we la-bel the positions of the two �rst atoms as 1 and 2, thethird layer 
an be of type 1, leading to the sequen
e 121,or it 
an �ll a third position di�erent from 1 and 2 (seeFig. 12), labeled 3. There are no more inequivalent po-sitions where a new layer 
an be pla
ed, so that thi
ker
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Figure 13 (Color online) Ele
troni
 bands of graphene multi-layers: top left: biased bilayer; top right: trilayer with Bernalsta
king; bottom left: trilayer with orthorhombi
 sta
king;bottom right: sta
k with four layers where the top and bot-tom layers are shifted in energy with respe
t to the two middlelayers by +0.1 eV.sta
ks 
an be des
ribed in terms of these three orien-tations. In the most 
ommon version of bulk graphitethe sta
king order is 1212 · · · (Bernal sta
king). Re-gions with the sta
king 123123 · · · (rhombohedral sta
k-ing) have also been observed in di�erent types of graphite(Ba
on, 1950; Gasparoux, 1967). Finally, samples withno dis
ernible sta
king order (turbostrati
 graphite) arealso 
ommonly reported.Beyond two layers, the sta
k ordering 
an be arbi-trarily 
omplex. Simple analyti
al expressions for theele
troni
 bands 
an be obtained for perfe
t Bernal (
1212 · · · ) and rhombohedral ( 123123 · · · ) sta
king(Guinea et al., 2006). Even if we 
onsider one interlayerhopping, t⊥ = γ1, the two sta
king orders show ratherdi�erent band stru
tures near ǫ = 0. A Bernal sta
kwith N layers, N even, has N/2 ele
tron like and N/2hole like paraboli
 subbands tou
hing at ǫ = 0. When
N is odd, an additional subband with linear (Dira
) dis-persion emerges. Rhombohedral systems have only twosubbands that tou
h at ǫ = 0. These subbands disperseas kN , and be
ome surfa
e states lo
alized at the topand bottom layer when N → ∞. In this limit, the re-maining 2N − 2 subbands of a rhombohedral sta
k be-
ome Dira
 like, with the same Fermi velo
ity as a sin-gle graphene layer. The subband stru
ture of a tri-layerwith the Bernal sta
king in
ludes two tou
hing paraboli
bands, and one with Dira
 dispersion, 
ombining the fea-tures of bilayer and monolayer graphene.The low energy bands have di�erent weights on the twosublatti
es of ea
h graphene layer. The states at a sitedire
tly 
oupled to the neighboring planes are pushed toenergies ǫ ≈ ±t⊥. The bands near ǫ = 0 are lo
alizedmostly at the sites without neighbors in the next layers.For the Bernal sta
king, this feature implies that the den-sity of states at ǫ = 0 at sites without nearest neighbors inthe 
ontiguous layers is �nite, while it vanishes linearlyat the other sites. In sta
ks with rhombohedral sta
k-

ing, all sites have one neighbor in another plane, andthe density of states vanishes at ǫ = 0 (Guinea et al.,2006). This result is 
onsistent with the well known fa
tthat only one of the two sublatti
es at a graphite surfa
e
an be resolved by s
anning tunneling mi
ros
opy (STM)(Tománek et al., 1987).As in the 
ase of a bilayer, an inhomogeneous 
hargedistribution 
an 
hange the ele
trostati
 potential in thedi�erent layers. For more than two layers, this break-ing of the equivalen
e between layers 
an take pla
e evenin the absen
e of an applied ele
tri
 �eld. It is interest-ing to note that a gap 
an open in a sta
k with Bernalordering and four layers, if the ele
troni
 
harge at thetwo surfa
e layers is di�erent from that at the two in-ner ones. Systems with a higher number of layers do notshow a gap, even in the presen
e of 
harge inhomogene-ity. Four representative examples are shown in Fig. 13.The band stru
ture analyzed here will be modi�ed bythe in
lusion of the trigonal warping term, γ3. Experi-mental studies of graphene sta
ks have showed that, within
reasing number of layers, the system be
omes in
reas-ingly metalli
 (
on
entration of 
harge 
arriers at zero en-ergy gradually in
reases), and there appear several typesof ele
tron-and-hole-like 
arries (Morozov et al., 2005;Novoselov et al., 2004). An inhomogeneous 
harge dis-tribution between layers be
omes very important in this
ase, leading to 2D ele
tron and hole systems that o

upyonly a few graphene layers near the surfa
e and 
an 
om-pletely dominate transport properties of graphene sta
ks(Morozov et al., 2005).The degenera
ies of the bands at ǫ = 0 
an be studiedusing topologi
al arguments (Mañes et al., 2007). Multi-layers with an even number of layers and Bernal sta
kinghave inversion symmetry, leading to degenera
ies withwinding number +2, as in the 
ase of a bilayer. Thetrigonal latti
e symmetry implies that these points 
anlead, at most, to four Dira
 points. In sta
ks with an oddnumber of layers, these degenera
ies 
an be 
ompletelyremoved. The winding number of the degenera
ies foundin sta
ks withN layers and orthorhombi
 ordering is±N .The in
lusion of trigonal warping terms will lead to theexisten
e of many weaker degenera
ies near ǫ = 0.Furthermore, it is well known that in graphite theplanes 
an be rotated relative ea
h other giving rise toMoiré patterns that are observed in STM of graphite sur-fa
es (Rong and Kuiper, 1993). The graphene layers 
anbe rotated relative to ea
h other due to the weak 
ouplingbetween planes that allows for the presen
e of many dif-ferent orientational states that are quasidegenerate in en-ergy. For 
ertain angles the graphene layers be
ome 
om-mensurate with ea
h other leading to a lowering of theele
troni
 energy. Su
h phenomenon is quite similar tothe 
ommensurate-in
ommensurate transitions observedin 
ertain 
harge density wave systems or adsorption ofgases on graphite (Bak, 1982). This kind of dependen
eof the ele
troni
 stru
ture on the relative rotation anglebetween graphene layers leads to what is 
alled super-lubri
ity in graphite (Dienwiebel et al., 2004), namely,



14the vanishing of the fri
tion between layers as a fun
-tion of the angle of rotation. In the 
ase of bilayergraphene, a rotation by a small 
ommensurate angle leadsto the e�e
tive de
oupling between layers and the re
ov-ery of the linear Dira
 spe
trum of the single layer albeitwith a modi�
ation on the value of the Fermi velo
ity(Lopes dos Santos et al., 2007).1. Ele
troni
 stru
ture of bulk graphiteThe tight-binding des
ription of graphene des
ribedearlier 
an be extended to systems with an in�nite num-ber of layers. The 
oupling between layers leads to hop-ping terms between π orbitals in di�erent layers, lead-ing to the so 
alled Slon
zewski-Weiss-M
Clure model(Slon
zewski and Weiss, 1958). This model des
ribes theband stru
ture of bulk graphite with the Bernal sta
kingorder in terms of seven parameters, γ0, γ1, γ2, γ3, γ4, γ5and ∆. The parameter γ0 des
ribes the hopping withinea
h layer, and it has been 
onsidered previously. The
oupling between orbitals in atoms that are nearestneighbors in su

essive layers is γ1, whi
h we 
alled t⊥earlier. The parameters γ3 and γ4 des
ribe the hop-ping between orbitals at next nearest neighbors in su
-
essive layers and were dis
ussed in the 
ase of the bi-layer. The 
oupling between orbitals at next nearestneighbor layers are γ2 and γ5. Finally, ∆ is an on siteenergy whi
h re�e
ts the inequivalen
e between the twosublatti
es in ea
h graphene layer on
e the presen
e ofneighboring layers is taken into a

ount. The values ofthese parameters, and their dependen
e with pressure,or, equivalently, the interatomi
 distan
es, have been ex-tensively studied (Brandt et al., 1988; Dillon et al., 1977;Dresselhaus and Mavroides, 1964; M
Clure, 1957, 1964;Nozières, 1958; Soule et al., 1964). A representative setof values is shown in Table[I℄. It is unknown, however,how these parameters may vary in graphene sta
ks witha small number of layers.The unit 
ell of graphite with Bernal sta
king in
ludestwo layers, and two atoms within ea
h layer. The tight-binding Hamiltonian des
ribed previously 
an be repre-sented as a 4 × 4 matrix. In the 
ontinuum limit, thetwo inequivalent 
orners of the BZ 
an be treated sepa-rately, and the in plane terms 
an be des
ribed by theDira
 equation. The next terms in importan
e for thelow energy ele
troni
 spe
trum are the nearest neighbor
ouplings γ1 and γ3. The in�uen
e of the parameter γ4on the low energy bands is mu
h smaller, as dis
ussedbelow. Finally, the �ne details of the spe
trum of bulkgraphite are determined by ∆, whi
h breaks the ele
tron-hole symmetry of the bands preserved by γ0, γ1 and γ3.It is usually assumed to be mu
h smaller than the otherterms.We label the two atoms from the unit 
ell in one layeras 1 and 2, and 3 and 4 
orrespond to the se
ond layer.Atoms 2 and 3 are dire
tly on top of ea
h other. Then,the matrix elements of the Hamiltonian 
an be written

γ0 3.16 eV
γ1 0.39 eV
γ2 -0.020 eV
γ3 0.315 eV
γ4 -0.044 eV
γ5 0.038 eV
∆ -0.008 eVTable I Band stru
ture parameters of graphite(Dresselhaus and Dresselhaus, 2002).as:

HK
11 = 2γ2 cos(2πkz/c)

HK
12 = vF (kx + iky)

HK
13 =

3γ4a

2

(

1 + eikzc
)

(kx + iky)

HK
14 =

3γ3a

2

(

1 + eikzc
)

(kx − iky)

HK
22 = ∆ + 2γ5 cos(2πkz/c)

HK
23 = γ1

(

1 + eikzc
)

HK
24 =

3γ4a

2

(

1 + eikzc
)

(kx + iky)

HK
33 = ∆ + 2γ5 cos(2πkz/c)

HK
34 = vF (kx + iky)

HK
44 = 2γ2 cos(2πkz/c) (43)where c is the latti
e 
onstant in the out of plane dire
-tion, equal to twi
e the interlayer spa
ing. The matrixelements of HK′ 
an be obtained by repla
ing kx by −kx(other 
onventions for the unit 
ell and the orientationof the latti
e lead to di�erent phases). Re
ent ARPESexperiments (Bostwi
k et al., 2007b; Ohta et al., 2006;Zhou et al., 2006a,
) performed in epitaxially growngraphene sta
ks (Berger et al., 2004) 
on�rm the mainfeatures of this model, formulated mainly on the ba-sis of Fermi surfa
e measurements (M
Clure, 1957;Soule et al., 1964). The ele
troni
 spe
trum of the model
an also be 
al
ulated in a magneti
 �eld (de Gennes,1964; Nakao, 1976), and the results are also 
onsistentwith STM on graphite surfa
es (Kobayashi et al., 2005;Li and Andrei, 2007; Matsui et al., 2005; Niimi et al.,2006), epitaxially grown graphene sta
ks (Mallet et al.,2007), and with opti
al measurements in the infraredrange (Li et al., 2006).F. Surfa
e states in grapheneSo far, we have dis
ussed the basi
 bulk proper-ties of graphene. Nevertheless, graphene has very in-teresting surfa
e (edge) states that do not o

ur inother systems. A semi-in�nite graphene sheet with azigzag edge has a band of zero energy states lo
alizedat the surfa
e (Fujita et al., 1996; Nakada et al., 1996;
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Figure 14 (Color online) Ribbon geometry with zigzag edges.Wakabayashi et al., 1999). In se
tion II.H we will dis-
uss the existen
e of edge states using the Dira
 equa-tion. Here will dis
uss the same problem using the tight-binding Hamiltonian. To see why these edge states existwe 
onsider the ribbon geometry with zigzag edges shownin Fig. 14. The ribbon width is su
h that it has N unit
ells in the transverse 
ross se
tion (y dire
tion). We willassume that the ribbon has in�nite length in the longi-tudinal dire
tion (x dire
tion).Let us rewrite (5), with t′ = 0, in terms of the integerindi
es m and n, introdu
ed in Fig. 14, and labeling theunit 
ells:
H = −t

∑

m,n,σ

[a†σ(m,n)bσ(m,n) + a†σ(m,n)bσ(m− 1, n)

+a†σ(m,n)bσ(m,n− 1) + h.
.]. (44)Given that the ribbon is in�nite in the a1 dire
tion one
an introdu
e a Fourier de
omposition of the operatorsleading to
H = −t

∫ dk
2π

∑

n,σ

[a†σ(k, n)bσ(k, n) + eikaa†σ(k, n)bσ(k, n)

+a†σ(k, n)bσ(k, n− 1) + h.
.] , (45)where c†σ(k, n) |0〉 = |c, σ, k, n〉, and c = a, b. The one-parti
le Hamiltonian 
an be written as:
H1p = −t

∫ dk ∑
n,σ

[(1 + eika) |a, k, n, σ〉 〈b, k, n, σ|

+ |a, k, n, σ〉 〈b, k, n− 1, σ| + h.
.]. (46)The solution of the S
hrödinger equation, H1p |µ, k, σ〉 =
Eµ,k |µ, k, σ〉, 
an be generally expressed as:
|µ, k, σ〉 =

∑

n

[α(k, n) |a, k, n, σ〉 + β(k, n) |b, k, n, σ〉],(47)where the 
oe�
ients α and β satisfy the following equa-tions:
Eµ,kα(k, n) = −t[(1 + eika)β(k, n) + β(k, n− 1)],(48)
Eµ,kβ(k, n) = −t[(1 + e−ika)α(k, n) + α(k, n+ 1)].(49)

As the ribbon has a �nite width we have to be 
arefulwith the boundary 
onditions. Sin
e the ribbon only ex-ists between n = 0 and n = N − 1 at the boundaryEqs. (48) and (49) read:
Eµ,kα(k, 0) = −t(1 + eika)β(k, 0) , (50)

Eµ,kβ(k,N − 1) = −t(1 + e−ika)α(k,N − 1). (51)The surfa
e (edge) states are solutions of Eqs. (48-51)with Eµ,k = 0:
0 = (1 + eika)β(k, n) + β(k, n− 1) , (52)
0 = (1 + e−ika)α(k, n) + α(k, n+ 1) , (53)
0 = β(k, 0) , (54)
0 = α(k,N − 1) . (55)Equations (52) and (55) are easily solved giving:

α(k, n) = [−2 cos(ka/2)]nei ka
2

nα(k, 0), (56)
β(k, n) = [−2 cos(ka/2)]N−1−ne−i ka

2
(N−1−n)β(k,N−1).(57)Let us 
onsider, for simpli
ity, a semi-in�nite systemwith a single edge. We must require the 
onvergen
e 
on-dition |−2 cos(ka/2)| < 1, in (57) be
ause otherwise thewavefun
tion would diverge in the semi-in�nite graphenesheet. Therefore, the semi-in�nite system has edge statesfor ka in the region 2π/3 < ka < 4π/3, whi
h 
orre-sponds to 1/3 of the possible momenta. Note that theamplitudes of the edge states are given by,

|α(k, n)| =

√

2

λ(k)
e−n/λ(k), (58)

|β(k, n)| =

√

2

λ(k)
e−(N−1−n)/λ(k), (59)where the penetration length is given by:

λ(k) = −1/ ln |2 cos(ka/2)|. (60)It is easily seen that the penetration length diverges when
ka approa
hes the limits of the region ]2π/3, 4π/3[.Although the boundary 
onditions de�ned by Eqs. (54)and (55) are satis�ed for solutions (56) and (57) in thesemi-in�nite system, they are not in the ribbon geome-try. In fa
t, Eqs. (58) and (59) are eigenstates only inthe semi-in�nite system. In the graphene ribbon the twoedge states, whi
h 
ome from both sides of the edge, willoverlap with ea
h other. The bonding and anti-bondingstates formed by the two edge states will then be the rib-bon eigenstates (Wakabayashi et al., 1999) (note that atzero energy there are no other states with whi
h the edgestates 
ould hybridize). As bonding and anti-bondingstates result in a gap in energy the zero energy �at bandsof edge states will be
ome slightly dispersive, dependingon the ribbon width N . The overlap between the twoedge states is larger as ka approa
hes 2π/3 and 4π/3.
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Figure 15 (Color online) Sket
h of a zigzag termination of agraphene bilayer. As dis
ussed in (Castro et al., 2007b), thereis a band of surfa
e states 
ompletely lo
alized in the bottomlayer, and another surfa
e band whi
h alternates between thetwo.This means that deviations from zero energy �atness willbe stronger near these points.Edge states in graphene nanoribbons, just as the 
aseof 
arbon nanotubes, are predi
ted to be Luttinger liq-uids, that is, intera
ting one-dimensional ele
tron sys-tems (Castro Neto et al., 2006b). Hen
e, 
lean nanorib-bons must have 1D square root singularities in their den-sity of states (Nakada et al., 1996) that 
an be probedby Raman spe
tros
opy. Disorder may smooth out thesesingularities, however. In the presen
e of a magneti
�eld, when the bulk states are gapped, the edge statesare responsible for the transport of spin and 
harge(Abanin et al., 2006, 2007a; Abanin and Levitov, 2007;Abanin et al., 2007b).G. Surfa
e states in graphene sta
ksSingle layer graphene 
an be 
onsidered a zero gapsemi
ondu
tor, whi
h leads to the extensively studiedpossibility of gap states, at ǫ = 0, as dis
ussed in theprevious se
tion. The most studied su
h states are thoselo
alized near a graphene zigzag edge (Fujita et al., 1996;Wakayabashi and Sigrist, 2000). It 
an be shown analyt-i
ally (Castro et al., 2007b) that a bilayer zigzag edge,like that shown in Fig. 15, analyzed within the nearestneighbor tight-binding approximation des
ribed before,has two bands of lo
alized states, one 
ompletely lo
al-ized in the top layer and indistinguishable from similarstates in single layer graphene, and another band whi
halternates between the two layers. These states, as theylie at ǫ = 0, have �nite amplitudes on one half of the sitesonly.These bands, as in single layer graphene, o

upy onethird of the BZ of a stripe bounded by zigzag edges. Theybe
ome dispersive in a biased bilayer. As graphite 
anbe des
ribed in terms of e�e
tive bilayer systems, onefor ea
h value of the perpendi
ular momentum, kz, bulkgraphite with a zigzag termination should show one sur-fa
e band per layer.

zigzag edge

ar
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Figure 16 (Color online) A pie
e of a honey
omb latti
e dis-playing both zigzag and arm
hair edges.H. The spe
trum of graphene nanoribbonsThe spe
trum of graphene nanoribbons depend verymu
h on the nature of their edges � zigzag or arm
hair(Brey and Fertig, 2006a,b; Nakada et al., 1996). In Fig.16 we show a honey
omb latti
e having zigzag edgesalong the x dire
tion and arm
hair edges along the ydire
tion. If we 
hoose the ribbon to be in�nite in the xdire
tion we produ
e a graphene nanoribbon with zigzagedges; 
onversely 
hoosing the ribbon to be ma
ros
op-i
ally large along the y but �nite in the x dire
tion weprodu
e a graphene nanoribbon with arm
hair edges.In Fig. 17 we show the fourteen energy levels, 
al
u-lated in the tight-binding approximation, 
losest to zeroenergy for a nanoribbon with zigzag and arm
hair edgesand of width N = 200 unit 
ells. We 
an see that theyare both metalli
, and that the zigzag ribbon presents aband of zero energy modes that is absent in the arm
hair
ase. This band at zero energy is the surfa
e states liv-ing near the edge of the graphene ribbon. More detailedab initio 
al
ulations of the spe
tra of graphene nanorib-bons show that intera
tion e�e
ts 
an lead to ele
troni
gaps (Son et al., 2006b) and magneti
 states 
lose to thegraphene edges, independent of their nature (Son et al.,2006a; Yang et al., 2007a,b).From the experimental point of view, however,graphene nanoribbons 
urrently have a high degreeof roughness at the edges. Su
h edge disorder
an 
hange signi�
antly the properties of edge states(Areshkin and White, 2007; Gunly
ke et al., 2007), lead-ing to Anderson lo
alization, and anomalies inthe quantum Hall e�e
t (Castro Neto et al., 2006b;Martin and Blanter, 2007) as well as Coulomb blo
k-
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Figure 17 (Color online) Left: Energy spe
trum, as 
al
u-lated from the tight-binding equations, for a nanoribbon witharm
hair(top) and zigzag(bottom) edges. The width of thenanoribbon is N = 200 unit 
ells. Only fourteen eigenstatesare depi
ted. Right: Zoom of the low energy states shown onthe right.ade e�e
ts (Sols et al., 2007). Su
h e�e
ts have alreadybeen observed in lithographi
ally engineered graphenenanoribbons (Han et al., 2007; Özyilmaz et al., 2007).Furthermore, the problem of edge passivation by hydro-gen or other elements is not 
learly understood experi-mentally at this time. Passivation 
an be modeled in thetight-binding approa
h by modi�
ations of the hoppingenergies (Novikov, 2007
) or via additional phases in theboundary 
onditions (Kane and Mele, 1997). Theoreti-
al modeling of edge passivation indi
ate that those havea strong e�e
t on the ele
troni
 properties at the edgeof graphene nanoribbons (Barone et al., 2006; Hod et al.,2007).In what follows we derive the spe
trum for bothzigzag and arm
hair edges dire
tly from the Dira
 equa-tion. This was originally done both with and without amagneti
 �eld (Brey and Fertig, 2006a,b; Nakada et al.,1996).1. Zigzag nanoribbonsIn the geometry of Fig. 16 the unit 
ell ve
tors are a1 =
a0(1, 0) and a2 = a0

(

1/2,
√

3/2
), whi
h generate the unitve
tors of the BZ given by b1 = 4π/(a0

√
3)
(√

3/2,−1/2
)and b2 = 4π/(a0

√
3)(0, 1). From these two ve
torswe �nd two inequivalent Dira
 points given by K =

(4π/3a0, 0) = (K, 0) and K ′ = (−4π/3a0, 0) = (−K, 0),with a0 =
√

3a. The Dira
 Hamiltonian around the Dira
point K reads in momentum spa
e:
HK = vF

(

0 px − ipy

px + ipy 0

)

, (61)

and around the K ′ as:
HK′ = vF

(

0 px + ipy

px − ipy 0

)

. (62)The wavefun
tion, in real spa
e, for the sublatti
e A isgiven by:
ΨA(r) = eiK·rψA(r) + eiK′·rψ′

A(r) , (63)and for sublatti
e B is given by
ΨB(r) = eiK·rψB(r) + eiK′·rψ′

B(r) , (64)where ψA and ψB are the 
omponents of the spinor wave-fun
tion of Hamiltonian (61) and ψ′
A and ψ′

B have iden-ti
al meaning but relatively to (62). Let us assume thatthe edges of the nanoribbons are parallel to the x−axis.In this 
ase, the translational symmetry guarantees thatthe spinor wavefun
tion 
an be written as:
ψ(r) = eikxx

(

φA(y)

φB(y)

)

, (65)and a similar equation for the spinor of Hamiltonian (62).For zigzag edges the boundary 
onditions at the edge ofthe ribbon (lo
ated at y = 0 and y = L, where L is theribbon width) are:
ΨA(y = L) = 0, ΨB(y = 0) = 0 , (66)leading to:

0 = eiKxeikxxφA(L) + e−iKxeikxxφ′A(L) , (67)
0 = eiKxeikxxφB(0) + e−iKxeikxxφ′B(0) . (68)The boundary 
onditions (67) and (68) are satis�ed forany x by the 
hoi
e:
φA(L) = φ′A(L) = φB(0) = φ′B(0) = 0 . (69)We need now to �nd out the form of the envelope fun
-tions. The eigenfun
tion around the point K has theform:

(

0 kx − ∂y

kx + ∂y 0

)(

φA(y)

φB(y)

)

= ǫ̃

(

φA(y)

φB(y)

)

, (70)with ǫ̃ = ǫ/vF and ǫ the energy eigenvalue. The eigen-problem 
an be written as two linear di�erential equa-tions of the form:
{

(kx − ∂y)φB = ǫ̃φA ,

(kx + ∂y)φA = ǫ̃φB .
(71)Applying the operator (kx + ∂y) to the �rst of Eqs. (71)leads to:

(−∂2
y + k2

x)φB = ǫ̃2φB , (72)



18with φA given by:
φA =

1

ǫ̃
(kx − ∂y)φB . (73)The solution of (72) has the form:

φB = Aezy +Be−zy, (74)leading to an eigenenergy ǫ̃2 = k2
x − z2. The boundary
onditions for a zigzag edge require that φA(y = L) = 0and φB(y = 0) = 0, leading to:

{

φB(y = 0) = 0 ⇔ A+B = 0 ,

φA(y = L) = 0 ⇔ (kx − z)AezL + (kx + z)Be−zL = 0
,(75)whi
h leads to an eigenvalue equation of the form:

e−2zL =
kx − z

kx + z
. (76)Equation (76) has real solutions for z, whenever kx is pos-itive; these solutions 
orrespond to surfa
e waves (edgestates) existing near the edge of the graphene ribbon. Inse
tion II.F we dis
ussed these states from the point ofview of the tight-binding model. In addition to real solu-tions for z, (76) also supports 
omplex ones, of the form

z = ikn, leading to:
kx =

kn

tan(knL)
. (77)The solutions of (77) 
orrespond to 
on�ned modes inthe graphene ribbon.If we apply the same pro
edure to the Dira
 equationaround the Dira
 point K ′ we obtain a di�erent eigen-value equation given by:

e−2zL =
kx + z

kx − z
. (78)This equation supports real solutions for z if kx is neg-ative. Therefore we have edge states for negative values

kx, with momentum around K ′. As in the 
ase of K,the system also supports 
on�ned modes, given by:
kx = − kn

tan(knL)
. (79)One should note that the eigenvalue equations for K ′ areobtained from those for K by inversion, kx → −kx.We �nally noti
e that the edge states for zigzagnanoribbons are dispersionless (lo
alized in real spa
e)when t′ = 0. When ele
tron-hole symmetry is broken(t′ 6= 0) these states be
ome dispersive with a Fermi ve-lo
ity ve ≈ t′a (Castro Neto et al., 2006b).2. Arm
hair nanoribbonsLet us now 
onsider an arm
hair nanoribbon with arm-
hair edges along the y dire
tion. The boundary 
ondi-tions at the edges of the ribbon (lo
ated at x = 0 and

x = L, where L is the width of the ribbon):
ΨA(x = 0) = ΨB(x = 0) = ΨA(x = L) = ΨB(x = L) = 0 .(80)Translational symmetry guarantees that the spinor wave-fun
tion of Hamiltonian (61) 
an be written as:

ψ(r) = eikyy

(

φA(x)

φB(x)

)

, (81)and a similar equation for the spinor of the Hamiltonian(62). The boundary 
onditions have the form:
0 = eikyyφA(0) + eikyyφ′A(0) , (82)
0 = eikyyφB(0) + eikyyφ′B(0) , (83)
0 = eiKLeikyyφA(L) + e−iKLeikyyφ′A(L) , (84)
0 = eiKLeikyyφB(L) + e−iKLeikyyφ′B(L) , (85)and are satis�ed for any y if:

φµ(0) + φ′µ(0) = 0 , (86)and
eiKLφµ(L) + e−iKLφ′µ(L) = 0 , (87)with µ = A,B. It is 
lear that these boundary 
onditionsmix states from the two Dira
 points. Now we must �ndthe form of the envelope fun
tions obeying the boundary
onditions (86) and (87). As before, the fun
tions φBand φ′B obey the se
ond order di�erential equation (72)(with y repla
ed by x) and the fun
tion φA and φ′A aredetermined from (73). The solutions of (72) have theform:
φB = Aeiknx +Be−iknx , (88)
φ′B = Ceiknx +De−iknx . (89)Applying the boundary 
onditions: (86) and (87), oneobtains:

0 = A+B + C +D , (90)
0 = Aei(kn+K)L +De−i(kn+K)L

+ Be−i(kn−K)L + Cei(kn−K)L . (91)The boundary 
onditions are satis�ed with the 
hoi
e:
A = −D , B = C = 0 , (92)whi
h leads to sin[(kn +K)L] = 0. Therefore the allowedvalues of kn are given by

kn =
nπ

L
− 4π

3a0
, (93)and the eigenenergies are given by:

ǫ̃2 = k2
y + k2

n . (94)No surfa
e states exist in this 
ase.



19I. Dira
 fermions in a magneti
 �eldLet us now 
onsider the problem of a uniform magneti
�eld B applied perpendi
ular to the graphene plane 2.We use the Landau gauge: A = B(−y, 0). Noti
e thatthe magneti
 �eld introdu
es a new length s
ale in theproblem:
ℓB =

√

c

eB
, (95)whi
h is the magneti
 length. The only other s
ale inthe problem is the Fermi-Dira
 velo
ity. Dimensionalanalysis shows that the only quantity with dimensions ofenergy we 
an make is vF /ℓB. In fa
t, this determinesthe 
y
lotron frequen
y of the Dira
 fermions:

ωc =
√

2
vF

ℓB
(96)(the √

2 fa
tor 
omes from the quantization of the prob-lem, see below). Eqs. (96) and (95) show that the 
y-
lotron energy s
ales like √
B, in 
lear 
ontrast with thenon-relativisti
 problem where the 
y
lotron energy islinear in B. This implies that the energy s
ale asso
iatedwith the Dira
 fermions is rather di�erent from the one�nd in the ordinary 2D ele
tron gas. For instan
e, for�elds of the order B ≈ 10 T the 
y
lotron energy in the2D ele
tron gas is of the order of 10 K. In 
ontrast, for theDira
 fermion problem, for the same �elds, the 
y
lotronenergy is of the order of 1, 000 K, that is, two orders ofmagnitude bigger. This has strong impli
ations for theobservation of the quantum Hall e�e
t at room temper-ature (Novoselov et al., 2007). Furthermore, for B = 10T the Zeeman energy is relatively small, gµBB ≈ 5 K,and 
an be disregarded.Let us now 
onsider the Dira
 equation in more detail.Using the minimal 
oupling in (19) (i.e., repla
ing −i∇by −i∇ + eA/c) we �nd:

vF [~σ · (−i∇ + eA/c)]ψ(r) = E ψ(r) , (97)in the Landau gauge the generi
 solution for the wave-fun
tion has the form ψ(x, y) = eikxφ(y), and the Dira
equation reads:
vF

[

0 ∂y−k+Bey/c

−∂y−k+Bey/c 0

]

φ(y) = Eφ(y) ,(98)that 
an be rewritten as:
ωc

[

0 O
O† 0

]

φ(ξ) = E φ(ξ) , (99)2 The problem of transverse magneti
 and ele
tri
 �elds 
an alsobe solved exa
tly. See: (Lukose et al., 2007; Peres and Castro,2007).

Figure 18 (Color online) SdH os
illations observed in longi-tudinal resistivity ρxx of graphene as a fun
tion of the 
harge
arrier 
on
entration n. Ea
h peak 
orresponds to the pop-ulation of one Landau level. Note that the sequen
e is notinterrupted when passing through the Dira
 point, betweenele
trons and holes. The period of os
illations ∆n = 4B/Φ0,where B is the applied �eld and Φ0 is the �ux quantum(Novoselov et al., 2005a).or equivalently:
(Oσ+ + O†σ−)φ = (2E/ωc)φ , (100)where σ± = σx ± iσy, and we have de�ned the dimen-sionless length s
ale:

ξ =
y

ℓB
− ℓBk , (101)and 1D harmoni
 os
illator operators:

O =
1√
2

(∂ξ + ξ) ,

O† =
1√
2

(−∂ξ + ξ) , (102)that obey 
anoni
al 
ommutation relations: [O,O†] = 1.The number operator is simply: N = O†O.Firstly, we noti
e that (100) allows for a solution withzero energy:
(Oσ+ + O†σ−)φ0 = 0 , (103)and sin
e the Hilbert spa
e generated by ~σ is of dimension

2, and the spe
trum generated by O† is bounded frombelow, we just need to ensure that:
Oφ0 = 0 ,

σ−φ0 = 0 , (104)in order for (103) to be ful�lled. The obvious zero modesolution is:
φ0(ξ) = ψ0(ξ) ⊗ | ⇓〉 , (105)



20where | ⇓〉 indi
ates the state lo
alized on sublatti
e Aand | ⇑〉 indi
ates the state lo
alized on sublatti
e B.Furthermore,
Oψ0(ξ) = 0 , (106)is the ground states of the 1D harmoni
 os
illator. Allthe solutions 
an now be 
onstru
ted from the zero mode:

φN,±(ξ) = ψN−1(ξ) ⊗ | ⇑〉 ± ψN (ξ) ⊗ | ⇓〉

=

(

ψN−1(ξ)

±ψN (ξ)

)

, (107)and their energy is given by (M
Clure, 1956):
E±(N) = ±ωc

√
N , (108)where N = 0, 1, 2, ... is a positive integer, ψN (ξ) isthe solution of the 1D Harmoni
 os
illator (expli
itly:

ψN (ξ) = 2−N/2(N !)−1/2 exp{−ξ2/2}HN(ξ) whereHN (ξ)is a Hermite polynomial). The Landau levels at theopposite Dira
 point, K', have exa
tly the same spe
-trum and hen
e ea
h Landau level is doubly degener-ate. Of parti
ular importan
e for the Dira
 problem dis-
ussed here is the existen
e of a zero energy state N = 0whi
h is responsible, as we are going to show, to theanomalies observed in the quantum Hall e�e
t. Thisparti
ular Landau level stru
ture has been observed bymany di�erent experimental probes, from Shubnikov-deHaas os
illations in single layer graphene (see Fig. 18)(Novoselov et al., 2005a; Zhang et al., 2005), to infraredspe
tros
opy (Jiang et al., 2007a), and to s
anning tun-neling spe
tros
opy (Li and Andrei, 2007) (STS) on agraphite surfa
e.J. The anomalous integer quantum Hall e�e
tIn the presen
e of disorder Landau levels get broadenedand mobility edges appear (Laughlin, 1981). Noti
e thatthere will be a Landau level at zero energy that separatesstates with hole 
hara
ter (µ < 0) from states with ele
-tron 
hara
ter (µ > 0). The 
omponents of the resistivityand 
ondu
tivity tensors are related by:
ρxx =

σxx

σ2
xx + σ2

xy

,

ρxy =
σxy

σ2
xx + σ2

xy

, (109)where σxx (ρxx) is the longitudinal 
omponent and σxy(ρxy) is the Hall 
omponent of the 
ondu
tivity (resistiv-ity). When the 
hemi
al potential is inside of a regionof lo
alized states the longitudinal 
ondu
tivity vanishes,
σxx = 0, and hen
e: ρxx = 0, ρxy = 1/σxy. On the otherhand, when the 
hemi
al potential is a region of delo-
alized states, when the 
hemi
al potential is 
rossing aLandau level, we have σxx 6= 0 and σxy varies 
ontinu-ously (Sheng et al., 2006, 2007).

Figure 19 (Color online) Geometry of Laughlin's thought ex-periment with a graphene ribbon: a magneti
 �eld B is ap-plied normal to the surfa
e of the ribbon, a 
urrent I 
ir
lesthe loop, generating a Hall voltage VH, and a magneti
 �ux
Φ.The value of σxy in the region of lo
alized states 
anbe obtained from Laughlin's gauge invarian
e argument(Laughlin, 1981): one imagines making a graphene rib-bon su
h as the one in Fig. 19 with a magneti
 �eld Bnormal through its surfa
e and a 
urrent I 
ir
ling itsloop. Due to the Lorentz for
e the magneti
 �eld pro-du
es a Hall voltage VH perpendi
ular to the �eld and
urrent. The 
ir
ulating 
urrent generates a magneti
�ux Φ that threads the loop. The 
urrent is given by:

I = c
δE

δΦ
, (110)where E is the total energy of the system. The lo
alizedstates do not respond to 
hanges in Φ, only the delo
al-ized ones. When the �ux is 
hanged by a �ux quantum

δΦ = Φ0 = hc/e the extended states remain the sameby gauge invarian
e. If the 
hemi
al potential is in theregion of lo
alized states, all the extended states belowthe 
hemi
al potential will be �lled both before and afterthe 
hange of �ux by Φ0. However, during the 
hange of�ux an integer number of states enter the 
ylinder at oneedge and leave at the opposite edge.The question is how many o

upied states are trans-ferred between edges. Let us 
onsider a naive and asshown further in
orre
t 
al
ulation in order to show theimportan
e of the zero mode in this problem. Ea
h Lan-dau level 
ontributes with one state times its degenera
y
g. In the 
ase of graphene we have g = 4 sin
e thereare 2 spin states and 2 Dira
 
ones. Hen
e, we wouldexpe
t that when the �ux 
hanges by one �ux quantumthe 
hange in energy would be δEinc. = ±4NeVH , where
N is an integer. The plus sign applies to ele
tron states(
harge +e) and the minus sign to hole states (
harge
−e). Hen
e, we would 
on
lude that Iinc. = ±4(e2/h)VH
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Figure 20 (Color online) Quantum Hall e�e
t in graphene asa fun
tion of 
harge 
arrier 
on
entration. The peak at n = 0shows that in high magneti
 �elds there appears a Landaulevel at zero energy where no states exist in zero �eld. The�eld draws ele
troni
 states for this level from both 
ondu
-tion and valen
e bands. The dashed line indi
ate plateaus in
σxy des
ribed by Eq. (111). Adapted from (Novoselov et al.,2005a).and hen
e σxy,inc. = I/VH = ±4Ne2/h, whi
h is thenaive expe
tation. The problem with this result is thatwhen the 
hemi
al potential is exa
tly at half-�lling, that

is, at the Dira
 point, it would predi
t a Hall plateau at
N = 0 with σxy,inc. = 0 whi
h is not possible sin
e thereis a N = 0 Landau level, with extended states at this en-ergy. The solution for this paradox is rather simple: be-
ause of the presen
e of the zero mode whi
h is shared bythe two Dira
 points, there are exa
tly 2×(2N+1) o

u-pied states that are transferred from one edge to another.Hen
e, the 
hange in energy is δE = ±2(2N + 1)eVH fora 
hange of �ux of δΦ = hc/e. Therefore, the Hall 
on-du
tivity is (Gusynin and Sharapov, 2005; Herbut, 2007;Peres et al., 2006
,d; S
hakel, 1991):

σxy =
I

VH
=

c

VH

δE

δΦ
= ±2(2N + 1)

e2

h
, (111)without any Hall plateau at N = 0. This amazing re-sult has been observed experimentally (Novoselov et al.,2005a; Zhang et al., 2005) as shown in Fig.20.K. Tight-binding model in a magneti
 �eldIn the tight-binding approximation the hopping inte-grals are repla
ed by a Peierls substitution:

eie
R

R
′

R
A·drtR,R′ = e

i 2π
Φ0

R

R
′

R
A·dr

tR,R′ , (112)where tR,R′ represents the hopping integral between thesites R and R′, with no �eld present. The tight-bindingHamiltonian for a single graphene layer, in a 
onstantmagneti
 �eld perpendi
ular to the plane, is 
onvenientlywritten as,
H = −t

∑

m,n,σ

[eiπ Φ
Φ0

n 1+z
2 a†σ(m,n)bσ(m,n)+e−iπ Φ

Φ0
na†σ(m,n)bσ(m−1, n−(1−z)/2)+eiπ Φ

Φ0
n z−1

2 a†σ(m,n)bσ(m,n−z)+h.
.],(113)holding for a graphene stripe with a zigzag (z = 1) andarm
hair (z = −1) edges oriented along the x−dire
tion. Fourier transforming along the x dire
tion gives,
H = −t

∑

k,n,σ

[e
iπ Φ

Φ0
n 1+z

2 a†σ(k, n)bσ(k, n) + e
−iπ Φ

Φ0
n
eikaa†σ(k, n)bσ(k, n− (1 − z)/2) + e

iπ Φ
Φ0

n z−1

2 a†σ(k, n)bσ(k, n− z) + h.
.].Let us now 
onsider the 
ase of zigzag edges. Theeigenproblem 
an be rewritten in terms of Harper's equa-tions (Harper, 1955), and for zigzag edges we obtain (Rammal, 1985):
Eµ,kα(k, n) = −t[eika/22 cos(π

Φ

Φ0
n− ka

2
)β(k, n)

+ β(k, n− 1)], (114)
Eµ,kβ(k, n) = −t[e−ika/22 cos(π

Φ

Φ0
n− ka

2
)α(k, n)

+ α(k, n+ 1)], (115)
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Figure 21 (Color online) Fourteen Energy levels of tight-binding ele
trons in graphene in the presen
e of a magneti
�ux Φ = Φ0/701, for a �nite stripe with N = 200 unit 
ells.The bottom panels are zoom in images of the top ones. Thedashed line represents the 
hemi
al potential µ.where the 
oe�
ients α(k, n) and β(k, n) show up inHamiltonian's eigenfun
tion, |ψ(k)〉, written in terms oflatti
e-position-state states as:
|ψ(k)〉 =

∑

n,σ

(α(k, n)|a; k, n, σ〉 + β(k, n)|b; k, n, σ〉) .(116)Eqs. (114) and (115) hold in the bulk. Considering thatthe zigzag ribbon has N unit 
ells along its width, from
n = 0 to n = N−1, the boundary 
onditions at the edgesare obtained from Eqs. (114) and (115), and read

Eµ,kα(k, 0) = −teika/22 cos

(

ka

2

)

β(k, 0) , (117)
Eµ,kβ(k,N−1)=−2te−ika/2cos

[

π
Φ

Φ0
(N−1)− ka

2

]

α(k,N−1).(118)Similar equations hold for a graphene ribbon with arm-
hair edges.In Fig. 21 we show fourteen energy levels, around zeroenergy, for both the zigzag and the arm
hair 
ases. Theformation of the Landau levels is signaled by the presen
eof �at energy bands, following the bulk energy spe
trum.From Fig. 21 it is straightforward to obtain the value ofthe Hall 
ondu
tivity in the quantum Hall e�e
t regime.Let us assume that the 
hemi
al potential is in betweentwo Landau levels at positive energies, as represented bythe dashed line in Fig. 21. The Landau level stru
tureshows two zero energy modes, one of them is ele
tron-like(hole-like), sin
e 
lose to the edge of the sample its energyis shifted upwards (downwards). The other Landau levelsare doubly degenerate. The determination of the valuesfor the Hall 
ondu
tivity is done by 
ounting how manyenergy levels (of ele
tron-like nature) are below 
hemi
al

Figure 22 (Color online) Landau levels of the graphene sta
ksshown in Fig.13. The applied magneti
 �eld is 1 T.potential. This 
ounting produ
es the value (2N + 1),with N = 0, 1, 2, . . . (for the 
ase of Fig. 21 one has
N = 2). From this 
ounting the Hall 
ondu
tivity isgiven, in
luding an extra fa
tor of two a

ounting for thespin degree of freedom, by

σxy = ±2
e2

h
(2N + 1) = ±4

e2

h

(

N +
1

2

)

. (119)Eq. (119) leads to the anomalous integer quantum Halle�e
t dis
ussed previously, whi
h is the hallmark of singlelayer graphene.L. Landau levels in graphene sta
ksThe dependen
e of the Landau level energies on theLandau index N roughly follows the dispersion relationof the bands, as shown in Fig. 22. Note that, in a trilayerwith Bernal sta
king, two sets of levels have a√N depen-den
e, while the energies of other two depend linearly on
N . In an in�nite rhombohedral sta
k, the Landau lev-els remain dis
rete and quasi-2D (Guinea et al., 2006).Note that, even in an in�nite sta
k with the Bernal stru
-ture, the Landau level 
losest to E = 0 forms a bandwhi
h does not overlap with the other Landau levels,leading to the possibility of a 3D integer quantum Hall ef-fe
t (Bernevig et al., 2007; Kopelevi
h et al., 2006, 2003;Luk'yan
huk and Kopelevi
h, 2004).The opti
al transitions between Landau levels 
an alsobe 
al
ulated. The sele
tion rules are the same as for agraphene single layer, and only transitions between sub-bands with Landau level indi
es M and N su
h that
|N | = |M±1| are allowed. The resulting transitions, withtheir respe
tive spe
tral strengths, are shown in Fig. 23.The transitions are grouped into subbands, whi
h giverise to a 
ontinuum when the number of layers tends toin�nity. In Bernal sta
ks with an odd number of lay-ers, the transitions asso
iated to Dira
 subbands withlinear dispersion have the largest spe
tral strength, andthey give a signi�
ant 
ontribution to the total absorp-
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Figure 23 (Color online) Relative spe
tral strength of the lowenergy opti
al transitions between Landau levels in graphenesta
ks with Bernal ordering and an odd number of layers. Theapplied magneti
 �eld is 1 T. Top left: 3 layers. Top right:11 layers. Bottom: 51 layers. The large red 
ir
les are thetransitions in a single layer.tion even if the number of layers is large, NL . 30 − 40(Sadowski et al., 2006).M. DiamagnetismBa
k in 1952 Mrozowski (Mrozowski, 1952) stud-ied diamagnetism of poly
rystalline graphite and other
ondensed-matter mole
ular-ring systems. It was 
on-
luded that in su
h ring systems diamagnetism has two
ontributions: (1) diamagnetism from the �lled bands ofele
trons; (2) Landau diamagnetism of free ele
trons andholes. For graphite the se
ond sour
e of diamagnetism isby far the largest of the two.M
Clure (M
Clure, 1956) 
omputed diamagnetism ofa 2D honey
omb latti
e using the theory introdu
ed byWalla
e (Walla
e, 1947), a 
al
ulation he later general-ized to three dimensional graphite (M
Clure, 1960). Forthe honey
omb plane the magneti
 sus
eptibility in unitsof emu/g is
χ = −0.0014

T
γ2
0 sech2

(

µ

2kBT

)

, (120)where µ is the Fermi energy, T the temperature, and
kB the Boltzmann 
onstant. For graphite the magneti
sus
eptibility is anisotropi
 and the di�eren
e betweenthe sus
eptibility parallel to the prin
ipal axis and thatperpendi
ular to the prin
ipal axis is -21.5×10−6 emu/g.The sus
eptibility perpendi
ular to the prin
ipal axis isabout the free-atom sus
eptibility of -0.5×10−6 emu/g.In the 2D model the sus
eptibility turns out to be largedue to the presen
e of fast moving ele
trons, with a ve-lo
ity of the order of vF ≃ 106 m/s, whi
h in turn is a
onsequen
e of the large value of the hopping parameter
γ0. In fa
t the sus
eptibility turns out to be proportionalto the square of γ0. Later Sharma et al. extended the 
al-
ulation of M
Clure for graphite by in
luding the e�e
t

of trigonal warping and showed that the low temperaturediamagnetism in
reases (Sharma et al., 1974).Safran and DiSalvo (Safran and DiSalvo, 1979), in-terested in the sus
eptibility of graphite inter
alation
ompounds, re
al
ulated, in a tight-binding model, thesus
eptibility perpendi
ular to a graphite plane usingFukuyama's theory (Fukuyama, 1971), whi
h in
ludes in-terband transitions. The results agree with those pub-lished by M
Clure (M
Clure, 1956). Later, Safran 
om-puted the sus
eptibility of a graphene bilayer showingthat this system is diamagneti
 at small values of theFermi energy, but there appears a paramagneti
 peakwhen the Fermi energy is of the order of the interlayer
oupling (Safran, 1984).The magneti
 sus
eptibility of other 
arbon based ma-terials, as 
arbon nanotubes and C60 mole
ular solidswas measured (Heremans et al., 1994) showing a dia-magneti
 response at �nite magneti
 �elds di�erent fromthat of graphite. The study of the magneti
 responseof nanographite ribbons with both zig-zag and arm-
hairedges was done by Wakabayashi et al. using a numeri-
al di�erentiation of the free energy (Wakabayashi et al.,1999). From these two systems, the zig-zag edge stateis of parti
ular interest sin
e the system supports edgestates even in the presen
e of a magneti
 �eld, leading tovery high density of states near the edge of the ribbon.The high temperature response of these nanoribbons wasfound to be diamagneti
 whereas the low temperaturesus
eptibility is paramagneti
.The Dira
-like nature of the ele
troni
 quasiparti-
les in graphene led (Ghosal et al., 2007) to 
onsiderin general the problem of the diamagnetism of nodalfermions and Nakamura to study the orbital magnetismof Dira
 fermions in weak magneti
 �elds(Nakamura,2007). Koshino and Ando 
onsidered the diamagnetismof disordered graphene in the self 
onsistent Born approx-imation, with a disorder potential of the form U(r) =
1uiδ(r − R) (Koshino and Ando, 2007). At the neutral-ity point and zero temperature the sus
eptibility of dis-ordered graphene is given by

χ(0) = −gvgs

3π2
e2γ2

0

2W

Γ0
, (121)where gs = gv = 2 is the spin and valley degenera
ies,Wis a dimensionless parameter for the disorder strength,de�ned as W = niu

2
i /4πγ

2
0 , ni the impurity 
on
entra-tion, and Γ0 is given by Γ0 = ǫc exp[−1/(2W )] with ǫca parameter de�ning a 
ut-o� fun
tion used in the the-ory. At �nite Fermi energy ǫF and zero temperature themagneti
 sus
eptibility is given by

χ(ǫF ) = −gvgs

3π
e2γ2

0

W

|ǫF |
. (122)In the 
lean limit the sus
eptibility is givenby (Koshino and Ando, 2007; M
Clure, 1956;Safran and DiSalvo, 1979):

χ(ǫF ) = −gvgs

6π
e2γ2

0 δ(ǫF ) . (123)



24N. Spin orbit 
ouplingSpin-orbit 
oupling des
ribes a pro
ess in whi
h anele
tron 
hanges simultaneously its spin and angular mo-mentum or, in general, moves from one orbital wavefun
-tion to another. The mixing of the spin and the orbitalmotion is a relativisti
 e�e
t, whi
h 
an be derived fromDira
's model of the ele
tron. It is large in heavy ions,where the average velo
ity of the ele
trons is higher. Car-bon is a light atom, and the spin orbit intera
tion is ex-pe
ted to be weak.The symmetries of the spin orbit intera
tion, however,allow the formation of a gap at the Dira
 points in 
leangraphene. The spin orbit intera
tion leads to a spin de-pendent shift of the orbitals, whi
h is of a di�erent signfor the two sublatti
es, a
ting as an e�e
tive mass withinea
h Dira
 point (Dresselhaus and Dresselhaus, 1965;Kane and Mele, 2005; Wang and Chakraborty, 2007a).The appearan
e of this gap leads to a non trivial spinHall 
ondu
tan
e, in similar way to other models whi
hstudy the parity anomaly in relativisti
 �eld theory in(2+1) dimensions (Haldane, 1988). When the inver-sion symmetry of the honey
omb latti
e is broken, ei-ther be
ause the graphene layer is 
urved or be
ausean external ele
tri
 �eld is applied (Rashba intera
tion)additional terms, whi
h modulate the nearest neigh-bor hopping, are indu
ed (Ando, 2000). The intrin-si
 and extrinsi
 spin orbit intera
tions 
an be writtenas (Dresselhaus and Dresselhaus, 1965; Kane and Mele,2005):
HSO;int ≡ ∆so

∫

d2rΨ̂†(r)ŝz σ̂z τ̂zΨ̂(r) ,

HSO;ext ≡ λR

∫

d2rΨ̂†(r)(−ŝxσ̂y+ŝyσ̂xτ̂z)Ψ̂(r) ,(124)where σ̂ and τ̂ are Pauli matri
es whi
h des
ribe the sub-latti
e and valley degrees of freedom, and ŝ are Pauli ma-tri
es a
ting on a
tual spin spa
e. ∆so is the spin-orbit
oupling and λR is the Rashba 
oupling.The magnitude of the spin orbit 
oupling in graphene
an be inferred from the known spin orbit 
oupling inthe 
arbon atom. This 
oupling allows for transitionsbetween the pz and px and py orbitals. An ele
tri
 �eldindu
es also transitions between the pz and s orbitals.These intra-atomi
 pro
esses mix the π and σ bandsin graphene. Using se
ond order perturbation theory,one obtains a 
oupling between the low energy statesin the π band. Tight-binding (Huertas-Hernando et al.,2006; Zarea and Sandler, 2007) and band stru
ture 
al
u-lations (Min et al., 2006; Yao et al., 2007) give estimatesfor the intrinsi
 and extrinsi
 spin-orbit intera
tions inthe range 0.01− 0.2 K, and hen
e mu
h smaller than theother energy s
ales in the problem (kineti
, intera
tion,and disorder).

III. FLEXURAL PHONONS, ELASTICITY, ANDCRUMPLINGGraphite, in the Bernal sta
king 
on�guration, is a lay-ered 
rystalline solid with 4 atoms per unit 
ell. Its basi
stru
ture is essentially a repetition of the bilayer stru
-ture dis
ussed earlier. The 
oupling between the lay-ers, as we dis
ussed, is weak and, therefore, graphenehas been always the starting point for the dis
ussion ofphonons in graphite (Wirtz and Rubio, 2004). Graphenehas two atoms per unit 
ell and if we 
onsider graphene asstri
tly 2D it should have 2 a
ousti
 modes (with disper-sion ωac(k) ∝ k as k → 0) and 2 opti
al modes (with dis-persion ωop(k) ∝ constant, as k → 0) solely due to the in-plane translation and stret
hing of the graphene latti
e.Nevertheless, graphene exists in the 3D spa
e and hen
ethe atoms 
an os
illate out-of-plane leading to 2 out-of-plane phonons (one a
ousti
 and another opti
al) 
alled�exural modes. The a
ousti
 �exural mode has disper-sion ωflex(k) ∝ k2 as k → 0 whi
h represents the transla-tion of the whole graphene plane (essentially a one atomthi
k membrane) in the perpendi
ular dire
tion (free par-ti
le motion). The opti
al �exural mode represents theout-of-phase out-of-plane os
illation of the neighboringatoms. In �rst approximation, if we negle
t the 
ou-pling between graphene planes, graphite has essentiallythe same phonon modes, albeit they are degenerate. The
oupling between planes has two main e�e
ts: (1) it liftsthe degenera
y of the phonon modes, and (2) leads to astrong suppression of the energy of the �exural modes.Theoreti
ally, �exural modes should be
ome ordinarya
ousti
 and opti
al modes in a fully 
ovalent 3D solid,but in pra
ti
e, the �exural modes survive due to thefa
t the planes are 
oupled by weak van der Waals-likefor
es. These modes have been measured experimentallyin graphite (Wirtz and Rubio, 2004). Graphene 
an alsobe obtained as a suspended membrane, that is, withouta substrate, being supported only by a s
a�old or bridg-ing mi
ron-s
ale gaps (Bun
h et al., 2007; Meyer et al.,2007a,b). Figure 24 shows a suspended graphene sheetand an atomi
 resolution image of its 
rystal latti
e.Be
ause the �exural modes disperse like k2 they dom-inate the behavior of stru
tural �u
tuations in grapheneat low energies (low temperatures) and long wave-lengths. It is instru
tive to understand how thesemodes appear from the point of view of elasti
ity the-ory (Chaikin and Lubensky, 1995; Nelson et al., 2004).Consider, for instan
e, a graphene sheet in 3D and letus parameterize the position of the sheet relative of a�xed 
oordinate frame in terms of the in-plane ve
tor rand the height variable h(r) so that a position in thegraphene is given by the ve
tor R = (r, h(r)). The unitve
tor normal to the surfa
e is given by:
N =

z −∇h
√

1 + (∇h)2
, (125)where ∇ = (∂x, ∂y) is the 2D gradient operator, and

z is the unit ve
tor in the third dire
tion. In a �at
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(a)

(b)Figure 24 (Color online) Suspended graphene sheet. (a)Bright-�eld transmission-ele
tron-mi
ros
ope image of agraphene membrane. Its 
entral part (homogeneous andfeatureless region) is monolayer graphene. Adapted from(Meyer et al., 2007a). (b) Despite being only one atom thi
k,graphene remains a perfe
t 
rystal as this atomi
 resolutionimage shows. The image is obtained in a s
anning transmis-sion ele
tron mi
ros
ope. The visible periodi
ity is given bythe latti
e of benzene rings. Adapted from (Nair et al., 2008).graphene 
on�guration all the normal ve
tors are alignedand therefore ∇·N = 0. Deviations from the �at 
on�g-uration requires misalignment of the normal ve
tors and
osts elasti
 energy. This elasti
 energy 
an be writtenas:
E0 =

κ

2

∫

d2r (∇ ·N)
2 ≈ κ

2

∫

d2r
(

∇2h
)2 (126)where κ is the bending sti�ness of graphene, and theexpression in terms of h(r) is valid for smooth distortionsof the graphene sheet ((∇h)2 ≪ 1). The energy (126) isvalid in the absen
e of a surfa
e tension or a substratewhi
h break the rotational and translational symmetryof the problem, respe
tively. In the presen
e of tensionthere is an energy 
ost for solid rotations of the graphenesheet (∇h 6= 0) and hen
e a new term has to be added

to the elasti
 energy:
ET =

γ

2

∫

d2r (∇h)2 , (127)where γ is the interfa
ial sti�ness. A substrate, des
ribedby a height variable s(r), pins the graphene sheet throughvan der Waals and other ele
trostati
 potentials so thatthe graphene 
on�guration tries to follow the substrate
h(r) ∼ s(r). Deviations from this 
on�guration 
ost ex-tra elasti
 energy that 
an be approximated by a har-moni
 potential (Swain and Andelman, 1999):

ES =
v

2

∫

d2r (s(r) − h(r))
2
, (128)where v 
hara
terizes the strength of the intera
tion po-tential between substrate and graphene.Firstly, let us 
onsider the free �oating graphene prob-lem (126) that we 
an rewrite in momentum spa
e as:

E0 =
κ

2

∑

k

k4h−khk . (129)We now 
anoni
ally quantize the problem by introdu
inga momentum operator Pk that has the following 
ommu-tator with hk:
[hk, Pk′ ] = iδk,k′ , (130)and write the Hamiltonian as:

H =
∑

k

{

P−kPk

2σ
+
κk4

2
h−khk

}

, (131)where σ is graphene's 2D mass density. From the Heisen-berg equations of motion for the operators it is trivialto �nd that hk os
illates harmoni
ally with a frequen
ygiven by:
ωflex(k) =

(κ

σ

)1/2

k2 , (132)whi
h is the long wavelength dispersion of the �exuralmodes. In the presen
e of tension it is easy to see thatthe dispersion is modi�ed to:
ω(k) = k

√

κ

σ
k2 +

γ

σ
, (133)indi
ating that the dispersion of the �exural modes be-
omes linear in k, as k → 0, under tension. That is whathappens in graphite where the intera
tion between layersbreaks the rotational symmetry of the graphene layers.Eq. (132) also allows us to relate the bending energyof graphene with the Young modulus, Y , of graphite.The fundamental resonan
e frequen
y of a ma
ros
opi
graphite sample of thi
kness t is given by (Bun
h et al.,2007):

ν(k) =

(

Y

ρ

)1/2

t k2 , (134)



26where ρ = σ/t is the 3D mass density. Assuming that(134) works down to the single plane level, that is, when
t is the distan
e between planes, we �nd:

κ = Y t3 , (135)whi
h provides a simple relationship between the bendingsti�ness and the Young modulus. Given that Y ≈ 1012N/m and t ≈ 3.4 Å we �nd, κ ≈ 1 eV. This result is ingood agreement with ab initio 
al
ulations of the bendingrigidity (Lenosky et al., 1992; Tu and Ou-Yang, 2002)and experiments in graphene resonators (Bun
h et al.,2007).The problem of stru
tural order of a �free �oating�graphene sheet 
an be fully understood from the exis-ten
e of the �exural modes. Consider, for instan
e, thenumber of �exural modes per unit of area at a 
ertaintemperature T :
Nph =

∫

d2k

(2π)2
nk =

1

2π

∫ ∞

0

dk
k

eβ
√

κ/σk2 − 1
(136)where nk is the Bose-Einstein o

upation number (β =

1/(kBT )). For T 6= 0 the above integral is logarithmi
allydivergent in the infrared (k → 0) indi
ating a divergentnumber of phonons in the thermodynami
 limit. For asystem with �nite size L the smallest possible wave ve
toris of the order of kmin ∼ 2π/L. Using kmin as a lower 
ut-o� in the integral (136) we �nd:
Nph =

π

L2
T

ln

(

1

1 − e−L2
T

/L2

)

, (137)where
LT =

2π√
kBT

(κ

σ

)1/4

, (138)is the thermal wavelength of the �exural modes. Noti
ethat that when L ≫ LT the number of �exural phononsin (137) diverges logarithmi
ally with the size of the sys-tem:
Nph ≈ 2π

L2
T

ln

(

L

LT

)

, (139)indi
ating that the system 
annot be stru
turally or-dered at any �nite temperature. This is noth-ing but the 
rumpling instability of soft membranes(Chaikin and Lubensky, 1995; Nelson et al., 2004). For
L ≪ LT one �nds that Nph goes to zero exponentiallywith the size of the system indi
ating that systems with�nite size 
an be �at at su�
iently low temperatures.Noti
e that for κ ≈ 1 eV, ρ ≈ 2200 kg/m3, t = 3.4Å(σ ≈ 7.5 × 10−7 kg/m2), and T ≈ 300 K, we �nd
LT ≈ 1 Å indi
ating that free �oating graphene shouldalways 
rumple at room temperature due to thermal�u
tuations asso
iated with �exural phonons. Never-theless, the previous dis
ussion only involves the har-moni
 (quadrati
 part) of the problem. Non-linear e�e
ts

su
h as large bending deformations (Peliti and Leibler,1985), the 
oupling between �exural and in-plane modes(or phonon-phonon intera
tions (Bonini et al., 2007;Radzihovsky and Le Doussal, 1992)) and the presen
eof topologi
al defe
ts (Nelson and Peliti, 1987) 
an leadto strong renormalizations of the bending rigidity, driv-ing the system toward a �at phase at low tempera-tures (Chaikin and Lubensky, 1995). This situation hasbeen 
on�rmed in numeri
al simulations of free graphenesheets (Adebpour et al., 2007; Fasolino et al., 2007).The situation is rather di�erent if the system is un-der tension or in the presen
e of a substrate or s
a�oldthat 
an hold the graphene sheet. In fa
t, stati
 ripplingof graphene �akes suspended on s
a�olds have been ob-served for single layer as well as bilayers (Meyer et al.,2007a,b). In this 
ase the dispersion, in a

ordan
e with(133), is at least linear in k, and the integral in (136)
onverges in the infrared (k → 0) indi
ating that thenumber of �exural phonons is �nite and graphene doesnot 
rumple. We should noti
e that these thermal �u
tu-ations are dynami
 and hen
e average to zero over time,therefore, the graphene sheet is expe
ted to be �at underthese 
ir
umstan
es. Obviously, in the presen
e of a sub-strate or s
a�old des
ribed by (128) stati
 deformationsof the graphene sheet are allowed. Also, hydro
arbonmole
ules that are often present on top of free hanginggraphene membranes 
ould quen
h �exural �u
tuationsmaking them stati
.Finally, one should noti
e that in the presen
e of ametalli
 gate the ele
tron-ele
tron intera
tions lead tothe 
oupling of the phonon modes to the ele
troni
 ex-
itations in the gate. This 
oupling 
ould be partiallyresponsible to the damping of the phonon modes due todissipative e�e
ts (Seoanez et al., 2007) as observed ingraphene resonators (Bun
h et al., 2007).IV. DISORDER IN GRAPHENEGraphene is a remarkable material from the ele
troni
point of view. Be
ause of the robustness and spe
i�
ityof the sigma bonding, it is very hard for alien atoms torepla
e the 
arbon atoms in the honey
omb latti
e. Thisis one of the reasons why the ele
tron mean free pathin graphene 
an be so long, rea
hing up to one mi
rom-eter in the existing samples. Nevertheless, graphene isnot immune to disorder and its ele
troni
 properties are
ontrolled by extrinsi
 as well as intrinsi
 e�e
ts that areunique to this system. Among the intrinsi
 sour
es ofdisorder we 
an highlight: surfa
e ripples and topologi-
al defe
ts. Extrinsi
 disorder 
an 
ome about in manydi�erent forms: adatoms, va
an
ies, 
harges on top ofgraphene or in the substrate, and extended defe
ts su
has 
ra
ks and edges.It is easy to see that from the point of view of singleele
tron physi
s (that is, terms that 
an be added to (5)),there are two main terms that disorder 
ouples to. The



27�rst one is a lo
al 
hange in the single site energy,
Hdd =

∑

i

Vi

(

a†iai + b†i bi

)

, (140)where Vi is the strength of the disorder potential on site
Ri, whi
h is diagonal in the sublatti
e indi
es and hen
e,from the point of view of the Dira
 Hamiltonian (18), 
anbe written as:

Hdd =

∫

d2r
∑

a=1,2

Va(r)Ψ̂†
a(r)Ψ̂a(r) , (141)whi
h a
ts as a 
hemi
al potential shift for the Dira
fermions, that is, shifts lo
ally the Dira
 point.Be
ause of the vanishing of the density of statesin single layer graphene, and by 
onsequen
e the la
kof ele
trostati
 s
reening, 
harge potentials may berather important in determining the spe
tros
opi
 andtransport properties (Adam et al., 2007; Ando, 2006b;Nomura and Ma
Donald, 2007). Of parti
ular impor-tan
e is the Coulomb impurity problem where,

Va(r) =
e2

ǫ0

1

r
, (142)where ǫ0 is the diele
tri
 
onstant of the medium. Thesolution of the Dira
 equation for the Coulomb poten-tial in 2D 
an be studied analyti
ally (Biswas et al.,2007; DiVin
enzo and Mele, 1984; Novikov, 2007a;Pereira et al., 2007b; Shytov et al., 2007). Its solutionhas many of the features of the 3D relativisti
 hydro-gen atom problem (Baym, 1969). Just as in the 
ase ofthe 3D problem the nature of the eigenfun
tions dependsstrongly on graphene's dimensionless 
oupling 
onstant:

g =
Ze2

ǫ0vF
. (143)Noti
e, therefore, that the 
oupling 
onstant 
an be var-ied by either 
hanging the 
harge of the impurity, Z,or modifying the diele
tri
 environment and 
hanging

ǫ0. For g < gc = 1/2 the solutions of this problem aregiven in terms of Coulomb wavefun
tions with logarith-mi
 phase shifts. The lo
al density of states (LDOS) isa�e
ted 
lose to the impurity due the ele
tron-hole asym-metry generated by the Coulomb potential. The lo
al
harge density de
ays like 1/r3 plus fast os
illations ofthe order of the latti
e spa
ing (in the 
ontinuum limitthis would give rise to a Dira
 delta fun
tion for the den-sity (Kolezhuk et al., 2006)). Just like in 3D QED, the2D problem be
omes unstable for g > gc = 1/2 leadingto super-
riti
al behavior and the so-
alled fall of ele
-tron to the 
enter (Landau and Lifshitz, 1981). In this
ase the LDOS is strongly a�e
ted by the presen
e of theCoulomb impurity with the appearan
e of bound statesoutside the band and s
attering resonan
es within theband (Pereira et al., 2007b) and the lo
al ele
troni
 den-sity de
ays monotoni
ally like 1/r2 at large distan
es.

It has been argued (S
hedin et al., 2007) that with-out high va
uum environment these Coulomb e�e
ts 
anbe strongly suppressed by large e�e
tive diele
tri
 
on-stants due to the presen
e of a nanometer thin layerof absorbed water (Sabio et al., 2007). In fa
t, ex-periments in ultra-high va
uum 
onditions (Chen et al.,2007b) display strong s
attering features in the trans-port that 
an be asso
iated to 
harge impurities.S
reening e�e
ts that a�e
t the strength and rangeof the Coulomb intera
tion, are rather non-trivial ingraphene (Fogler et al., 2007b; Shklovskii, 2007) and,therefore, important for the interpretation of transportdata (Bardarson et al., 2007; Lewenkopf et al., 2007;Nomura et al., 2007; San-Jose et al., 2007).Another type of disorder is the one that 
hanges thedistan
e or angles between the pz orbitals. In this 
ase,the hopping energies between di�erent sites are modi�edleading to a new term to the original Hamiltonian (5):
Hod =

∑

i,j

{

δt
(ab)
ij

(

a†ibj + h.c.
)

+ δt
(aa)
ij

(

a†iaj + b†ibj

)}

, (144)or in Fourier spa
e:
Hod =

∑

k,k′

a†kbk′

∑

i,~δab

δt
(ab)
i ei(k−k′)·Ri−i~δaa·k

′

+ h.c.

+
(

a†kak′+b†kbk′

)

∑

i,~δaa

δt
(aa)
i ei(k−k′)·Ri−i~δab·k

′

,(145)where δt(ab)
ij (δt(aa)

ij ) is the 
hange of the hopping en-ergy between orbitals on latti
e sites Ri and Rj on thesame (di�erent) sublatti
es (we have written Rj = Ri+~δwhere ~δab is the nearest neighbor ve
tor, and ~δaa is thenext nearest neighbor ve
tor). Following the pro
edureof Se
. II.B we proje
t out the Fourier 
omponents of theoperators 
lose to the K and K' points of the BZ using(17). If we assume that δtij is smooth over the latti
espa
ing s
ale, that is, it does not have an Fourier 
om-ponent with momentum K−K′ (so the two Dira
 
onesare not 
oupled by disorder), we 
an rewrite (145) in realspa
e as:
Hod =

∫

d2r
[

A(r)a†1(r)b1(r) + h.c.

+ φ(r)
(

a†1(r)a1(r) + b†1(r)b1(r)
)]

, (146)with a similar expression for the 
one 2 but with A re-pla
ed by A∗, where,
A(r) =

∑

~δab

δt(ab)(r)e−i~δab·K , (147)
φ(r) =

∑

~δaa

δt(aa)(r)e−i~δaa·K . (148)Noti
e that whereas φ(r) = φ∗(r), be
ause of the in-version symmetry of the two triangular sublatti
es that



28make up the honey
omb latti
e, A is 
omplex be
ause ofla
k of inversion symmetry for nearest neighbor hopping.Hen
e,
A(r) = Ax(r) + iAy(r) . (149)In terms of the Dira
 Hamiltonian (18) we 
an rewrite(146) as:

Hod =

∫

d2r
[

Ψ̂†
1(r)σ · ~A(r)Ψ̂1(r)

+ φ(r)Ψ̂†
1(r)Ψ̂1(r)

]

, (150)where ~A = (Ax,Ay). This result shows that 
hanges inthe hopping amplitude lead to the appearan
e of ve
tor,
~A, and s
alar, Φ, potentials in the Dira
 Hamiltonian.The presen
e of a ve
tor potential in the problem indi-
ates that an e�e
tive magneti
 �eld ~B = c/(evF )∇× ~Ashould also be present, naively implying a broken time re-versal symmetry, although the original problem was timereversal invariant. This broken time reversal symmetryis not real sin
e (150) is the Hamiltonian around onlyone of the Dira
 
ones. The se
ond Dira
 
one is re-lated to the �rst by time reversal symmetry indi
atingthat the e�e
tive magneti
 �eld is reversed in the se
ond
one. Therefore, there is no global broken symmetry buta 
ompensation between the two 
ones.A. RipplesGraphene is a one atom thi
k system, the extreme
ase of a soft membrane. Hen
e, just like soft mem-branes, it is subje
t to distortions of its stru
ture eitherdue to thermal �u
tuations (as we dis
ussed in Se
. III)or intera
tion with a substrate, s
a�old, and absorbands(Swain and Andelman, 1999). In the �rst 
ase the �u
-tuations are time dependent (although with time s
alesmu
h longer than the ele
troni
 ones), while in the se
-ond 
ase the distortions a
t as quen
hed disorder. Inboth 
ases, the disorder 
omes about be
ause of the mod-i�
ation of the distan
e and relative angle between the
arbon atoms due to the bending of the graphene sheet.This type of o�-diagonal disorder does not exist in ordi-nary 3D solids, or even in quasi-1D or quasi-2D systems,where atomi
 
hains and atomi
 planes, respe
tively, areembedded in a 3D 
rystalline stru
ture. In fa
t, grapheneis also very di�erent from other soft membranes be
auseit is (semi) metalli
, while previously studied membraneswere insulators.The problem of the bending of graphiti
 systems andits e�e
t on the hybridization of the π orbitals hasbeen studied a great deal in the 
ontext of 
lassi
alminimal surfa
es (Lenosky et al., 1992) and applied tofullerenes and 
arbon nanotubes (Kane and Mele, 1997;Terso�, 1992; Tu and Ou-Yang, 2002; Xin et al., 2000;Zhong-
an et al., 1997w). In order to understand thee�e
t of bending on graphene, 
onsider the situation

shown in Fig.25. The bending of the graphene sheet hasthree main e�e
ts: the de
rease of the distan
e between
arbon atoms, a rotation of the pZ orbitals (
ompres-sion or dilation of the latti
e are energeti
ally 
ostly dueto the large spring 
onstant of graphene ≈ 57 eV/Å2(Xin et al., 2000)), and a re-hybridization between π and
σ orbitals (Eun-Ah Kim and Castro Neto, 2007). Bend-ing by a radius R de
reases the distan
e between theorbitals from ℓ to d = 2R sin[ℓ/(2R)] ≈ ℓ − ℓ3/(24R2)for R ≫ ℓ. The de
rease in the distan
e betweenthe orbitals in
reases the overlap between the two lobesof the pZ orbital (Harrison, 1980): Vppa ≈ V 0

ppa[1 +

ℓ2/(12R2)], where a = π, σ, and V 0
ppa is the overlap fora �at graphene sheet. The rotation of the pZ orbitals
an be understood within the Slater-Koster formalism,namely, the rotation 
an be de
omposed into a pz − pz(π bond) plus a px − px (σ bond) hybridization withenergies Vppπ and Vppσ , respe
tively (Harrison, 1980):

V (θ) = Vppπ cos2(θ) − Vppσ sin2(θ) ≈ Vppπ − (Vppπ +
Vppσ)(ℓ/(2R))2, leading to a de
rease in the overlap. Fur-thermore, the rotation leads to re-hybridization between
π and σ orbitals leading to a further shift in energyof the order of (Eun-Ah Kim and Castro Neto, 2007):
δǫπ ≈ (V 2

spσ + V 2
ppσ)/(ǫπ − ǫa).

l
+ +

−−

θ

α β

RR

z z

x

z z1
2

d

Figure 25 Bending of the surfa
e of graphene by a radius Rand its e�e
t on the pz orbitals.In the presen
e of a substrate, as we dis
ussedin Se
.III, elasti
ity theory predi
ts that graphene
an be expe
ted to follow the substrate in a smoothway. Indeed, by minimizing the elasti
 energy (126),(127), and (128) with respe
t to the height h we get(Swain and Andelman, 1999):
κ∇4h(r) − γ∇2h(r) + vh(r) = vs(r) , (151)that 
an be solved by Fourier transform:

h(k) =
s(k)

1 + (ℓtk)2 + (ℓck)4
, (152)where

ℓt =
(γ

v

)1/2

,

ℓc =
(κ

v

)1/4

. (153)



29Eq. (152) gives the height 
on�guration in terms of thesubstrate pro�le, and ℓt and ℓc provide the length s
alesfor elasti
 distortion of graphene on a substrate. Hen
e,disorder in the substrate translates into disorder in thegraphene sheet (albeit restri
ted by elasti
 
onstraints).This pi
ture has been 
on�rmed by STM measurementson graphene (Ishigami et al., 2007; Stolyarova et al.,2007) in whi
h strong 
orrelations were found betweenthe roughness of the substrate and the graphene topog-raphy. Ab initio band stru
ture 
al
ulations also givesupport to this s
enario (Dharma-Wardana, 2007).The 
onne
tion between the ripples and the ele
troni
problem 
omes from the relation between the height �eld
h(r) and the lo
al 
urvature of the graphene sheet, R:

2

R(r)
≈ ∇2h(r) , (154)and, hen
e we see that due to bending the ele
trons aresubje
t to a potential whi
h depends on the stru
ture ofa graphene sheet (Eun-Ah Kim and Castro Neto, 2007):

V (r) ≈ V 0 − α (∇2h(r))2 , (155)where α (α ≈ 10 eV Å2) is the 
onstant that depends onmi
ros
opi
 details. The 
on
lusion from (155) is that theDira
 fermions are s
attered by ripples of the graphenesheet through a potential whi
h is proportional to thesquare of the lo
al 
urvature. The 
oupling between ge-ometry and ele
tron propagation is unique to graphene,and results in additional s
attering and resistivity due toripples (Katsnelson and Geim, 2008).B. Topologi
al latti
e defe
tsStru
tural defe
ts of the honey
omb latti
e like pen-tagons, heptagons and their 
ombinations su
h as Stone-Wales defe
t (a 
ombination of two pentagon-heptagonpairs) are also possible in graphene and 
an lead to s
at-tering (Cortijo and Vozmediano, 2007a,b). These defe
tsindu
e long range deformations, whi
h modify the ele
-tron traje
tories.Let us 
onsider �rst a dis
lination. This defe
t is equiv-alent to the deletion or in
lusion of a wedge in the latti
e.The simplest one in the honey
omb latti
e is the absen
eof a 60◦ wedge. The resulting edges 
an be glued in su
ha way that all sites remain three-fold 
oordinated. Thehoney
omb latti
e is re
overed everywhere, ex
ept at theapex of the wedge, where a �vefold ring, a pentagon, isformed. One 
an imagine a situation where the nearestneighbor hoppings are un
hanged. Nevertheless, the ex-isten
e of a pentagon implies that the two sublatti
es ofthe honey
omb stru
ture 
an no longer be de�ned. Atraje
tory around the pentagon after a 
losed 
ir
uit hasto 
hange the sublatti
e index.The boundary 
onditions imposed at the edges of adis
lination are sket
hed in Fig. 26, showing the identi-�
ation of sites from di�erent sublatti
es. In addition,
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Figure 26 (Color online) Sket
h of the boundary 
onditionsasso
iated to a dis
lination (pentagon) in the honey
omb lat-ti
e.the wavefun
tions at the K and K ′ points are ex
hangedwhen moving around the pentagon.Far away from the defe
t, a slow rotation of the
omponents of the spinorial wavefun
tion 
an be de-s
ribed by a gauge �eld whi
h a
ts on the valleyand sublatti
e indi
es (González et al., 1992, 1993b).This gauge �eld is te
hni
ally non-abelian, althougha transformation 
an be de�ned whi
h makes the re-sulting Dira
 equation equivalent to one with an e�e
-tive abelian gauge �eld (González et al., 1993b). The�nal 
ontinuum equation gives a reasonable des
rip-tion of the ele
troni
 spe
trum of fullerenes of di�er-ent sizes (González et al., 1992, 1993b), and other stru
-tures whi
h 
ontain pentagons (Kolesnikov and Osipov,2004, 2006; Lammert and Crespi, 2004; LeClair, 2000;Osipov et al., 2003). It is easy to see that an heptagonleads to the opposite e�e
tive �eld.An in-plane dislo
ation, that is, the in
lusion of a semi-in�nite row of sites, 
an be 
onsidered as indu
ed bya pentagon and a heptagon together. The non-abelian�eld des
ribed above is 
an
eled away from the 
ore. A
losed path implies a shift by one (or more) latti
e spa
-ings. The wavefun
tions at the K and K ′ points a
quirephases, e±2πi/3, under a translation by one latti
e unit.Hen
e, the des
ription of a dislo
ation in the 
ontinuumlimit requires an (abelian) vortex of 
harge ±2π/3 at its
ore. Dislo
ations separated over distan
es of the orderof d lead to an e�e
tive �ux through an area of perimeter
l of the order of (Morpurgo and Guinea, 2006):

Φ ∼ d

kFl2
(156)where kF is the Fermi ve
tor of the ele
trons.In general, a lo
al rotation of the axes of the hon-ey
omb latti
e indu
es 
hanges in the hopping whi
hlead to mixing of the K and K ′ wavefun
tions, lead-ing to a gauge �eld like the one indu
ed by a pen-tagon (González et al., 2001). Graphene samples withdis
linations and dislo
ations are feasible in parti
ularsubstrates (Couraux et al., 2008), and gauge �elds re-lated to the lo
al 
urvature are then expe
ted to play



30a 
ru
ial role in su
h stru
tures. The resulting ele
-troni
 stru
ture 
an be analyzed using the theory of quan-tum me
hani
s in 
urved spa
e (Birrell and Davies, 1982;Cortijo and Vozmediano, 2007a,b; de Juan et al., 2007).C. Impurity statesPoint defe
ts, similar to impurities and va
an
ies, 
annu
leate ele
troni
 states in their vi
inity. Hen
e, a 
on-
entration of ni impurities per 
arbon atom leads to a
hange in the ele
troni
 density of the order of ni. The
orresponding shift in the Fermi energy is ǫF ≃ vF
√
ni.In addition, impurities lead to a �nite elasti
 mean freepath, lelas ≃ an

−1/2
i , and to an elasti
 s
attering time

τelas ≃ (vFni)
−1. Hen
e, the regions with few impurities
an be 
onsidered low-density metals in the dirty limit,as τ−1

elas ≃ ǫF.The Dira
 equation allows for lo
alized solutions thatsatisfy many possible boundary 
onditions. It is knownthat small 
ir
ular defe
ts result in lo
alized and semi-lo
alized states (Dong et al., 1998), that is, states whosewavefun
tion de
ays as 1/r as a fun
tion of the distan
efrom the 
enter of the defe
t. A dis
rete version ofthese states 
an be realized in a nearest neighbor tight-binding model with unitary s
atterers su
h as va
an
ies(Pereira et al., 2006). In the 
ontinuum, the Dira
 equa-tion (19) for the wavefun
tion, ψ(r) = (φ1(r), φ2(r)), 
anbe written as:
∂wφ1(w,w

∗) = 0 ,

∂w∗φ2(w,w
∗) = 0 , (157)where w = x + iy is a 
omplex number. These equa-tions indi
ate that at zero energy the 
omponents of thewavefun
tion 
an only be either holomorphi
 or anti-holomorphi
 with respe
t to the variable w (that is,

φ1(w,w
∗) = φ1(w

∗) and φ2(w,w
∗) = φ2(w)). Sin
e theboundary 
onditions require that the wavefun
tion van-ishes at in�nity the only possible solutions have the form:

ΨK(r̃) ∝ (1/(x + iy)n, 0) or ΨK′(r̃) ∝ (0, 1/(x − iy)n).The wavefun
tions in the dis
rete latti
e must be real,and at large distan
es the a
tual solution found neara va
an
y tends to a superposition of two solutionsformed from wavefun
tions from the two valleys withequal weight, in a way similar to the mixing at arm
hairedges (Brey and Fertig, 2006b).The 
onstru
tion of the semi-lo
alized state around ava
an
y in the honey
omb latti
e 
an be extended toother dis
rete models whi
h leads to the Dira
 equationin the 
ontinuum limit. A parti
ular 
ase is the nearestneighbor square latti
e with half �ux per plaquette, orthe nearest neighbor square latti
e with two �avors persite. The latter has been extensively studied in relationto the e�e
ts of impurities on the ele
troni
 stru
tureof d-wave super
ondu
tors (Balatsky et al., 2006), andnumeri
al results are in agreement with the existen
e ofthis solution. As the state is lo
alized on one sublatti
e

Figure 27 (Color online) Sket
h of a rough graphene surfa
e.The full line gives the boundary beyond whi
h the latti
e 
anbe 
onsidered undistorted. The number of mid-gap states
hanges depending on a di�eren
e in the number of removedsites for two sublatti
es.only, the solution 
an be generalized for the 
ase of twova
an
ies.D. Lo
alized states near edges, 
ra
ks, and voidsLo
alized states 
an be de�ned at edges where thenumber of atoms in the two sublatti
es is not 
ompen-sated. The number of them depend on details of the edge.The graphene edges 
an be strongly deformed, due to thebonding of other atoms to 
arbon atoms at the edges.These atoms should not indu
e states in the graphene πband. In general, a boundary inside the graphene ma-terial will exist, as sket
hed in Fig. 27, beyond whi
hthe sp2 hybridization is well de�ned. If this is the 
ase,the number of mid-gap states near the edge is roughlyproportional to the di�eren
e in sites between the twosublatti
es near this boundary.Along a zigzag edge there is one lo
alized state perthree latti
e units. This implies that a pre
ursorstru
ture for lo
alized states at the Dira
 energy 
anbe found in ribbons or 
onstri
tions of small lengths(Muñoz-Rojas et al., 2006), whi
h modi�es the ele
troni
stru
ture and transport properties.Lo
alized solutions 
an also be found near other defe
tsthat 
ontain broken bonds or va
an
ies. These states donot allow an analyti
al solution, although, as dis
ussedabove, the 
ontinuum Dira
 equation is 
ompatible withmany boundary 
onditions, and it should des
ribe well lo-
alized states that vary slowly over distan
es 
omparableto the latti
e spa
ing. The existen
e of these states 
anbe investigated by analyzing the s
aling of the spe
trumnear a defe
t as a fun
tion of the size of the system, L(Vozmediano et al., 2005). A number of small voids andelongated 
ra
ks show states whose energy s
ales as L−2,while the energy of extended states s
ales as L−1. A statewith energy s
aling L−2 is 
ompatible with 
ontinuumstates for whi
h the modulus of the wavefun
tion de
aysas r−2 as a fun
tion of the distan
e from the defe
t.



31E. Self-dopingThe band stru
ture 
al
ulations dis
ussed in previ-ous se
tions show that the ele
troni
 stru
ture of a sin-gle graphene plane is not stri
tly symmetri
al in energy(Rei
h et al., 2002). The absen
e of ele
tron-hole sym-metry shifts the energy of the states lo
alized near impu-rities above or below the Fermi level, leading to a transferof 
harge from/to the 
lean regions. Hen
e, the 
ombina-tion of lo
alized defe
ts and the la
k of perfe
t ele
tron-hole symmetry around the Dira
 points leads to the pos-sibility of self-doping, in addition to the usual s
atteringpro
esses.Extended latti
e defe
ts, like edges, grain boundaries,or mi
ro-
ra
ks, are likely to indu
e a number of ele
-troni
 states proportional to their length, L/a, where ais of the order of the latti
e 
onstant. Hen
e, a distribu-tion of extended defe
ts of length L at a distan
e equalto L itself gives rise to a 
on
entration of L/a 
arriersper 
arbon in regions of size of the order of (L/a)2. Theresulting system 
an be 
onsidered a metal with a lowdensity of 
arriers, ncarrier ∝ a/L per unit 
ell, and anelasti
 mean free path lelas ≃ L. Then, we obtain:
ǫF ≃ vF√

aL
1

τelas
≃ vF

L
(158)and, therefore, (τelas)

−1 ≪ ǫF when a/L ≪ 1. Hen
e,the existen
e of extended defe
ts leads to the possibil-ity of self-doping but maintaining most of the sample inthe 
lean limit. In this regime, 
oherent os
illations oftransport properties are expe
ted, although the observedele
troni
 properties may 
orrespond to a shifted Fermienergy with respe
t to the nominally neutral defe
t�freesystem.One 
an des
ribe the e�e
ts that break ele
tron-holesymmetry near the Dira
 points in terms of a �nite next-nearest neighbor hopping between π orbitals, t′, in (148).Consider, for instan
e, ele
troni
 stru
ture of a ribbon ofwidth L terminated by zigzag edges, whi
h, as dis
ussed,lead to surfa
e states for t′ = 0. The translational sym-metry along the axis of the ribbon allows us to de�nebands in terms of a waveve
tor parallel to this axis. Onthe other hand, the lo
alized surfa
e bands, extendingfrom k‖ = (2π)/3 to k‖ = −(2π)/3 a
quire a dispersionof order t′. Hen
e, if the Fermi energy remains un
hangedat the position of the Dira
 points (ǫDirac = −3t′), thisband will be �lled, and the ribbon will no longer be 
hargeneutral. In order to restore 
harge neutrality, the Fermilevel needs to be shifted by an amount of the order of
t′. As a 
onsequen
e, some of the extended states nearthe Dira
 points are �lled, leading to the phenomenon ofself-doping. The lo
al 
harge is a fun
tion of distan
e tothe edges, setting the Fermi energy so that the ribbon isglobally neutral. Note that the 
harge transferred to thesurfa
e states is mostly lo
alized near the edges of thesystem.
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Figure 28 (Color online) Top: Self-
onsistent analysis of thedispla
ed 
harge density (in units of number of ele
trons per
arbon) is shown as a 
ontinuous line, and the 
orrespondingele
trostati
 potential (in units of t) is shown as a dashedline, for a graphene ribbon with periodi
 boundary 
onditionsalong the zig-zag edge (with a length of L = 960a) and with a
ir
umferen
e of size W = 80
√

3a. The inset shows the 
hargedensity near the edge. Due to the presen
e of the edge, thereis a displa
ed 
harge in the bulk (bottom panel) that is shownas a fun
tion of width W . Noti
e that the displa
ed 
hargevanishes in the bulk limit (W → ∞), in agreement with (161).Adapted from Peres et al., 2006
.The 
harge transfer is suppressed by ele
trostati
 ef-fe
ts, as large deviations from 
harge neutrality have anasso
iated energy 
ost (Peres et al., 2006
). In order tostudy these 
harging e�e
ts we add to the free-ele
tronHamiltonian (5) the Coulomb energy of intera
tion be-tween ele
trons:
HI =

∑

i,j

Ui,jninj , (159)where ni =
∑

σ(a†i,σai,σ+b†i,σbi,σ) is the number operatorat site Ri, and
Ui,j =

e2

ǫ0|Ri − Rj |
, (160)is the Coulomb intera
tion between ele
trons. We expe
t,on physi
s grounds, that an ele
trostati
 potential buildsup at the edges, shifting the position of the surfa
e states,and redu
ing the 
harge transferred to/from them. Thepotential at the edge indu
ed by a 
onstant doping δper 
arbon atom is roughly, ∼ (δe2/a)(W/a) (δe2/a isthe Coulomb energy per 
arbon), and W the width ofthe ribbon (W/a is the number of atoms involved). The
harge transfer is stopped when the potential shifts thelo
alized states to the Fermi energy, that is, when t′ ≈

(e2/a)(W/a)δ. The resulting self-doping is therefore
δ ∼ t′a2

e2W
, (161)
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K

K’

K

K’Figure 29 (Color online) Gauge �eld indu
ed by a simple elas-ti
 strain. Top: The hopping along the horizontal bonds isassumed to be 
hanged on the right hand side of the graphenelatti
e, de�ning a straight boundary between the unperturbedand perturbed regions (green dashed line). Bottom: Themodi�ed hopping a
ts like a 
onstant gauge �eld, whi
h dis-pla
es the Dira
 
ones in opposite dire
tions at the K and K′points of the Brillouin zone. The 
onservation of energy andmomentum parallel to the boundary leads to a de�e
tion ofele
trons by the boundary.that vanishes when W → ∞.We treat Hamiltonian (159) within the Hartree approx-imation (that is, we repla
e HI by HM.F. =
∑

i Viniwhere Vi =
∑

j Ui,j〈nj〉, and solve the problem self-
onsistently for 〈ni〉). Numeri
al results for grapheneribbons of length L = 80
√

3a and di�erent widths areshown in Fig. 28 (t′/t = 0.2 and e2/a = 0.5t). Thelargest width studied is ∼ 0.1µm, and the total numberof 
arbon atoms in the ribbon is ≈ 105. Noti
e that as
W in
reases, the self-doping de
reases indi
ating that,for a perfe
t graphene plane (W → ∞), the self-dopinge�e
t disappears. For realisti
 parameters, we �nd thatthe amount of self-doping is 10−4 − 10−5 ele
trons perunit 
ell for sizes 0.1 − 1µm.F. Ve
tor potential and gauge �eld disorderAs dis
ussed in Se
. IV, latti
e distortions modify theDira
 equation that des
ribes the low energy band stru
-ture of graphene. We 
onsider here deformations that
hange slowly on the latti
e s
ale, so that they do not mixthe two inequivalent valleys. As shown earlier, perturba-tions that hybridize the two sublatti
es lead to termsthat 
hange the Dira
 Hamiltonian from vF σ · k into
vFσ ·k+σ ·A. Hen
e, the ve
tor A 
an be thought of asif indu
ed by an e�e
tive gauge �eld, A. In order to pre-serve time reversal symmetry, this gauge �eld must haveopposite signs at the two Dira
 
ones, AK = −AK′ .A simple example is a distortion that 
hanges the hop-
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β
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h2 6TTable II Estimates of the e�e
tive magneti
 length, and e�e
-tive magneti
 �elds generated by the deformations 
onsideredin this se
tion. The intrinsi
 
urvature entry also refers to the
ontribution from topologi
al defe
ts.ping between all bonds along a given axis of the latti
e.Let us assume that the sites at the ends of those bonds de-�ne the unit 
ell, as sket
hed in Fig. 29. If the distortionis 
onstant, its only e�e
t is to displa
e the Dira
 pointsaway from the BZ 
orners. The two inequivalent pointsare displa
ed in opposite dire
tions. This uniform dis-tortion is the equivalent of a 
onstant gauge �eld, whi
hdoes not 
hange the ele
troni
 spe
trum. The situation
hanges if one 
onsiders a boundary that separates twodomains where the magnitude of the distortion is di�er-ent. The shift of the Dira
 points leads to a de�e
tionof the ele
troni
 traje
tories that 
ross the boundary, asalso sket
hed in Fig. 29. The modulation of the gauge�eld leads to an e�e
tive magneti
 �eld, whi
h is of op-posite sign for the two valleys.We have shown in Se
tion IV.B how topologi
al lat-ti
e defe
ts, su
h as dis
linations and dislo
ations, 
an bedes
ribed by an e�e
tive gauge �eld. Those defe
ts 
anonly exist in graphene sheets that are intrinsi
ally 
urved,and the gauge �eld only depends on topology of the lat-ti
e. Changes in the nearest neighbor hopping also leadto e�e
tive gauge �elds. We 
onsider next two physi
alpro
esses that indu
e e�e
tive gauge �elds: (i) 
hangesin the hopping indu
ed by hybridization between π and
σ bands, whi
h arise in 
urved sheets, and (ii) 
hanges inthe hopping due to modulation in the bond length, whi
his asso
iated with elasti
 strain. The strength of these�elds depends on parameters that des
ribe the value ofthe π-σ hybridization, and the dependen
e of hopping onthe bond length.A 
omparison of the relative strengths of the gauge�elds indu
ed by intrinsi
 
urvature, π− σ hybridization(extrinsi
 
urvature), and elasti
 strains, arising from aripple of typi
al height and size is given in Table II.1. Gauge �eld indu
ed by 
urvatureAs we dis
ussed in Se
. IV.A, when the π orbitals arenot parallel, the hybridization between them depends ontheir relative orientation. The angle θi determines therelative orientation of neighboring orbitals at some posi-tion ri in the graphene sheet. The value of θi dependson the lo
al 
urvature of the layer. The relative angle ofrotation of two pz orbitals at position ri and rj 
an be



33written as: cos(θi − θj) = Ni · Nj, where Ni is the unitve
tor perpendi
ular to the surfa
e, de�ned in (125). If
rj = ri + uij we 
an write:

Ni ·Nj ≈1+Ni·[(uij ·∇)Ni]+
1

2
Ni ·[(uij ·∇)2Ni] ,(162)where we assume smoothly varying N(r). We use (125)in terms of the height �eld h(r) (N(r) ≈ z − ∇h(r) −

(∇h)2z/2) to rewrite (162) as:
Ni ·Nj ≈ 1 − 1

2
[(uij · ∇)∇h(ri)]

2 . (163)Hen
e, bending of the graphene sheet leads to a modi�-
ation of the hopping amplitude between di�erent sitesin the form:
δtij ≈ −

t0ij
2

[(uij · ∇)∇h(ri)]
2 , (164)where t0ij is the bare hopping energy. A similar ef-fe
t leads to 
hanges the ele
troni
 states in a 
arbonnanotubes (Kane and Mele, 1997). Using the resultsof Se
. IV, namely (147), we 
an now see that a ve
-tor potential is generated for nearest neighbor hopping(u = ~δab) (Eun-Ah Kim and Castro Neto, 2007):

A(h)
x = −3Eaba

2

8

[

(∂2
xh)

2 − (∂2
yh)

2
]

A(h)
y =

3Eaba
2

4

(

∂2
xh+ ∂2

yh
)

∂xh∂yh (165)where the 
oupling 
onstant Eab depends on mi
ros
opi
details (Eun-Ah Kim and Castro Neto, 2007). The �uxof e�e
tive magneti
 �eld through a ripple of lateral di-mension l and height h is given approximately by:
Φ ≈ Eaba

2h2

vFl3
(166)where the radius of 
urvature is R−1 ≈ hl−2. For a ripplewith l ≈ 20nm, h ≈ 1nm, taking Eab/vF ≈ 10 Å−1 , we�nd Φ ≈ 10−3Φ0.2. Elasti
 strainThe elasti
 free energy for graphene 
an be written interms of the in-plane displa
ement u(r) = (ux, uy) as:

F [u]=
1

2

∫

d2r



(B − G)(
∑

i=1,2

uii)
2 + 2G

∑

i,j=1,2

u2
ij



 ,(167)where B is the bulk modulus, G is the shear modulus,and
uij =

1

2

(

∂ui

∂xj
+
∂uj

∂xj

)

, (168)is the strain tensor (x1 = x and x2 = y).

There are many types of stati
 deformation of the hon-ey
omb latti
e whi
h 
an a�e
t the propagation of Dira
fermions. The simplest one is due to 
hanges in thearea of the unit 
ell either due to dilation or 
ontra
-tion. Changes in the unit 
ell area lead to lo
al 
hangesin the density of ele
trons and, therefore, lo
al 
hanges inthe 
hemi
al potential in the system. In this 
ase, theire�e
t is similar to the one found in (148), and we musthave:
φdp(r) = g(uxx + uyy) , (169)and their e�e
t is diagonal in the sublatti
e index.The nearest neighbor hopping depends on the length ofthe 
arbon bond. Hen
e, elasti
 strains that modify therelative orientation of the atoms also lead to an e�e
tivegauge �eld, whi
h a
ts on ea
h K point separately, as�rst dis
ussed in relation to 
arbon nanotubes (Mañes,2007; Suzuura and Ando, 2002b). Consider two 
arbonatoms lo
ated in two di�erent sublatti
es in the sameunit 
ell at Ri. The 
hange in the lo
al bond length 
anbe written as:

δui =
~δab

a
· [uA(Ri) − uB(Ri + ~δab)] . (170)The lo
al displa
ements of the atoms in the unit 
ell 
anbe related to u(r) by (Ando, 2006a):

(~δab · ∇)u = κ−1(uA − uB) , (171)where κ is a dimensionless quantity that depends on mi-
ros
opi
 details. Changes in the bond length lead to
hanges in the hopping amplitude:
tij ≈ t0ij +

∂tij
∂a

δui , (172)and we 
an write:
δt(ab)(r) ≈ β

δu(r)

a
, (173)where

β =
∂t(ab)

∂ ln(a)
. (174)Substituting (170) into (173) and the �nal result into(147), one �nds (Ando, 2006a):

A(s)
x =

3

4
β κ (uxx − uyy) ,

A(s)
y =

3

2
β κuxy . (175)We assume that the strains indu
ed by a ripple of di-mension l and height h s
ale as uij ∼ (h/l)2. Then,using β/vF ≈ a−1 ∼ 1Å−1, we �nd that the total �uxthrough a ripple is:

Φ ≈ h2

al
. (176)



34For ripples su
h that h ∼ 1nm and l ∼ 20nm, this es-timate gives Φ ∼ 10−1Φ0 in reasonable agreement withthe estimates in ref. (Morozov et al., 2006).The strain tensor must satisfy some additional 
on-straints, as it is derived from a displa
ement ve
tor �eld.These 
onstraints are 
alled Saint Venant 
ompatibility
onditions (Landau and Lifshitz, 1959):
Wijkl =

∂uij

∂xk∂xl
+

∂ukl

∂xi∂xj
− ∂uil

∂xj∂xk
− ∂ujk

∂xi∂xl
= 0 .(177)An elasti
 deformation 
hanges the distan
es in the 
rys-tal latti
e and 
an be 
onsidered as a 
hange in the met-ri
:

gij = δij + uij (178)The 
ompatibility equations (177) are equivalent to the
ondition that the 
urvature tensor derived from (178) iszero. Hen
e, a purely elasti
 deformation 
annot indu
eintrinsi
 
urvature in the sheet, whi
h only arises fromtopologi
al defe
ts. The e�e
tive �elds asso
iated withelasti
 strains 
an be large (Morozov et al., 2006), lead-ing to signi�
ant 
hanges in the ele
troni
 wavefun
tions.An analysis of the resulting state, and the possible insta-bilities that may o

ur 
an be found in (Guinea et al.,2007).3. Random gauge �eldsThe pre
eding dis
ussion suggests that the e�e
tive�elds asso
iated with latti
e defe
ts 
an modify signif-i
antly the ele
troni
 properties. This is the 
ase whenthe �elds do not 
hange appre
iably on s
ales 
omparableto the (e�e
tive) magneti
 length. The general problemof random gauge �elds for Dira
 fermions has been exten-sively analyzed before the 
urrent interest in graphene,as the topi
 is also relevant for the IQHE (Ludwig et al.,1994) and d-wave super
ondu
tivity (Nersesyan et al.,1994). The one ele
tron nature of this two dimensionalproblem makes it possible, at the Dira
 energy, to mapit onto models of intera
ting ele
trons in one dimension,where many exa
t results 
an be obtained (Castillo et al.,1997). The low energy density of states, ρ(ω), a
quiresan anomalous exponent, ρ(ω) ∝ |ω|1−∆, where ∆ > 0.The density of states is enhan
ed near the Dira
 en-ergy, re�e
ting the tenden
y of disorder to 
lose gaps.For su�
iently large values of the random gauge �eld,a phase transition is also possible (Chamon et al., 1996;Horovitz and Doussal, 2002).Perturbation theory shows that random gauge �eldsare a marginal perturbation at the Dira
 point, leadingto logarithmi
 divergen
es. These divergen
es tend tohave the opposite sign with respe
t to those indu
ed bythe Coulomb intera
tion (see Se
. V.B). As a result, arenormalization group (RG) analysis of intera
ting ele
-trons in a random gauge �eld suggests the possibilityof non-trivial phases (Aleiner and Efetov, 2006; Altland,

2006; Dell'Anna, 2006; Foster and Ludwig, 2006a,b;Khvesh
henko, 2007; Nomura et al., 2007; Stauber et al.,2005), where intera
tions and disorder 
an
el ea
h other.G. Coupling to magneti
 impuritiesMagneti
 impurities in graphene 
an be intro-du
ed 
hemi
ally by deposition and inter
alation(Calandra and Mauri, 2007; U
hoa et al., 2007),or self-generated by the introdu
tion of defe
ts(Kumazaki and Hirashima, 2006, 2007). The en-ergy dependen
e of the density of states in grapheneleads to 
hanges in the formation of a Kondo reso-nan
e between a magneti
 impurity and the grapheneele
trons. The vanishing of the density of states atthe Dira
 energy implies that a Kondo singlet in theground state is not formed unless the ex
hange 
ouplingex
eeds a 
riti
al value, of the order of the ele
tronbandwidth, a problem already studied in 
onne
tionwith magneti
 impurities in d-wave super
ondu
tors(Cassanello and Fradkin, 1996, 1997; Fritz et al., 2006;Polkovnikov, 2002; Polkovnikov et al., 2001). For weakex
hange 
ouplings, the magneti
 impurity remainsuns
reened. An external gate 
hanges the 
hemi
alpotential, allowing for a tuning of the Kondo resonan
e(Sengupta and Baskaran, 2007). The situation 
hangessigni�
antly if the s
alar potential indu
ed by themagneti
 impurity is taken into a

ount. This potentialthat 
an be 
omparable to the bandwidth allows theformation of mid-gap states and 
hanges the phase-shiftasso
iated to spin s
attering (Hents
hel and Guinea,2007). These phase-shifts have a weak logarithmi
dependen
e on the 
hemi
al potential, and a Kondoresonan
e 
an exist, even 
lose to the Dira
 energy.The RKKY intera
tion between magneti
 impurities isalso modi�ed in graphene. At �nite �llings, the absen
eof intra-valley ba
ks
attering leads to a redu
tion of theFriedel os
illations, whi
h de
ay as sin(2kFr)/|r|3 (Ando,2006b; Cheianov and Fal'ko, 2006; Wuns
h et al., 2006).This e�e
t leads to an RKKY intera
tion, at �nite �ll-ings, whi
h os
illate and de
ay as |r|−3. When interval-ley s
attering is in
luded, the intera
tion reverts to theusual dependen
e on distan
e in two dimensions, |r|−2(Cheianov and Fal'ko, 2006). At half-�lling extended de-fe
ts lead to an RKKY intera
tion with an |r|−3 de-penden
e (Dugaev et al., 2006; Vozmediano et al., 2005).This behavior is 
hanged when the impurity potentialis lo
alized on atomi
 s
ales (Brey et al., 2007; Saremi,2007), or for highly symmetri
al 
ouplings (Saremi,2007).H. Weak and strong lo
alizationIn su�
iently 
lean systems, where the Fermi wave-length is mu
h shorter than the mean free path, kFl ≫ 1,ele
troni
 transport 
an be des
ribed in 
lassi
al terms,



35assuming that ele
trons follow well de�ned traje
tories.At low temperatures, when ele
trons remain 
oherentover long distan
es, quantum e�e
ts lead to interferen
e
orre
tions to the 
lassi
al expressions for the 
ondu
-tivity, the weak lo
alization 
orre
tion (Bergman, 1984;Chakravarty and S
hmid, 1986). These 
orre
tions areusually due to the positive interferen
e between two pathsalong 
losed loops, traversed in opposite dire
tions. As aresult, the probability that the ele
tron goes ba
k to theorigin is enhan
ed, so that quantum 
orre
tions de
reasethe 
ondu
tivity. These interferen
es are suppressed forpaths longer than the dephasing length, lφ, determinedby intera
tions between the ele
tron and environment.Interferen
e e�e
ts 
an also be suppressed by magneti
�elds that break down time reversal symmetry and addsa random relative phase to the pro
ess dis
ussed above.Hen
e, in most metals, the 
ondu
tivity in
reases whena small magneti
 �eld is applied (negative magnetoresis-tan
e).Graphene is spe
ial in this respe
t, due to the 
hiral-ity of its ele
trons. The motion along a 
losed path in-du
es a 
hange in the relative weight of the two 
ompo-nents of the wavefun
tion, leading to a new phase, whi
h
ontributes to the interferen
e pro
esses. If the ele
trontraverses a path without being s
attered from one val-ley to the other, this (Berry) phase 
hanges the signof the amplitude of one path with respe
t to the time-reversed path. As a 
onsequen
e, the two paths inter-fere destru
tively, leading to a suppression of ba
ks
atter-ing (Suzuura and Ando, 2002a). Similar pro
esses takepla
e in materials with strong spin orbit 
oupling, asthe spin dire
tion 
hanges along the path of the ele
-tron (Bergman, 1984; Chakravarty and S
hmid, 1986).Hen
e, if s
attering between valleys in graphene 
an benegle
ted, one expe
ts a positive magnetoresistan
e, i.e., weak anti-lo
alization. In general, intra- and interval-ley elasti
 s
attering 
an be des
ribed in terms of twodi�erent s
attering times, τintra and τinter , so that if
τintra ≪ τinter one expe
ts weak anti-lo
alization pro-
esses, while if τinter ≪ τintra ordinary weak lo
aliza-tion will take pla
e. Experimentally, lo
alization ef-fe
ts are always strongly suppressed 
lose to the Dira
point but 
an be partially or, in rare 
ases, 
ompletelyre
overed at high 
arrier 
on
entrations, depending ona parti
ular single-layer sample (Morozov et al., 2006;Tikhonenko et al., 2007). Multilayer samples exhibit anadditional positive magnetoresistan
e in higher magneti
�elds, whi
h 
an be attribued to 
lassi
al 
hanges in the
urrent distribution due to a verti
al gradient of 
on-
entration (Morozov et al., 2006) and anti-lo
alization ef-fe
ts (Wu et al., 2007).The propagation of an ele
tron in the absen
e of in-tervalley s
attering 
an be a�e
ted by the e�e
tive gauge�elds indu
ed by latti
e defe
ts and 
urvature. These�elds 
an suppress the interferen
e 
orre
tions to the 
on-du
tivity (Morozov et al., 2006; Morpurgo and Guinea,2006). In addition, the des
ription in terms of free Dira
ele
trons is only valid near the neutrality point. The

Fermi energy a
quires a trigonal distortion away fromthe Dira
 point, and ba
kward s
attering within ea
hvalley is no longer 
ompletely suppressed (M
Cann et al.,2006), leading to a further suppression of anti-lo
alizatione�e
ts at high dopings. Finally, the gradient of externalpotentials indu
e a small asymmetry between the twosublatti
es (Morpurgo and Guinea, 2006). This e�e
twill also 
ontribute to redu
e anti-lo
alization, withoutgiving rise to lo
alization e�e
ts.The above analysis has to be modi�ed for a graphenebilayer. Although the des
ription of the ele
troni
 statesrequires a two 
omponent spinor, the total phase arounda 
losed loop is 2π, and ba
ks
attering is not suppressed(Ke
hedzhi et al., 2007). This result is 
onsistent withexperimental observations, whi
h show the existen
e ofweak lo
alization e�e
ts in a bilayer (Gorba
hev et al.,2007).When the Fermi energy is at the Dira
 point, a repli
aanalysis shows that the 
ondu
tivity approa
hes a uni-versal value of the order of e2/h (Fradkin, 1986a,b).This result is valid when intervalley s
attering is ne-gle
ted (Ostrovsky et al., 2006, 2007; Ryu et al., 2007).Lo
alization is indu
ed when these terms are in
luded(Aleiner and Efetov, 2006; Altland, 2006), as also 
on-�rmed by numeri
al 
al
ulations (Louis et al., 2007). In-tera
tion e�e
ts tend to suppress the e�e
ts of disorder.The same result, namely a 
ondu
tan
e of the order of
e2/h, is obtained for disordered graphene bilayers where aself-
onsistent 
al
ulation leads to universal 
ondu
tivityat the neutrality point (Katsnelson, 2007
; Nilsson et al.,2006a, 2007a). In a biased graphene bilayer, the pres-en
e of impurities leads to the appearan
e of impuritytails in the density of states due to the 
reation of mid-gap states whi
h are sensitive to the applied ele
tri
 �eldthat opens the gap between the 
ondu
tion and valen
ebands (Nilsson and Castro Neto, 2007).One should point out that most of the 
al
ulationsof transport properties assume self-averaging, that is,that one 
an ex
hange a problem with la
k of transla-tional invarian
e by an e�e
tive medium system withdamping. Obviously this pro
edure only works whenthe disorder is weak and the system is in the metalli
phase. Close to the lo
alized phase this pro
edure breaksdown, the system divides itself into regions of di�erent
hemi
al potential and one has to think about transportin real spa
e, usually des
ribed in terms of per
olation(Cheianov et al., 2007b; Shklovskii, 2007). Single ele
-tron transistor (SET) measurements of graphene showthat this seems to be the situation in graphene at half-�lling (Martin et al., 2007).Finally, we should point out that graphene sta
kssu�er from another sour
e of disorder, namely, 
-axisdisorder that is either due to impurities between lay-ers or rotation of graphene planes relative to ea
hother. In either 
ase the in-plane and out-of-planetransport is dire
tly a�e
ted. This kind of disorderhas been observed experimentally by di�erent te
hniques(Bar et al., 2007; Hass et al., 2007b). In the 
ase of



36the bilayer, the rotation of planes 
hanges substantiallythe spe
trum restoring the Dira
 fermion des
ription(Lopes dos Santos et al., 2007). The transport proper-ties in the out of plane dire
tion are determined by the in-terlayer 
urrent operator, ĵn,n+1 = it
∑

(c†A,n,scA,n+1,s −
c†A,n+1,scA,n,s), where n is a layer index, and A is ageneri
 index that de�nes the sites 
oupled by the in-terlayer hopping t. If we only 
onsider hopping betweennearest neighbor sites in 
onse
utive layers, these sitesbelong to one of the two sublatti
es in ea
h layer.In a multilayer with Bernal sta
king, these 
onne
tedsites are the ones where the density of states vanishes atzero energy, as dis
ussed above. Hen
e, even in a 
leansystem, the number of 
ondu
ting 
hannels in the dire
-tion perpendi
ular to the layers vanishes at zero energy(Nilsson et al., 2006a, 2007a). This situation is reminis-
ent of the in plane transport properties of a single layergraphene. Similar to the latter 
ase, a self-
onsistentBorn approximation for a small 
on
entration of impu-rities leads to a �nite 
ondu
tivity, whi
h be
omes inde-pendent of the number of impurities.I. Transport near the Dira
 pointIn 
lean graphene, the number of 
hannels availablefor ele
tron transport de
reases as the 
hemi
al poten-tial approa
hes the Dira
 energy. As a result, the 
on-du
tan
e through a 
lean graphene ribbon is, at most,
4e2/h, where the fa
tor of 4 stands for the spin and val-ley degenera
y. In addition, only one out of every threepossible 
lean graphene ribbons have a 
ondu
tion 
han-nel at the Dira
 energy. The other two thirds are semi-
ondu
ting, with a gap of the order of vF/W , where Wis the width. This result is a 
onsequen
e of the addi-tional periodi
ity introdu
ed by the wavefun
tions at the
K and K ′ points of the Brillouin Zone, irrespe
tive ofthe boundary 
onditions.A wide graphene ribbon allows for many 
hannels,whi
h 
an be approximately 
lassi�ed by the momen-tum perpendi
ular to the axis of the ribbon, ky. At theDira
 energy, transport through these 
hannels is inhib-ited by the existen
e of a gap, ∆ky

= vFky. Transportthrough these 
hannels is suppressed by a fa
tor of theorder of e−kyL, where L is the length of the ribbon. Thenumber of transverse 
hannels in
reases as W/a, where
W is the width of the ribbon and a is a length of theorder of the latti
e spa
ing. The allowed values of kyare ∝ ny/W , where ny is an integer. Hen
e, for a rib-bon su
h that W ≫ L, there are many 
hannels whi
hsatisfy kyL ≪ 1. Transport through these 
hannels isnot strongly inhibited, and their 
ontribution dominateswhen the Fermi energy lies near the Dira
 point. The
ondu
tan
e arising from these 
hannels is given approx-imately by (Katsnelson, 2006b; Tworzydlo et al., 2006):

G ∼ e2

h

W

2π

∫

dkye
−kyL ∼ e2

h

W

L
. (179)

The transmission at normal in
iden
e, ky = 0, is one,in agreement with the absen
e of ba
ks
attering ingraphene, for any barrier that does not indu
e intervalleys
attering (Katsnelson et al., 2006). The transmission ofa given 
hannel s
ales as T (ky) = 1/ cosh2(kyL/2).Eq.(179) shows that the 
ontribution from all trans-verse 
hannels lead to a 
ondu
tan
e whi
h s
ales, simi-lar to a fun
tion of the length and width of the system,as the 
ondu
tivity of a di�usive metal. Moreover, thevalue of the e�e
tive 
ondu
tivity is of the order of e2/h.It 
an also be shown that the shot noise depends on 
ur-rent in the same way as in a di�usive metal. A detailedanalysis of possible boundary 
onditions at the 
onta
tsand their in�uen
e on evanes
ent waves 
an be found in(Robinson and S
homerus, 2007; S
homerus, 2007). The
al
ulations leading to eq.(179) 
an be extended to agraphene bilayer. The 
ondu
tan
e is, again, a sum-mation of terms arising from evanes
ent waves betweenthe two 
onta
ts, and it has the dependen
e on sam-ple dimensions of a 2D 
ondu
tivity of the order of e2/h(Snyman and Beenakker, 2007), although there is a pref-a
tor twi
e bigger than the one in single layer graphene.The 
al
ulation of the 
ondu
tan
e of 
lean graphenein terms of transmission 
oe�
ients, using the Landauermethod leads to an e�e
tive 
ondu
tivity whi
h is equalto the value obtained for bulk graphene using diagram-mati
 methods, the Kubo formula (Peres et al., 2006d),in the limit of zero impurity 
on
entration and zero dop-ing. Moreover, this 
orresponden
e remains valid for the
ase of a bilayer without and with trigonal warping e�e
ts(Cserti et al., 2007a; Koshino and Ando, 2006).Disorder at the Dira
 energy 
hanges the 
ondu
-tan
e of graphene ribbons in two opposite dire
tions(Louis et al., 2007): i) a su�
iently strong disorder,with short range (intervalley) 
ontributions, lead to alo
alized regime, where the 
ondu
tan
e depends ex-ponentially on the ribbon length, and ii) at the Dira
energy, disorder allows mid-gap states that 
an en-han
e the 
ondu
tan
e mediated by evanes
ent wavesdis
ussed above. A �u
tuating ele
trostati
 potentialalso redu
es the e�e
tive gap for the transverse 
han-nels, enhan
ing further the 
ondu
tan
e. The resonanttunneling regime mediated by mid-gap state was sug-gested by analyti
al 
al
ulations (Titov, 2007). Theenhan
ement of the 
ondu
tan
e by potential �u
tu-ations 
an also be studied semi-analyti
ally. In theabsen
e of intervalley s
attering, it leads to an ef-fe
tive 
ondu
tivity whi
h grows with ribbon length(San-Jose et al., 2007). In fa
t, analyti
al and numeri
alstudies (Bardarson et al., 2007; Lewenkopf et al., 2007;Nomura et al., 2007; San-Jose et al., 2007) show that the
ondu
tivity obeys a universal s
aling with the latti
esize L:
σ(L) =

2e2

h
(A ln(L/ξ) +B) , (180)where ξ is a length s
ale asso
iated with range of inter-a
tions and A and B are numbers of the order of unit



37(A ≈ 0.17 and B ≈ 0.23 for a graphene latti
e in theshape of a square of size L(Lewenkopf et al., 2007)). No-ti
e, therefore, that the 
ondu
tivity is always of the or-der of e2/h and has a weak dependen
e on size.J. Boltzmann Equation des
ription of DC transport in dopedgrapheneIt was shown experimentally that the DC 
ondu
tiv-ity of graphene depends linearly on the gate potential(Novoselov et al., 2005a, 2004, 2005b), ex
ept very 
loseto the neutrality point (see Fig.30). Sin
e the gate po-tential depends linearly on the ele
troni
 density, n, onehas a 
ondu
tivity σ ∝ n. As shown by Shon and Ando(Shon and Ando, 1998) if the s
atterers are short rangethe DC 
ondu
tivity should be independent of the ele
-troni
 density, at odds with the experimental result. Ithas been shown (Ando, 2006b; Nomura and Ma
Donald,2006, 2007) that by 
onsidering a s
attering me
h-anism based on s
reened 
harged impurities it ispossible to obtain from a Boltzmann equation ap-proa
h a 
ondu
tivity varying linearly with the den-sity, in agreement with the experimental result (Ando,2006b; Katsnelson and Geim, 2008; Novikov, 2007b;Peres et al., 2007b; Trushin and S
hliemann, 2007).

Figure 30 (Color online) An example of 
hanges in 
ondu
-tivity σ of graphene with varying gate voltage, Vg, and, there-fore, 
arrier 
on
entration n. Here σ is proportional to n asdis
ussed in the text. Note that samples with higher mo-bility (> 1 m2/Vs) normally show a sublinear dependen
e,presumably indi
ating the presen
e of di�erent types of s
at-terers. Inset: s
anning-ele
tron mi
rograph of one of experi-mental devi
es (in false 
olors mat
hing those seen in visibleopti
s. The s
ale of the mi
rograph is given by the widthof the Hall bar, whi
h is one mi
rometer. Adapted from(Novoselov et al., 2005a).

The Boltzmann equation has the form (Ziman, 1972)
−vk ·∇rf(ǫk)−e(E+vk×H)·∇kf(ǫk) = − ∂fk

∂t

∣

∣

∣

∣

scatt.

.(181)The solution of the Boltzmann equation in its generalform is di�
ult and one needs therefore to rely uponsome approximation. The �rst step in the usual approx-imation s
heme is to write the distribution as f(ǫk) =
f0(ǫk) + g(ǫk) where f0(ǫk) is the steady state distri-bution fun
tion and g(ǫk) is assumed to be small. In-serting this ansatz in (181) and keeping only terms thatare linear in the external �elds one obtains the linearizedBoltzmann equation (Ziman, 1972) whi
h reads
− ∂f0(ǫk)

∂ǫk
vk ·

[(

− ǫk − ζ

T

)

∇rT + e

(

E − 1

e
∇rζ

)]

=

− ∂fk

∂t

∣

∣

∣

∣

scatt.

+ vk · ∇rgk + e(vk × H) · ∇kgk . (182)The se
ond approximation has to do with the form of thes
attering term. The simplest approa
h is to introdu
e arelaxation time approximation:
− ∂fk

∂t

∣

∣

∣

∣

scatt.

→ gk

τk
, (183)where τk is the relaxation time, assumed to be momen-tum dependent. This momentum dependen
e is deter-mined phenomenologi
ally in su
h way that the depen-den
e of the 
ondu
tivity upon the ele
troni
 densityagrees with experimental data. The Boltzmann equationis 
ertainly not valid at the Dira
 point, but sin
e manyexperiments are performed at �nite 
arrier density, 
on-trolled by an external gate voltage, we expe
t the Boltz-mann equation to give reliable results if an appropriateform for τk is used (Adam et al., 2007).Let us 
ompute the Boltzmann relaxation time, τk,for two di�erent s
attering potentials:(i) a Dira
 deltafun
tion potential; (ii) a uns
reened Coulomb potential.The relaxation time τk is de�ned as:

1

τk
= ni

∫

d θ

∫

k′d k′

(2π)2
S(k,k′)(1 − cos θ) , (184)where ni is impurity 
on
entration per unit of area, andthe transition rate S(k,k′) is given, in the Born approx-imation, by:

S(k,k′) = 2π|Hk′,k|2
1

vF
δ(k′ − k) , (185)where the vFk is the dispersion of Dira
 fermions ingraphene and Hk′,k is de�ned as

Hk′,k =

∫

drψ∗
k′(r)US(r)ψk(r) , (186)with US(r) the s
attering potential and ψk(r) is the ele
-troni
 spinor wavefun
tion of a 
lean graphene sheet. If



38the potential is short range,(Shon and Ando, 1998) of theform US = v0δ(r), the Boltzmann relaxation time turnsout to be
τk =

4vF

niv2
0

1

k
. (187)On the other hand, if the potential is the Coulomb po-tential, given by US(r) = eQ/(4πǫ0ǫr) for 
harged impu-rities of 
harge Q, the relaxation time is given by

τk =
vF

u2
0

k . (188)where u2
0 = niQ

2e2/(16ǫ20ǫ
2). As we argue below, thephenomenology of Dira
 fermions implies that the s
at-tering in graphene must be of the form (188).Within the relaxation time approximation the solutionof the linearized Boltzmann equation when an ele
tri
�eld is applied to the sample is

gk = −∂f
0(ǫk)

∂ǫk
eτkvk · E , (189)and the ele
tri
 
urrent reads (spin and valley indexesin
luded)

J =
4

A

∑

k

evkgk . (190)Sin
e at low temperatures the following relation
−∂f0(ǫk)/∂ǫk → δ(µ − vFk) holds, one 
an easily seethat assuming (188) where k is measured relatively tothe Dira
 point, the ele
troni
 
ondu
tivity turns out tobe

σxx = 2
e2

h

µ2

u2
0

= 2
e2

h

πv2
F

u2
0

n, (191)where u0 is the strength of the s
attering potential(with dimensions of energy). The ele
troni
 
ondu
tiv-ity depends linearly on the ele
tron density, in agree-ment with the experimental data. We stress that theCoulomb potential is one possible me
hanism of produ
-ing a s
attering rate of the form (188) but we do not ex-
lude that other me
hanisms may exist (see, for instan
e,(Katsnelson and Geim, 2008)).K. Magnetotransport and universal 
ondu
tivityThe des
ription of the magnetotransport properties ofele
trons in a disordered honey
omb latti
e is 
omplexbe
ause of the interferen
e e�e
ts asso
iated with theHofstadter problem (Gumbs and Fekete, 1997). We shallsimplify our problem by des
ribing ele
trons in the hon-ey
omb latti
e as Dira
 fermions in the 
ontinuum ap-proximation, introdu
ed in Se
. II.B. Furthermore, wewill only fo
us on the problem of short range s
atter-ing in the unitary limit sin
e in this regime many an-alyti
al results are obtained (Kumazaki and Hirashima,

2006; Mariani et al., 2007; Pereira et al., 2006, 2007a;Peres et al., 2006
; Skrypnyk and Loktev, 2006, 2007).The problem of magnetotransport in the presen
e ofCoulomb impurities, as dis
ussed in the previous se
-tion is still an open resear
h problem. A similar ap-proa
h was 
onsidered by Abrikosov in the quantummag-netoresistan
e study of non-stoi
hiometri
 
hal
ogenides(Abrikosov, 1998). In the 
ase of graphene, the e�e
-tive Hamiltonian des
ribing Dira
 fermions in a magneti
�eld (in
luding disorder) 
an be written as: H = H0+Hiwhere H0 is given by (5) and Hi is the impurity potentialreading (Peres et al., 2006
):
Hi = V

Ni
∑

j=1

δ(r − rj)I (192)The formulation of the problem in se
ond quantizationrequires the solution of H0, whi
h was done in Se
tionII.I. The �eld operators, 
lose to the K point, are de�nedas (the spin index is omitted for simpli
ity):
Ψ(r) =

∑

k

eikx

√
L

(

0

φ0(y)

)

ck,−1

+
∑

n,k,α

eikx

√
2L

(

φn(y − kl2B)

φn+1(y − kl2B)

)

ck,n,α ,(193)where ck,n,α destroys an ele
tron in band α = ±1, withenergy level n and guiding 
enter kl2B; ck,−1 destroys anele
tron in the zero Landau level; the 
y
lotron frequen
yis given by (96). The sum over n = 0, 1, 2, . . . , is 
ut o� at
n0 given by E(1, n0) = W , whereW is of the order of theele
troni
 bandwidth. In this representation H0 be
omesdiagonal, leading to Green's fun
tions of the form (inMatsubara representation):

G0(k, n, α; iω) =
1

iω − E(α, n)
, (194)where

E(α, n) = αωc

√
n (195)are the Landau levels for this problem (α = ±1 labels thetwo bands). Noti
e that G0(k, n, α; iω) is e�e
tively k-independent, and E(α,−1) = 0 is the zero energy Landaulevel. When expressed in the Landau basis, the s
atter-ing Hamiltonian (192) 
onne
ts Landau levels of negativeand positive energy.1. The full self-
onsistent Born approximation (FSBA)In order to des
ribe the e�e
t of impurity s
atteringon the magnetoresistan
e of graphene, the Green's fun
-tion for Landau levels in the presen
e of disorder needsto be 
omputed. In the 
ontext of the 2D ele
tron gas,an equivalent study was performed by Ohta and Ando,
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Figure 31 (Color online) Top: Ele
troni
 density of states(DOS), ρ(ω), as a fun
tion of ω/ωc (ωc = 0.14 eV) in a mag-neti
 �eld B = 12 T for di�erent impurity 
on
entrations ni.Bottom: ρ(ω), as a fun
tion of ω/ωc (ωc = 0.1 eV is the 
y-
lotron frequen
y) in a magneti
 �eld B = 6 T. The solid lineshows the DOS in the absen
e of disorder. The position ofthe Landau levels in the absen
e of disorder are shown as ver-ti
al lines. The two arrows in the top panel show the positionof the renormalized Landau levels (see Fig.32) given by thesolution of Eq. (202). Adapted from Peres et al., 2006
.(Ando, 1974a,b,
, 1975; Ando and Uemura, 1974; Ohta,1968, 1971) using the averaging pro
edure over impuritypositions of Duke (Duke, 1968). Below the averaging pro-
edure over impurity positions is performed in the stan-dard way, namely, having determined the Green's fun
-tion for a given impurity 
on�guration (r1, . . .rNi
), theposition averaged Green's fun
tion is determined from:

〈G(p, n, α; iω; r1, . . . rNi
)〉 ≡ G(p, n, α; iω)

= L−2Ni





Ni
∏

j=1

∫

drj



G(p, n, α; iω; r1, . . .rNi
) . (196)In the presen
e of Landau levels the average over im-purity positions involves the wavefun
tions of the one-dimensional harmoni
 os
illator. After a lengthy algebra,the Green's fun
tion in the presen
e of va
an
ies, in theFSBA, 
an be written as:

G(p, n, α;ω + 0+) = [ω − E(n, α) − Σ1(ω)]−1 ,(197)
G(p,−1;ω + 0+) = [ω − Σ2(ω)]−1 , (198)where

Σ1(ω) = −ni[Z(ω)]−1 , (199)
Σ2(ω) = −ni[gcG(p,−1;ω + 0+)/2 + Z(ω)]−1 ,(200)
Z(ω) = gcG(p,−1;ω + 0+)/2

+ gc

∑

n,α

G(p, n, α;ω + 0+)/2 , (201)

and gc = Ac/(2πl
2
B) is the degenera
y of a Landau levelper unit 
ell. One should noti
e that the Green's fun
-tions do not depend upon p expli
itly. The self-
onsistentsolution of Eqs. (197), (198), (199), (200) and (201) givesthe density of states, the ele
tron self-energy, and the
hange of Landau level energy position due to disorder.The e�e
t of disorder in the density of states of Dira
fermions in a magneti
 �eld is shown in Fig. 31. For ref-eren
e we note that E(1, 1) = 0.14 eV, for B = 14 T, and

E(1, 1) = 0.1 eV, for B = 6 T. From Fig. 31 we see that,for a given ni, the e�e
t of broadening due to impuritiesis less e�e
tive as the magneti
 �eld in
reases. It is also
lear that the position of Landau levels is renormalizedrelatively to the non-disordered 
ase. The renormaliza-tion of the Landau level position 
an be determined frompoles of (197) and (198):
ω − E(α, n) − ReΣ(ω) = 0 . (202)Of 
ourse, due to the importan
e of s
attering at lowenergies, the solution to Eq. (202) does not representexa
t eigenstates of system sin
e the imaginary part ofthe self-energy is non-vanishing. However, these energiesdo determine the form of the density of states, as wedis
uss below.In Fig. 32, the graphi
al solution to Eq. (202) is givenfor two di�erent energies (E(−1, n), with n = 1, 2), its is
lear that the renormalization is important for the �rstLandau level. This result is due to the in
rease in s
at-tering at low energies, whi
h is present already in the
ase of zero magneti
 �eld. The values of ω satisfyingEq. (202) show up in the density of states as the en-ergy values where the os
illations due to the Landau levelquantization have a maximum. In Fig. 31, the positionof the renormalized Landau levels is shown in the upperpanel (marked by two arrows), 
orresponding to the bareenergies E(−1, n), with n = 1, 2. The importan
e of thisrenormalization de
reases with the redu
tion of the num-ber of impurities. This is 
lear in Fig. 31 where a visibleshift toward low energies is evident when ni has a small10% 
hange, from ni = 10−3 to ni = 9 × 10−4.The study of the magnetoresistan
e properties of thesystem requires the 
al
ulation of the 
ondu
tivity ten-sor. We 
ompute the 
urrent-
urrent 
orrelation fun
-tion and from it the 
ondu
tivity tensor is derived. Thedetails of the 
al
ulations are presented in (Peres et al.,2006
). If we however negle
t the real part of the self-energy, assume for ImΣi(ω) = Γ (i = 1, 2) a 
onstantvalue, and 
onsider that E(1, 1) ≫ Γ, these results re-du
e to those of (Gorbar et al., 2002).It is instru
tive to 
onsider �rst the 
ase ω, T → 0,whi
h leads to (σxx(0, 0) = σ0):

σ0 =
e2

h

4

π

[

ImΣ1(0)/ImΣ2(0) − 1

1 + (ImΣ1(0)/ωc)2

+
n0 + 1

n0 + 1 + (ImΣ1(0)/ωc)2

]

, (203)where we in
lude a fa
tor 2 due to the valley degenera
y.In the absen
e of a magneti
 �eld (ωc → 0) the above
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Figure 32 (Color online) Imaginary (right) and real (left)parts of Σ1(ω) (top) and Σ2(ω)(bottom), in units of ωc, asa fun
tion of ω/ωc. The right panels also show the inter
eptof ω−E(α,n) with ReΣ(ω) as required by Eq. (202). Adaptedfrom Peres et al., 2006
.expression redu
es to:
σ0 =

e2

h

4

π

[

1 − [ImΣ1(0)]2

(vF Λ)2 + [ImΣ1(0)]2

]

, (204)where we have introdu
ed the energy 
ut-o�, vF Λ. Eitherwhen ImΣ1(0) ≃ ImΣ2(0) and ωc ≫ ImΣ1(0) (or n0 ≫
ImΣ1(0)/ωc, ωc = E(0, 1) =

√
2vF /l

2
B), or when ΛvF ≫

ImΣ1(0), in the absen
e of an applied �eld, Eqs. (203)and (204) redu
e to:
σ0 =

4

π

e2

h
, (205)whi
h is the so-
alled universal 
ondu
tivity of graphene(Fradkin, 1986a,b; Katsnelson, 2006b; Lee, 1993;Ludwig et al., 1994; Nersesyan et al., 1994; Peres et al.,2006
; Tworzydlo et al., 2006; Yang and Nayak, 2002;Ziegler, 1998). This result was obtained previouslyby Ando and 
ollaborators using the se
ond orderself-
onsistent Born approximation (Ando et al., 2002;Shon and Ando, 1998).Be
ause the DC magnetotransport properties ofgraphene are normally measured with the possibilityof tuning its ele
troni
 density by a gate potential(Novoselov et al., 2004), it is important to 
ompute the
ondu
tivity kernel, sin
e this has dire
t experimentalrelevan
e. In the the 
ase ω → 0 we write the 
ondu
tiv-ity σxx(0, T ) as:

σxx(0, T ) =
e2

πh

∫ ∞

−∞

dǫ
∂f(ǫ)

∂ǫ
KB(ǫ) , (206)where the 
ondu
tivity kernel KB(ǫ) is given in the Ap-pendix of Ref. (Peres et al., 2006
). The magneti
 �elddependen
e of kernel KB(ǫ) is shown in Fig. 33. Ob-serve that the e�e
t of disorder is the 
reation of a re-gion where KB(ǫ) remains 
onstant before it starts to
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Figure 33 (Color online) Condu
tivity kernel, K(ω) (in unitsof e2/(πh)), as a fun
tion of energy ω for di�erent magneti
�elds and for ni = 10−3. The horizontal lines mark the uni-versal limit of the 
ondu
tivity per 
one, σ0 = 2e2/(πh). Theverti
al lines show the position of the Landau levels in theabsen
e of disorder. Adapted from Peres et al., 2006
.in
rease in energy with superimposed os
illations 
om-ing from the Landau levels. The same e�e
t, but withthe absen
e of the os
illations, was identi�ed at the levelof the self-
onsistent density of states plotted in Fig. 31.Together with σxx(0, T ), the Hall 
ondu
tivity σxy(0, T )allows the 
al
ulation of the resistivity tensor (109).Let us now fo
us on the opti
al 
ondu
tivity, σxx(ω)(Gusynin et al., 2007; Peres et al., 2006
). This quantity
an be probed by re�e
tivity experiments in the subter-ahertz to mid-infrared frequen
y range (Bliokh, 2005).This quantity is depi
ted in Fig. 34 for di�erent mag-neti
 �elds. It is 
lear that the �rst peak is 
ontrolledby the E(1, 1) − E(1,−1), and we have 
he
ked that itdoes not obey any parti
ular s
aling form as a fun
tionof ω/B. On the other hand, as the e�e
t of s
atteringbe
omes less important the high energy 
ondu
tivity os-
illations start obeying the s
aling ω/√B, as we show inthe lower right panel of Fig. 34.V. MANY-BODY EFFECTSA. Ele
tron-phonon intera
tionsIn Se
. IV.F.1 and Se
. IV.F.2 we dis
ussed how stati
deformations of the graphene sheet due to bending andstrain 
ouple to the Dira
 fermions via ve
tor potentials.Just as bending has to do with the �exural modes of thegraphene sheet (as dis
ussed in Se
. III), strain �elds arerelated to opti
al and a
ousti
 modes (Wirtz and Rubio,2004). Given the lo
al displa
ements of the atoms in ea
hsublatti
e, uA and uB, the ele
tron-phonon 
oupling hasessentially the form dis
ussed previously for stati
 �elds.The 
oupling to a
ousti
 modes is the most straight-forward one, sin
e it already appears in the elasti
 the-
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Figure 34 (Color online) Frequen
y dependent 
ondu
tiv-ity per 
one, σ(ω) (in units of e2/(πh)) at T = 10 K and
ni = 10−3, as a fun
tion of the energy ω (in units of ωc)for di�erent values of the magneti
 �eld B. The verti
al ar-rows in the upper left panel, labeled a, b, and 
, show thepositions of the transitions between di�erent Landau levels:
E(1, 1)−E(−1, 0), E(2, 1)−E(−1, 0), and E(1, 1)−E(1,−1),respe
tively. The horizontal 
ontinuous lines show the valueof the universal 
ondu
tivity. The lower right panel shows the
ondu
tivity for di�erent values of magneti
 �eld as a fun
tionof ω/

√
B. Adapted from Peres et al., 2006
.ory. If uac is the a
ousti
 phonon displa
ement, thenthe relation between this displa
ement and the atom dis-pla
ement is given by equation (171), and its 
ouplingto ele
trons is given by the ve
tor potential (175) in theDira
 equation (150).For opti
al modes the situation is slightly di�erentsin
e the opti
al mode displa
ement is (Ando, 2006a,2007b):

uop =
1√
2
(uA − uB) , (207)that is, the bond length deformation ve
tor. To 
al
ulatethe 
oupling to the ele
trons we 
an pro
eed as previouslyand 
ompute the 
hange in the nearest neighbor hoppingenergy due to the latti
e distortion through (172), (173),(170), and (207). On
e again the ele
tron-phonon inter-a
tion be
omes a problem of the 
oupling of the ele
tronswith a ve
tor potential as in (150) where the 
omponentsof the ve
tor potential are:

A(op)
x = −

√

3

2

β

a2
uop

y ,

A(op)
y = −

√

3

2

β

a2
uop

x , (208)where β = ∂t/∂ ln(a) was de�ned in (174). Noti
e thatwe 
an write: ~Aop = −
√

3/2(β/a2)~σ × uop. A similarexpression is valid 
lose to the K' point with ~A repla
edby − ~A.

Opti
al phonons are parti
ularly important ingraphene resear
h be
ause of Raman spe
tros
opy. Thelatter has played a parti
ularly important role in thestudy of 
arbon nanotubes (Saito et al., 1998) be
auseof the 1D 
hara
ter of these systems, namely, the pres-en
e of van Hove singularities in the 1D spe
trum leadto 
olossal enhan
ements of the Raman signal that 
anbe easily dete
ted, even for a single isolated 
arbon nan-otube. In graphene the situation is rather di�erent sin
eits 2D 
hara
ter leads to a mu
h smoother density ofstates (ex
ept for the van Hove singularity at high en-ergies of the order of the hopping energy t ≈ 2.8 eV).Nevertheless, graphene is an open surfa
e and hen
e isreadily a

essible by Raman spe
tros
opy. In fa
t, it hasplayed a very important role be
ause it allows the iden-ti�
ation of the number of planes (Ferrari et al., 2006;Graf et al., 2007; Gupta et al., 2006; Pisana et al., 2007;Yan et al., 2007), and the study of the opti
al phononmodes in graphene, parti
ularly the ones in the 
enter ofthe BZ with momentum q ≈ 0. Similar studies have beenperformed in graphite ribbons (Can
ado et al., 2004).
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(a)Figure 35 (Color online) Top: The 
ontinuous line is the rel-ative phonon frequen
y shift as a fun
tion of µ/ω0, and thedashed line is the damping of the phonon due to ele
tron-holepair 
reation; Bottom: (a) Ele
tron-hole pro
ess that leadsto phonon softening (ω0 > 2µ), and (b) ele
tron-hole pro
essthat leads to phonon hardening (ω0 < 2µ).Let us 
onsider the e�e
t of the Dira
 fermions onthe opti
al modes. If one treats the ve
tor potential,ele
tron-phonon 
oupling, (150) and (208) up to se
ondorder perturbation theory, its main e�e
t is the polar-ization of the ele
tron system by 
reating ele
tron-holepairs. In the QED language, the 
reation ele
tron-holepairs is 
alled pair (ele
tron/anti-ele
tron) produ
tion(Castro Neto, 2007). Pair produ
tion is equivalent to



42a renormalization of the phonon propagator by a self-energy that is proportional to the polarization fun
tionof the Dira
 fermions.The renormalized phonon frequen
y, Ω0(q), is givenby (Ando, 2006a, 2007b; Castro Neto and Guinea, 2007;Lazzeri and Mauri, 2006; Saha et al., 2007):
Ω0(q) ≈ ω0 −

2β2

a2ω0
χ(q, ω0) , (209)where ω0 is the bare phonon frequen
y, and the ele
tron-phonon polarization fun
tion is given by:

χ(q, ω)=
∑

s,s′=±1

∫

d2k

(2π)2
f [Es(k + q)]−f [Es′(k)]

ω0−Es(k + q)+Es′(k)+iη
,(210)where Es(q) is the Dira
 fermion dispersion (s = +1 forthe upper band, and s = −1 for the lower band), and

f [E] is the Fermi-Dira
 distribution fun
tion. For Ra-man spe
tros
opy, the response of interest is at q = 0where 
learly only the interband pro
esses su
h that
ss′ = −1 (that is, pro
esses between the lower and up-per 
ones) 
ontribute. The ele
tron-phonon polariza-tion fun
tion 
an be easily 
al
ulated using the linearizedDira
 fermion dispersion (7) and the low energy densityof states (15):
χ(0, ω0) =

6
√

3

πv2
F

∫ vF Λ

0

dEE (f [−E]−f [E])

(

1

ω0+2E+iη

− 1

ω−2E+iη

)

, (211)where we have introdu
ed the 
ut-o� momentum Λ (≈
1/a) so that the integral 
onverges in the ultraviolet. Atzero temperature, T = 0, we have f [E] = θ(µ − E) andwe assume ele
tron doping, µ > 0, so that f [−E] = 1 (forthe 
ase of hole doping, µ < 0, is obtained by ele
tron-hole symmetry). The integration in (211) gives:

χ(0, ω0) =
6
√

3

πv2
F

[

vF Λ − µ+
ω0

4

(

ln

∣

∣

∣

∣

ω0/2 + µ

ω0/2 − µ

∣

∣

∣

∣

+ iπθ (ω0/2 − µ))] , (212)where the 
ut-o� dependent term is a 
ontribution 
om-ing from the o

upied states in the lower π band andhen
e is independent of the value of the 
hemi
al poten-tial. This 
ontribution 
an be fully in
orporated into thebare value of ω0 in (209). Hen
e the relative shift in thephonon frequen
y 
an be written as:
δω0

ω0
≈ −λ

4

(

− µ

ω0
+ ln

∣

∣

∣

∣

ω0/2 + µ

ω0/2 − µ

∣

∣

∣

∣

+ iπθ (ω0/2 − µ)

)

,(213)where
λ =

36
√

3

π

β2

8Ma2ω0
, (214)is the dimensionless ele
tron-phonon 
oupling. Noti
ethat (213) has a real and imaginary part. The real part

represents the a
tual shift in frequen
y, while the imagi-nary part gives the damping of the phonon mode due topair produ
tion (see Fig. 35). There is a 
lear 
hangein behavior depending whether µ is larger or smallerthan ω0/2. For µ < ω0/2 there is a de
rease in thephonon frequen
y implying that the latti
e is softening,while for µ > ω0/2 the latti
e hardens. The interpre-tation for this e�e
t is also given in Fig. 35. On theone hand, if the frequen
y of the phonon is larger thantwi
e the 
hemi
al potential, real ele
tron-hole pairs areprodu
ed, leading to stronger s
reening of the ele
tron-ion intera
tion and hen
e, to a softer phonon mode. Atthe same time the phonons be
ome damped and de
ay.On the other hand, if the frequen
y of the phonon issmaller than the twi
e the 
hemi
al potential, the pro-du
tion of ele
tron-hole pairs is halted by the Pauli prin-
iple and only virtual ex
itations 
an be generated lead-ing to polarization and latti
e hardening. In this 
ase,there is no damping and the phonon is long lived. Thisamazing result has been observed experimentally by Ra-man spe
tros
opy (Pisana et al., 2007; Yan et al., 2007).Ele
tron-phonon 
oupling has also been investigated the-oreti
ally in the 
ase of a �nite magneti
 �eld (Ando,2007a; Goerbig et al., 2007). In this 
ase, resonant 
ou-pling o

urs due to the large degenera
y of the Landaulevels and di�erent Raman transitions are expe
ted as
ompared with the zero-�eld 
ase. The 
oupling of ele
-trons to �exural modes on a free standing graphene sheetwas dis
ussed in ref. (Mariani and von Oppen, 2007).B. Ele
tron-ele
tron intera
tionsOf all dis
iplines of 
ondensed matter physi
s, thestudy of ele
tron-ele
tron intera
tions is probably oneof the most 
omplex sin
e it involves the understand-ing of the behavior of a ma
ros
opi
 number of variables.Hen
e, the problem of intera
ting systems is a �eld in
onstant motion and we shall not try to give here a 
om-prehensive survey of the problem for graphene. Instead,we will fo
us on a small number of topi
s that are of
urrent dis
ussion in the literature.Sin
e graphene is a truly 2D system, it is informativeto 
ompare it with the more standard 2DEG that hasbeen studied extensively in the last 25 years sin
e thedevelopment of heterostru
tures and the dis
overy of thequantum Hall e�e
t (for a review, see (Stone, 1992)). Atthe simplest level, metalli
 systems have two main kindof ex
itations: ele
tron-hole pairs and 
olle
tive modessu
h as plasmons.Ele
tron-hole pairs are in
oherent ex
itations of theFermi sea and a dire
t result of Pauli's ex
lusion prin
i-ple: an ele
tron inside the Fermi sea with momentum k isex
ited outside the Fermi sea to a new state with momen-tum k+q, leaving a hole behind. The energy asso
iatedwith su
h an ex
itation is simply: ω = ǫk+q − ǫk and forstates 
lose to the Fermi surfa
e (k ≈ kF ) their energys
ales linearly with the ex
itation momentum, ωq ≈ vF q.
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Figure 36 (Color online) Ele
tron-hole 
ontinuum and 
olle
-tive modes of: (a) a 2DEG; (b) undoped graphene; (
) dopedgraphene.In a system with non-relativisti
 dispersion su
h as nor-mal metals and semi
ondu
tors, the ele
tron-hole 
ontin-uum is made out of intra-band transitions only and existseven at zero energy sin
e it is always possible to produ
eele
tron-hole pairs with arbitrarily low energy 
lose tothe Fermi surfa
e, as shown in Fig. 36(a). Besides that,the 2DEG 
an also sustain 
olle
tive ex
itations su
h asplasmons that have dispersion: ωplasmon(q) ∝ √
q, andexist outside the ele
tron-hole 
ontinuum at su�
ientlylong wavelengths (Shung, 1986a).In systems with relativisti
-like dispersion, su
h asgraphene, these ex
itations 
hange 
onsiderably, espe-
ially when the Fermi energy is at the Dira
 point. In this
ase the Fermi surfa
e shrinks to a point and hen
e intra-band ex
itations disappear and only interband transi-tions between the lower and upper 
ones 
an exist (seeFig.36(b)). Therefore, neutral graphene has no ele
tron-hole ex
itations at low energy, instead ea
h ele
tron-holepair 
osts energy and hen
e the ele
tron-hole o

upiesthe upper part of the energy versus momentum diagram.In this 
ase, plasmons are suppressed and no 
oherent
olle
tive ex
itations 
an exist. If the 
hemi
al poten-tial is moved away from the Dira
 point then intra-bandex
itations are restored and the ele
tron-hole 
ontinuumof graphene shares features of the 2DEG and undopedgraphene. The full ele
tron-hole 
ontinuum of dopedgraphene is shown in Fig. 36(
), and in this 
ase plasmonmodes are allowed. As the 
hemi
al potential is raisedaway from the Dira
 point, graphene resembles more andmore the 2DEG.These features in the elementary ex
itations of

graphene re�e
t its s
reening properties as well. Infa
t, the polarization and diele
tri
 fun
tions of undopedgraphene are rather di�erent from the ones of the 2DEG(Lindhard fun
tion). In the random phase approxima-tion (RPA), the polarization fun
tion 
an be 
al
ulatedanalyti
ally (González et al., 1993a, 1994; Shung, 1986a):
Π(q, ω) =

q2

4
√

v2
F q

2 − ω2
, (215)and hen
e, for ω > vF q the polarization fun
tion is imag-inary indi
ating the damping of ele
tron-hole pairs. No-ti
e that the stati
 polarization fun
tion (ω = 0) van-ishes linearly with q, indi
ating the la
k of s
reening inthe system. This polarization fun
tion has been also
al
ulated in the presen
e of a �nite 
hemi
al poten-tial (Ando, 2006b; Hwang and Das Sarma, 2007; Shung,1986a,b; Wuns
h et al., 2006).Undoped, 
lean graphene is a semimetal, with a van-ishing density of states at the Fermi level. As a result thelinear Fermi Thomas s
reening length diverges, and thelong range Coulomb intera
tion is not s
reened. At �niteele
tron density n, the Thomas-Fermi s
reening lengthreads :

λTF ≈ 1

4α

1

kF
=

1

4α

1√
πn

, (216)where
α =

e2

ǫ0vF
, (217)is the dimensionless 
oupling 
onstant in the prob-lem (the analogue of (143) in the Coulomb impu-rity problem). Going beyond the linear Thomas-Fermi regime, it has been shown that the Coulomblaw is modi�ed (Fogler et al., 2007b; Katsnelson, 2006a;Zhang and Fogler, 2007).The Dira
 Hamiltonian in the presen
e of intera
tions
an be written as:

H ≡ −ivF
∫

d2r Ψ̂†(r)σ · ∇Ψ̂(r)

+
e2

2ǫ0

∫

d2rd2r′
1

|r − r′| ρ̂(r)ρ̂(r
′) , (218)where

ρ̂(r) = Ψ̂†(r)Ψ̂(r) , (219)is the ele
troni
 density. Observe that Coulomb in-tera
tion, unlike in QED, is assumed to be instanta-neous sin
e vF /c ≈ 1/300 and hen
e retardation ef-fe
ts are very small. Moreover, the photons propagatein 3D spa
e whereas the ele
trons are 
on�ned to the2D graphene sheet. Hen
e, the Coulomb intera
tionbreaks the Lorentz invarian
e of the problem and makesthe many-body situation rather di�erent from the one inQED (Baym and Chin, 1976). Furthermore, the problem
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k k+q

vq

Figure 37 Hartree-Fo
k self-energy diagram whi
h leads to alogarithmi
 renormalization of the Fermi velo
ity.depends on two parameters, vF and e2/ǫ0. Under a di-mensional s
aling, r → λr, t → λt,Ψ → λ−1Ψ, both pa-rameters remain invariant. In RG language, the Coulombintera
tion is a marginal variable, whose strength relativeto the kineti
 energy does not 
hange upon a 
hange ins
ale. If the units are 
hosen in su
h a way that vF isdimensionless, the value of e2/ǫ0 will also be rendereddimensionless. This is the 
ase in theories 
onsideredrenormalizable in quantum �eld theory.The Fermi velo
ity in graphene is 
omparable to thatin half-�lled metals. In solids with latti
e 
onstant a, thetotal kineti
 energy per site, 1/(ma2), where m is thebare mass of the ele
tron, is of the same order of mag-nitude as the ele
trostati
 energy, e2/(ǫ0a). The Fermivelo
ity for �llings of the order of unity is vF ∼ 1/(ma).Hen
e, e2/(ǫ0vF) ∼ 1. This estimate is also valid ingraphene. Hen
e, unlike in QED, where αQED = 1/137,the 
oupling 
onstant in graphene is α ∼ 1.Despite the fa
t that the 
oupling 
onstant is of theorder of unity, a perturbative RG analysis 
an be applied.RG te
hniques allow us to identify stable �xed pointsof the model, whi
h may be attra
tive over a broaderrange than the one where a perturbative treatment 
anbe rigorously justi�ed. Alternatively, an RG s
heme 
anbe reformulated as the pro
ess of pie
ewise integration ofhigh energy ex
itations (Shankar, 1994). This pro
edureleads to 
hanges in the e�e
tive low energy 
ouplings.The s
heme is valid if the energy of the renormalizedmodes is mu
h larger than the s
ales of interest.The Hartree-Fo
k 
orre
tion due to Coulomb intera
-tions between ele
trons (given by the diagram in Fig. 37)gives a logarithmi
 
orre
tion to the ele
tron self-energy(González et al., 1994):
ΣHF (k) =

α

4
k ln

(

Λ

k

) (220)where Λ is a momentum 
uto� whi
h sets the rangeof validity of the Dira
 equation. This result re-mains true even to higher order in perturbation theory(Mish
henko, 2007) and is also obtained in large N ex-pansions (Rosenstein et al., 1989, 1991; Son, 2007) (N isthe number of �avors of Dira
 fermions), with the onlymodi�
ation being the prefa
tor in (220). This resultimplies that the Fermi velo
ity is renormalized towardshigher values. As a 
onsequen
e, the density of statesnear the Dira
 energy is redu
ed, in agreement with the

general trend of repulsive intera
tions to indu
e or in-
rease gaps.This result 
an be understood from the RG point ofview by studying the e�e
t of redu
ing the 
ut-o� from
Λ to Λ − dΛ and its e�e
t on the e�e
tive 
oupling. It
an be shown that α obeys the equation (González et al.,1994):

Λ
∂α

∂Λ
= −α

4
. (221)Therefore, the Coulomb intera
tion be
omes marginallyirrelevant. These features are 
on�rmed by a full rela-tivisti
 
al
ulation, although the Fermi velo
ity 
annot,obviously, surpass the velo
ity of light (González et al.,1994). This result indi
ates that strongly 
orrelated ele
-troni
 phases, su
h as ferromagnetism (Peres et al., 2005)and Wigner 
rystals (Dahal et al., 2006) are suppressedin 
lean graphene.A 
al
ulation of higher order self-energy terms leadsto a wavefun
tion renormalization, and to a �nite quasi-parti
le lifetime, whi
h grows linearly with quasiparti-
le energy (González et al., 1994, 1996). The wavefun
-tion renormalization implies that the quasiparti
le weighttends to zero as its energy is redu
ed. A strong 
ou-pling expansion is also possible, assuming that the num-ber of ele
troni
 �avors justi�es an RPA expansion, keep-ing only ele
tron-hole bubble diagrams (González et al.,1999). This analysis 
on�rms that the Coulomb intera
-tion is renormalized towards lower values.The enhan
ement in the Fermi velo
ities leads to awidening of the ele
troni
 spe
trum. This is 
onsistentwith measurements of the gaps in narrow single wallnanotubes, whi
h show deviations from the s
aling with

R−1, where R is the radius, expe
ted from the Dira
equation (Kane and Mele, 2004). The linear depen-den
e of the inverse quasiparti
le lifetime with energy is
onsistent with photo-emission experiments in graphite,for energies larger with respe
t to the interlayer inter-a
tions (Bostwi
k et al., 2007b; Sugawara et al., 2007;Xu et al., 1996; Zhou et al., 2006a,
). Note that ingraphite, band stru
ture e�e
ts modify the lifetimes atlow energies (Spataru et al., 2001). The vanishing of thequasiparti
le peak at low energies 
an lead to an en-ergy dependent renormalization of the interlayer hopping(Vozmediano et al., 2002, 2003). Other thermodynami
properties of undoped and doped graphene 
an also be
al
ulated (Barlas et al., 2007; Vafek, 2007).Non-perturbative 
al
ulations of the e�e
ts of thelong range intera
tions in undoped graphene showthat a transition to a gapped phase is also possi-ble, when the number of ele
troni
 �avors is large(Khvesh
henko, 2001; Khvesh
henko and Shively, 2006;Luk'yan
huk and Kopelevi
h, 2004). The broken sym-metry phase is similar to the ex
itoni
 transition found inmaterials where it be
omes favorable to 
reate ele
tron-hole pairs that then form bound ex
itons (ex
itoni
 tran-sition).Undoped graphene 
annot have well de�ned plasmons,



45as their energies fall within the ele
tron-hole 
ontinuum,and therefore have a signi�
ant Landau damping. At �-nite temperatures, however, thermally ex
ited quasipar-ti
les s
reen the Coulomb intera
tion, and an a
ousti

olle
tive 
harge ex
itation 
an exist (Vafek, 2006).Doped graphene shows a �nite density of states at theFermi level, and the long range Coulomb intera
tion iss
reened. A

ordingly, there are 
olle
tive plasma inter-a
tions near q → 0, whi
h disperse as ωp ∼
√

|q|, sin
ethe system is 2D (Campagnoli and Tosatti, 1989; Shung,1986a,b). The fa
t that the ele
troni
 states are de-s
ribed by the massless Dira
 equation implies that ωP ∝
n1/4, where n is the 
arrier density. The stati
 diele
tri

onstant has a 
ontinuous derivative at 2kF, unlike in the
ase of the 2D ele
tron gas (Ando, 2006b; Sarma et al.,2007; Wuns
h et al., 2006). This fa
t is asso
iated withthe suppressed ba
kward s
attering in graphene. Thesimpli
ity of the band stru
ture of graphene allows an-alyti
al 
al
ulation of the energy and momentum de-penden
e of the diele
tri
 fun
tion (Sarma et al., 2007;Wuns
h et al., 2006). The s
reening of the long-rangeCoulomb intera
tion implies that the low energy quasi-parti
les show a quadrati
 dependen
e on energy withrespe
t to the Fermi energy (Hwang et al., 2007).One way to probe the strength of the ele
tron-ele
tron intera
tions is via the ele
troni
 
ompress-ibility. Measurements of the 
ompressibility usinga single ele
tron transistor (SET) show very littlesign of intera
tions in the system, being well �ttedby the non-intera
ting result that, 
ontrary to thetwo-dimensional ele
tron gas (2DEG) (Eisenstein et al.,1994; Giuliani and Vignale, 2005), is positively diver-gent (Martin et al., 2007; Polini et al., 2007). Bilayergraphene, on the other hand, shares 
hara
teristi
s ofthe single layer and the 2DEG with a non-monotoni
 de-penden
e of the 
ompressibility on the 
arrier density(Kusminskiy et al., 2007). In fa
t, bilayer graphene very
lose to half-�lling has been predi
ted to be unstabletowards Wigner 
rystallization (Dahal et al., 2007), justlike the 2DEG. Furthermore, a

ording to Hartree-Fo
k
al
ulations, 
lean bilayer graphene is unstable towardsferromagnetism (Nilsson et al., 2006b).1. S
reening in graphene sta
ksThe ele
tron-ele
tron intera
tion leads to the s
reen-ing of external potentials. In a doped sta
k, the 
hargetends to a

umulate near the surfa
es, and its distribu-tion is determined by the diele
tri
 fun
tion of the sta
kin the out-of-plane dire
tion. The same polarizabilitydes
ribes the s
reening of an external �eld perpendi
ularto the layers, like the one indu
ed by a gate in ele
tri-
ally doped systems (Novoselov et al., 2004). The self-
onsistent distribution of 
harge in a biased graphene bi-layer has been studied in ref. (M
Cann, 2006). Fromthe observed 
harge distribution and self-
onsistent 
al-
ulations, an estimate of the band stru
ture parameters

and their relation with the indu
ed gap 
an be obtained(Castro et al., 2007a).In the absen
e of interlayer hopping, the polarizabilityof a set of sta
ks of 2D ele
tron gases 
an be written asa sum of the s
reening by the individual layers. Usingthe a

epted values for the e�e
tive masses and 
arrierdensities of graphene, this s
heme gives a �rst approx-imation to s
reening in graphite (Viss
her and Fali
ov,1971). The s
reening length in the out of plane dire
-tion is of about 2 graphene layers (Morozov et al., 2005).This model is easily generalizable to a sta
k of semimet-als des
ribed by the 2D Dira
 equation (González et al.,2001). At half �lling, the s
reening length in all dire
-tions diverges, and the s
reening e�e
ts are weak.Interlayer hopping modi�es this pi
ture signi�
antly.The hopping leads to 
oheren
e (Guinea, 2007). The outof plane ele
troni
 dispersion is similar to that of a onedimensional 
ondu
tor. The out of plane polarizabilityof a multilayer 
ontains intra- and interband 
ontribu-tions. The subbands in a system with the Bernal sta
k-ing have a paraboli
 dispersion, when only the nearestneighbor hopping terms are in
luded. This band stru
-ture leads to an interband sus
eptibility des
ribed by asum of terms like those in (228), whi
h diverges at half-�lling. In an in�nite system, this divergen
e is more pro-noun
ed at k⊥ = π/c, that is, for a wave ve
tor equalto twi
e the distan
e between layers. This e�e
t greatlyenhan
es Friedel like os
illations in the 
harge distribu-tion in the out of plane dire
tion, whi
h 
an lead to the
hanges in the sign of the 
harge in neighboring layers(Guinea, 2007). Away from half-�lling a graphene bi-layer behaves, from the point of view of s
reening, in away very similar to the 2DEG (Wang and Chakraborty,2007b).C. Short range intera
tionsIn this se
tion we dis
uss the e�e
t of short rangeCoulomb intera
tions on the physi
s of graphene. Thesimplest 
arbon system with a hexagonal shape is thebenzene mole
ule. The value of the Hubbard intera
tionamong π-ele
trons was, for this system, 
omputed longago by Parr et al. (Parr et al., 1950), yielding a value of
U = 16.93 eV. For 
omparison purposes, in polya
etylenethe value for the Hubbard intera
tion is U ≃10 eV andthe hopping energy is t ≈ 2.5 eV (Baeriswyl et al., 1986).These two examples just show that the value of the on-site Coulomb intera
tion is fairly large for π−ele
trons.As a �rst guess for graphene, one 
an take U to be of thesame order as for polya
ethylene, with the hopping inte-gral t ≃ 2.8 eV. Of 
ourse in pure graphene the ele
tron-ele
tron intera
tion is not s
reened, sin
e the density ofstates is zero at the Dira
 point, and one should workout the e�e
t of Coulomb intera
tions by 
onsidering thebare Coulomb potential. On the other hand, as we haveseen before, defe
ts indu
e a �nite density of states at theDira
 point, whi
h 
ould lead to an e�e
tive s
reening of



46the long-range Coulomb intera
tion. Let us assume thatthe bare Coulomb intera
tion is s
reened in graphene andthat Coulomb intera
tions are represented by the Hub-bard intera
tion. This means that we must add to theHamiltonian (5) a term of the form:
HU = U

∑

Ri

[

a†↑(Ri)a↑(Ri)a
†
↓(Ri)a↓(Ri)

+ b†↑(Ri)b↑(Ri)b
†
↓(Ri)b↓(Ri)

] (222)The simplest question one 
an ask is whether this systemshows a tenden
y toward some kind of magneti
 orderdriven by the intera
tion U . Within the simplest Hartree-Fo
k approximation (Peres et al., 2004), the instabilityline toward ferromagnetism is given by:
UF (µ) =

2

ρ(µ)
, (223)whi
h is nothing but the Stoner 
riterion. Similar resultsare obtained in more sophisti
ated 
al
ulations (Herbut,2006). Clearly, at half-�lling the value for the density ofstates is ρ(0) = 0 and the 
riti
al value for UF is arbi-trarily large. Therefore we do not expe
t a ferromagneti
ground state at the neutrality point of one ele
tron per
arbon atom. For other ele
troni
 densities, ρ(µ) be-
omes �nite produ
ing a �nite value for UF . We notethat the in
lusion of t′ does not 
hange these �ndings,sin
e the density of states remains zero at the neutralitypoint.The line toward an antiferromagneti
 ground state isgiven by (Peres et al., 2004)

UAF (µ) =
2

1
N

∑

k,µ>0
1

|E+(k)|

, (224)where E+(k) is given in (6). This result gives a �-nite UAF at the neutrality point (Martelo et al., 1997;Sorella and Tosatti, 1992):
UAF (0) = 2.23t . (225)Quantum Monte Carlo 
al
ulations (Paiva et al., 2005;Sorella and Tosatti, 1992), raise however its value to:
UAF (0) ≃ 5t . (226)Taking for graphene the same value for U as in polya
ety-lene and t = 2.8 eV, one obtains U/t ≃ 3.6, whi
h put thesystem far from the transition toward an antiferromagnetground state. Yet another possibility is that the systemmay be in a sort of a quantum spin liquid (Lee and Lee,2005) (as originally proposed by Pauling (Pauling, 1972)in 1956) sin
e mean �eld 
al
ulations give a 
riti
al valuefor U to be of the order of U/t ≃ 1.7. Whether this typeof ground state really exists and whether quantum �u
-tuations pushes this value of U toward larger values isnot known.

1. Bilayer graphene: ex
hangeThe ex
hange intera
tion 
an be large in an unbiasedgraphene bilayer with a small 
on
entration of 
arriers. Itwas shown previously that the ex
hange 
ontribution tothe ele
troni
 energy of a single graphene layer does notlead to a ferromagneti
 instability (Peres et al., 2005).The reason for this is a signi�
ant 
ontribution from theinterband ex
hange, whi
h is a term usually negle
tedin doped semi
ondu
tors. This 
ontribution depends onthe overlap of the 
ondu
tion and valen
e wavefun
tions,and it is modi�ed in a bilayer. The interband ex
hangeenergy is redu
ed in a bilayer (Nilsson et al., 2006
), anda positive 
ontribution that depends logarithmi
ally onthe bandwidth in graphene is absent in its bilayer. As aresult, the ex
hange energy be
omes negative, and s
alesas n3/2, where n is the 
arrier density, similar to the2DEG. The quadrati
 dispersion at low energies impliesthat the kineti
 energy s
ales as n2, again as in the 2DEG.This expansion leads to:
E = Ekin + Eexc ≈ πv2

Fn
2

8t⊥
− e2n3/2

27
√
πǫ0

(227)Writing n↑ = (n + s)/2, n↓ = (n − s)/2, where s is themagnetization, (227) predi
ts a se
ond order transition toa ferromagneti
 state for n = (4e4t2)/(81π3v4
F ǫ0). Higherorder 
orre
tions to (227) lead to a �rst order transitionat slightly higher densities (Nilsson et al., 2006
). For aratio γ1/γ0 ≈ 0.1, this analysis implies that a graphenebilayer should be ferromagneti
 for 
arrier densities su
hthat |n| . 4 × 1010
m−2.A bilayer is also the unit 
ell of Bernal graphite, andthe ex
hange instability 
an also be studied in an in�-nite system. Taking into a

ount nearest neighbor in-terlayer hopping only, bulk graphite should also showan ex
hange instability at low doping. In fa
t, there issome experimental eviden
e for a ferromagneti
 insta-bility in strongly disordered graphite (Esquinazi et al.,2002, 2003; Kopelevi
h and Esquinazi, 2006).The analysis des
ribed above 
an be extended to thebiased bilayer, where a gap separates the 
ondu
tion andvalen
e bands (Stauber et al., 2007). The analysis of this
ase is somewhat di�erent, as the Fermi surfa
e at lowdoping is a ring, and the ex
hange intera
tion 
an 
hangeits bounds. The presen
e of a gap redu
es further themixing of the valen
e and 
ondu
tion band, leading to anenhan
ement of the ex
hange instability. At all dopinglevels, where the Fermi surfa
e is ring shaped, the biasedbilayer is unstable towards ferromagnetism.2. Bilayer graphene: short range intera
tionsThe band stru
ture of a graphene bilayer, at half �ll-ing, leads to logarithmi
 divergen
es in di�erent responsefun
tions at q = 0. The two paraboli
 bands that aretangent at k = 0 lead to a sus
eptibility whi
h is propor-



47
Figure 38 (Color online) Sket
h of the expe
ted magnetiza-tion of a graphene bilayer at half-�lling.tional to:
χ(~q, ω) ∝

∫

|~q|<Λ

d2k
1

ω − (v2
F /t)|k|2

∝ log

(

Λ
√

(ωt)/v2
F

)(228)where Λ ∼
√

t2/v2
F is a high momentum 
uto�. Theselogarithmi
 divergen
es are similar to the ones whi
hshow up when the Fermi surfa
e of a 2D metal is near asaddle point in the dispersion relation (González et al.,1996). A full treatment of these divergen
es requires aRG approa
h (Shankar, 1994). Within a simpler mean�eld treatment, however, it is easy to noti
e that the di-vergen
e of the bilayer sus
eptibility gives rise to an in-stability towards an antiferromagneti
 phase, where the
arbon atoms whi
h are not 
onne
ted to the neighbor-ing layers a
quire a �nite magnetization, while the mag-netization of the atoms with neighbors in the 
ontiguouslayers remain zero. A s
heme of the expe
ted orderedstate is shown in Fig. 38.D. Intera
tions in high magneti
 �eldsThe formation of Landau levels enhan
es the e�e
t ofintera
tions due to the quen
hing of the kineti
 energy.This e�e
t is most pronoun
ed at low �llings, when onlythe lowest levels are o

upied. New phases may appearat low temperatures. We 
onsider here phases di�er-ent from the fra
tional quantum Hall e�e
t, whi
h hasnot been observed in graphene so far. The existen
e ofnew phases 
an be inferred from the splitting of the val-ley or spin degenera
y of the Landau levels, whi
h 
anbe observed in spe
tros
opy measurements (Jiang et al.,2007a; Sadowski et al., 2006), or in the appearan
eof new quantum Hall plateaus (Abanin et al., 2007b;Giesbers et al., 2007; Goswami et al., 2007; Jiang et al.,2007b; Zhang et al., 2006).Intera
tions 
an lead to new phases when their e�e
tover
omes that of disorder. An analysis of the 
om-petition between disorder and intera
tions is found inref. (Nomura and Ma
Donald, 2007). The energy split-ting of the di�erent broken symmetry phases, in a 
leansystem, is determined by latti
e e�e
ts, so that it is re-du
ed by fa
tors of order a/lB, where a is a length ofthe order of the latti
e spa
ing, and lB is the magneti
length (Ali
ea and Fisher, 2006, 2007; Goerbig et al.,2006; Wang et al., 2007). The 
ombination of disorder

and a magneti
 �eld may also lift the degenera
y be-tween the two valleys, favoring valley polarized phases(Abanin et al., 2007a).In addition to phases with enhan
ed ferromag-netism or with broken valley symmetry, intera
tionsat high magneti
 �elds 
an lead to ex
itoni
 instabil-ities (Gusynin et al., 2006) and Wigner 
rystal phases(Zhang and Joglekar, 2007). When only the n = 0 stateis o

upied, the Landau levels have all their weight in agiven sublatti
e. Then, the breaking of valley degener-a
y 
an be asso
iated with a 
harge density wave, whi
hopens a gap (Fu
hs and Lederer, 2007). It is interestingto note that in these phases new 
olle
tive ex
itations arepossible (Doretto and Morais Smith, 2007).Intera
tions modify the edge states in the quantumHall regime. A novel phase 
an appear when the n = 0 isthe last �lled level. The Zeeman splitting shifts the ele
-tron and hole like 
hiral states, whi
h disperse in oppositedire
tions near the boundary of the sample. The result-ing level 
rossing between an ele
tron like level with spinanti-parallel to the �eld, and a hole like level with spinparallel to the �eld, may lead to Luttinger liquid featuresin the edge states (Abanin et al., 2007b; Fertig and Brey,2006).VI. CONCLUSIONSGraphene is a unique system in many ways. It is truly2D, has unusual ele
troni
 ex
itations des
ribed in termsof Dira
 fermions that move in a 
urved spa
e, it is an in-teresting mix of a semi
ondu
tor (zero density of states)and a metal (gaplessness), and has properties of soft mat-ter. The ele
trons in graphene seem to be almost insen-sitive to disorder and ele
tron-ele
tron intera
tions andhave very long mean free paths. Hen
e, graphene's prop-erties are rather di�erent from what is found in usualmetals and semi
ondu
tors. Graphene has also a veryrobust but �exible stru
ture with unusual phonon modesthat do not exist in ordinary 3D solids. In some sense,graphene brings together issues in quantum gravity andparti
le physi
s, and also from soft and hard 
ondensedmatter. Interestingly enough, these properties 
an beeasily modi�ed with the appli
ation of ele
tri
 and mag-neti
 �elds, addition of layers, by 
ontrol of its geometry,and 
hemi
al doping. Moreover, graphene 
an be dire
tlyand relatively easily probed by various s
anning probete
hniques from mesos
opi
 down to atomi
 s
ales, be-
ause it is not buried inside a 3D stru
ture. This makesgraphene one of the most versatile systems in 
ondensedmatter resear
h.Besides the unusual basi
 properties, graphene hasthe potential for a large number of appli
ations(Geim and Novoselov, 2007), from 
hemi
al sensors(Chen et al., 2007
; S
hedin et al., 2007) to transistors(Nilsson et al., 2007b; Oostinga et al., 2007). Graphene
an be 
hemi
ally and/or stru
turally modi�ed in orderto 
hange its fun
tionality and hen
eforth its potential



48appli
ations. Moreover, graphene 
an be easily obtainedfrom graphite, a material that is abundant on earth'ssurfa
e. This parti
ular 
hara
teristi
 makes grapheneone of the most readily available materials for basi
 re-sear
h sin
e it frees e
onomi
ally 
hallenged resear
h in-stitutions in developing 
ountries from the dependen
e ofexpensive sample growing te
hniques.Many of graphene's properties are 
urrently subje
t ofintense resear
h and debate. The understanding of thenature of the disorder and how it a�e
ts the transportproperties (a problem of fundamental importan
e for ap-pli
ations), the e�e
t of phonons on ele
troni
 transport,the nature of ele
tron-ele
tron intera
tions and how theymodify its physi
al properties are resear
h areas that arestill in their infan
y. In this review, we have tou
hedonly the surfa
e of a very deep sea that still has to beexplored.Whereas hundreds of papers have been written onmonolayer graphene in the last few years, only a smallfra
tion a
tually deals with multilayers. The majority ofthe theoreti
al and experimental e�orts have been 
on-
entrated on the single layer, perhaps be
ause of its sim-pli
ity and the natural attra
tion that a one atom thi
kmaterial, whi
h 
an be produ
ed by simple methods inalmost any laboratory in the world, 
reates for humanimagination. Nevertheless, few layer graphene is equallyinteresting and unusual with a te
hnologi
al potentialperhaps bigger than the single layer. Indeed, the the-oreti
al understanding and experimental exploration ofmultilayers is far behind the single layer. This is a fertileand open �eld of resear
h for the future.Finally, we have fo
used entirely on pure 
arbongraphene where the band stru
ture is dominated by theDira
 des
ription. Nevertheless, 
hemi
al modi�
ationof graphene 
an lead to entirely new physi
s. Depend-ing on the nature of 
hemi
al dopants and how they areintrodu
ed into the graphene latti
e (adsorption, substi-tution, or inter
alation) the results 
an be many. Small
on
entrations of adsorbed alkali metal 
an be used to
hange the 
hemi
al potential while adsorbed transitionelements 
an lead to strong hybridization e�e
ts that af-fe
t the ele
troni
 stru
ture. In fa
t, the introdu
ion of d-and f-ele
tron atoms in the graphene latti
e may produ
ea signi�
ant enhan
ement of the ele
tron-ele
tron inter-a
tions. Hen
e, it is easy to envision a plethora of many-body e�e
ts that 
an be indu
ed by doping and haveto be studied in the 
ontext of Dira
 ele
trons: Kondoe�e
t, ferromagnetism, antiferromagnetism, 
harge andspin density waves. The study of 
hemi
ally indu
edmany-body e�e
ts in graphene would add a new 
hap-ter to the short but fas
inating history of this material.Only future will tell but the potential for more amaze-ment is lurking on the horizon.
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