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Crackling noise arises when a system responds to changing external conditions 

through discrete, impulsive events spanning a broad range of sizes. A wide variety 

of physical systems exhibiting crackling noise have been studied, from earthquakes 

on faults to paper crumpling.  Because these systems exhibit regular behavior over 

many decades of sizes, their behavior is likely independent of microscopic and 

macroscopic details, and progress can be made by the use of very simple models. 

The fact that simple models and real systems can share the same behavior on a 

wide range of scales is called universality. We illustrate these ideas using results for 

our model of crackling noise in magnets, explaining the use of the renormalization 

group and scaling collapses. This field is still developing: we describe a number of 

continuing challenges. 
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Crackling noise: a new realm for science 

In the past decade or so, science has broadened its purview to include a new range of 

phenomena. Based on advances in the 1970's on second-order phase transitions0.5-4 and 

stochastic theories of turbulence5 and in the 1980's on disordered systems,6-8 we now 

claim that we should be able to explain how and why things crackle. 
 

      
 

Figure 1: The Earth Crackles.  (a) Time history of radiated energy from earthquakes throughout all of 
1995.10-12 The earth responds to the slow strains imposed by continental drift through a series of 
earthquakes: impulsive events well separated in space and time. This time series, when sped up, sounds 
remarkably like the crackling noise of paper, magnets, and Rice Krispies© (hear it in Ref. 12). (b) 
Histogram of number of earthquakes in 1995 as function of their magnitude (or, alternatively, their energy 
release). Earthquakes come in a wide range of sizes, from unnoticeable trembles to catastrophic events. 
The smaller earthquakes are much more common: the number of events of a given size forms a power 
law9 called the Gutenberg-Richter law. (Earthquake magnitude scales with the logarithm of the strength 
of the earthquake, e.g. its radiated energy. On a log-log plot of number vs. radiated energy, a power law is 
a straight line, as we observe in the plotted histogram.) One would hope that such a simple law should 
have an elegant explanation. 

Many systems crackle; when pushed slowly, they respond with discrete events 

of a variety of sizes. The earth responds9 with violent and intermittent earthquakes as 

two tectonic plates rub past one another (see figure 1). A piece of paper14 (or a candy 

wrapper at the movies15,16) emits intermittent, sharp noises as it is slowly crumpled or 

rumpled. (Try it: preferably not with this page.) A magnetic material in a changing 

external field magnetizes in a series of jumps.13,17 These individual events span many 

orders of magnitude in size – indeed, the distribution of sizes forms a power law with no 

characteristic size scale. In the past few years, scientists have been making rapid 



 3

progress in developing models and theories for understanding this sort of scale-invariant 

behavior in driven, nonlinear, dynamical systems.  

Interest in these sorts of phenomena goes back several decades. The work of 

Gutenberg and Richter9 in the 1940's and 1950's established the well-known frequency-

magnitude relationship for earthquakes that bears their names (figure 1). A variety of 

many-degree-of-freedom dynamical models,18-30 with and without disorder, have been 

introduced in the years since to investigate the nature of slip complexity in earthquakes. 

More recent impetus for work in this field came from the study of the depinning 

transition in sliding charge-density wave (CDW) conductors in the 1980's and early 

1990's.31-37  Interpretation of the CDW depinning transition as a dynamic critical 

phenomenon sprung from Fisher's early work,31,32 and several theoretical and numerical 

studies followed. This activity culminated in the RG solution by Narayan and Fisher34 

and the numerical studies by Middleton35 and Myers,36 which combined to provide a 

clear picture of depinning in CDWs and open the doors to the study of other disordered, 

nonequilibrium systems. 

Bak, Tang, and Wiesenfeld inspired much of the succeeding work on crackling 

noise.38,39  They introduced the connection between dynamical critical phenomena and 

crackling noise, and they emphasized how systems may naturally end up at the critical 

point through a process of self-organized criticality. (Their original model was that of 

avalanches in growing sandpiles. Sand has long been used as an example of crackling 

noise.40,41 However, it turns out that real sandpiles don't crackle at the longest 

scales.42,43) 

Researchers have studied many systems that crackle. Simple models have been 

developed to study bubbles rearranging in foams as they are sheared,44 biological 

extinctions45 (where the models are controversial:46,47 of course we personally believe 

that the asteroid did in the dinosaurs), fluids invading porous materials and other 
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problems involving invading fronts48-53 (where the model we describe was 

invented48,49), the dynamics of superconductors54-54.4 and superfluids,55,56 sound emitted 

during martensitic phase transitions,57 fluctuations in the stock market,58,59 solar flares,60 

cascading failures in power grids,61,62 failures in systems designed for optimal 

performance,63-65 group decision making,65.1 and fracture in disordered materials.65.2-65.7 

These models are driven systems with many degrees of freedom, which respond to the 

driving in a series of discrete avalanches spanning a broad range of scales – what we are 

calling crackling noise. 

There has been healthy skepticism by some established professionals in these 

fields to the sometimes grandiose claims by newcomers proselytizing for an overarching 

paradigm. But often confusion arises because of the unusual kind of predictions the new 

methods provide. If our models apply at all to a physical system, they should be able to 

predict all behavior on long length and time scales, independent of many microscopic 

details of the real world. This predictive capacity comes, however, at a price: our 

models typically don’t make clear predictions of how the real-world microscopic 

parameters affect the long-length-scale behavior. 

In this paper, we will provide an overview of the renormalization-group0.5-4 

many researchers use to understand crackling noise. Briefly, the renormalization group 

discusses how the effective evolution laws of our system change as we measure on 

longer and longer length scales. (It works by generating a coarse-graining mapping in 

system space, the abstract space of all possible evolution laws.) The broad range of 

event sizes will be attributed to a self-similarity, where the evolution laws look the same 

under different length scales. Using this self-similarity, we are led to a method for 

scaling experimental data. In the simplest case this yields power laws and fractal 

structures, but more generally it leads to universal scaling functions – where we argue 

the real predictive power lies. We will only touch upon the dauntingly complex 
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analytical methods used in this field, but we believe we can explain faithfully and fully 

both what our tools are useful for, and how to apply them in practice. The 

renormalization group is perhaps the most impressive use of abstraction in science. 

Why should crackling noise be comprehensible? 

Not all systems crackle. Some respond to external forces with lots of similar-sized, 

small events (popcorn popping as it is heated). Others give way in one single event 

(chalk snapping as it is stressed). Roughly speaking, crackling noise is in between these 

limits: when the connections between parts of the system are stronger than in popcorn 

but weaker than in the grains making up chalk, the yielding events can span many 

decades of sizes. Crackling forms the transition between snapping and popping. 

Figure 1b presents a pretty simple relationship. We expect that there ought to be 

a simple, underlying reason that earthquakes occur on all different sizes. The very small 

earthquake properties probably depend a lot on the kind of dirt (fault gouge) in the 

crack. The very largest earthquakes will depend on the geography of the continental 

plates. But the smooth power-law behavior suggests that something simpler is 

happening in between, independent of either the microscopic or the macroscopic details. 

There is a nice analogy with the behavior of a fluid. A fluid is very complicated 

on the microscopic scale, where molecules are bumping into one another: the 

trajectories of the molecules are chaotic, and depend both on exactly what direction they 

are moving and what they are made of. However, a simple law describes most fluids on 

long length and time scales. This law, the Navier-Stokes equation, depends on the 

constituent molecules only through a few parameters (the density and viscosity). 

Physics works because simple laws emerge on large scales. In fluids, these microscopic 

fluctuations and complexities go away on large scales: for crackling noise, they become 

scale invariant and self-similar. 
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How do we derive the laws for crackling noise? There are two approaches. First, 

one can analytically calculate the behavior on long length and time scales by formally 

coarse-graining over the microscopic fluctuations. This leads us to renormalization-

group methods,0.5-4 which we discuss in the next section. The analytic approach can get 

pretty hairy, but it can give useful results and (more importantly) is the only explanation 

for why events on all scales should occur. Second, one can make use of universality. If 

the microscopic details don’t matter for the long length scale behavior, why not make 

up a simple model with the same behavior (in the same universality class) and solve it? 
 

 
 
Figure 2: Magnets Crackle.66-69 Magnets respond to a slowly varying external field by changing their 
magnetization in a series of bursts, or avalanches. These bursts, called Barkhausen noise, are very similar 
(albeit on very different time and size scales) to those shown in figure 1 for the earthquakes. The 
avalanches in our model have a power law distribution only at a special value of the disorder, Rc=2.16.  
Shown is the histogram giving the number of avalanches Dint(S,R) of a given size S at various disorders R 
ranging from 4 to 2.25; the thin lines are theoretical predictions from our model. (Dint gives all the 
avalanches during our simulation, integrated over the external field -∞ < H(t) < +∞). The straight dashed 
line shows the power-law distribution at the critical point. Notice that fitting power laws to the data would 
work only very near to Rc: even with six decades of avalanche sizes, the slope hasn’t converged to the 
asymptotic value. On the other hand, the scaling function predictions (theoretical curves) work well quite 
far from the critical point. The inset shows a scaling collapse of the avalanche size distribution (scaled 
probability versus scaled size), which is used to provide the theoretical curves as described in the text. 
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The model we’ll focus on in this paper is a caricature of a magnetic 

material.17,48,49,66-70 A piece of iron will “crackle” as it enters a strong magnetic field, 

giving what is called Barkhausen noise. We model the iron as a cubic grid of magnetic 

domains Si, whose north pole is either pointing upwards (Si = +1) or downward (Si = -1). 

The external field pushes on our domain with a force H(t), which will increase with 

time. Iron can be magnetized because neighboring domains prefer to point in the same 

direction: if the six neighbors of our cubic domain are Sj, then in our model we let their 

force on our domain be ∑j J Sj. Finally, we model dirt, randomness in the domain 

shapes, and other kinds of disorder by introducing a random field hi, different for each 

domain and chosen at random from a normal distribution with standard deviation R, 

which we call the disorder. The net force on our domain is thus 

Force on domain i = H(t) + ∑j J Sj + hi.    [1] 

The domains in our model all start pointing down (-1), and flip up as soon as the net 

force on them becomes positive. This can occur either because H(t) increases 

sufficiently (spawning a new avalanche), or because one of their neighbors flipped up, 

kicking them over (propagating an existing avalanche). (Thermal fluctuations are 

ignored: a good approximation in many experiments because the domains are large.) If 

the disorder R is large, so the hi are typically big compared to J, then most domains flip 

independently: all the avalanches are small, and one gets popping noise. If the disorder 

is small compared to J, then typically most of the domains will be triggered by one of 

their neighbors: one large avalanche will snap up most of our system. In between, we 

get crackling noise. When the disorder R is just large enough so that each domain flip 

on average triggers one of its neighbors (at the critical disorder Rc), then we find 

avalanches on all scales (figures 2 and 3). 
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Figure 3: Self-similarity.  These are cross-sections of the avalanches during the magnetization of our 
model.17,66-69 Here each avalanche is drawn in a separate color. (a) shows a 1003 simulation and (b) shows 
a 10003 simulation (a billion domains21b); both are run at the critical point Rc=2.16 J where avalanches 
just barely continue. The black background represents a large avalanche that spans the system: the critical 
point occurs when avalanches would first span an infinite system. 

What do these avalanches represent? In nonlinear systems with many degrees of 

freedom, there are often large numbers of metastable states. Local regions in the system 

can have multiple stable configurations, and many combinations of these local 

configurations are possible. (A state is metastable when it cannot lower its energy by 

small rearrangements. It’s distinguished from the globally stable state, which is the 

absolute lowest energy possible for the system.) Avalanches are precisely the 

rearrangements as our system shifts from one metastable state to another. Our specific 

interest is in systems with a broad distribution of avalanche sizes, where shifting 

between metastable states can rearrange anything between a few domains and millions 

of domains.  

There are lots of choices we made in our model that don’t matter. Because of 

universality, we can argue72-73 that the behavior would be the same if we chose a 

different grid of domains, or if we changed the distribution of random fields, or if we 

introduced more realistic random anisotropies and random coupling constants. Were 

this not the case, we could hardly expect our simple model to explain real experiments. 
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The Renormalization Group and Scaling 

To study crackling noise, we use renormalization-group0.5-4,71,72 tools developed in the 

study of second-order phase transitions. The word renormalization has roots in the study 

of quantum electrodynamics, where the effective charge changes in size (norm) as a 

function of length scale. The word group refers to the family of coarse-graining 

operations basic to the method: the group product is composition (coarsening 

repeatedly). The name is unfortunate, however, as the basic coarse-graining operation 

does not have an inverse, and thus the renormalization group does not have the 

mathematical structure of a group. 

The renormalization group studies the way the space of all physical systems 

maps into itself under coarse-graining (see figure 4). The coarse-graining operation 

shrinks the system, and removes degrees of freedom on short length scales. Under 

coarse-graining, we often find a fixed point S*: many different models flow into the 

fixed point and hence share long-wavelength properties. To get a schematic view of 

coarse-graining, look at figure 3: the 10003 cross section looks (statistically) like the 

1003 section if you blur your eyes by a factor of 10. Much of the mathematical 

complexity of this field involves finding analytical tools for computing the flow 

diagram in figure 4. Using methods developed to study thermodynamical phase 

transitions2 and the depinning of charge-density waves,34 we can calculate for our model 

the flows for systems in dimensions close to six (the so-called ε expansion,71-73 where ε 

=6-d, d being the dimension of the system). Interpolating between dimensions may 

seem a surprising thing to do. In our system it gives rather good predictions even in 

three dimensions (i.e., ε=3), but it’s hard work, and we won’t discuss it here. Nor will 

we discuss real-space renormalization-group methods0.5 or series expansion methods. 

We focus on the relatively simple task of using the renormalization group to justify and 

explain the universality, self-similarity, and scaling observed in nature. 
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Figure 4: Renormalization-group flows.  The renormalization-group is a theory of how coarse-graining to 
longer length scales introduces a mapping from the space of physical systems to itself. Consider the space 
of all possible models of magnetic hysteresis (what an abstraction!). Each model can be coarse-grained, 
removing some fraction of the microscopic degrees of freedom and introducing more complicated rules 
so that the remaining ones still flip at the same external fields. This defines a mapping from our space into 
itself. A fixed point S* in this space will be self-similar: since it maps to itself upon coarse-graining, it 
must have the same behavior on different length scales. Points that flow into S* under coarse-graining 
share this self-similar behavior on sufficiently long length scales: they all share the same universality 
class. 

Consider the "system space" for disordered magnets. There is a separate 

dimension in system space for each possible parameter in a theoretical model (disorder, 

coupling, next-neighbor coupling, dipolar fields ...) or in an experiment (temperature, 

annealing time, chemical composition ...). Coarse-graining, however one implements it, 

gives a mapping from system space into itself: shrinking the system and ignoring the 

shortest length scales yields a new physical system with identical long-distance physics, 
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but with different (renormalized) values of the parameters.  We’ve abstracted the 

problem of understanding crackling noise in magnets into understanding a dynamical 

system acting on the space of all dynamical systems. 

Figure 4 represents a two-dimensional cross section of this infinite-dimensional 

system space. We've chosen the cross section to include our model (equation [1]): as we 

vary the disorder R, our model sweeps out a straight line (red) in system space. The 

cross section also includes a fixed point S*, which maps into itself under coarse-

graining. The system S* looks the same on all length and time scales, because it coarse-

grains into itself. We can picture the cross section of figure 4 either as a plane in system 

space (in which case the arrows and flows depict projections, since in general the real 

flows will point somewhat out of the plane), or as the curved manifold swept out by our 

one-parameter model as we coarse grain (in which case the flows above our model and 

below the green curved line should be ignored). 

The flow near S* has one unstable direction, leading outward along the green 

curve (the unstable manifold). In system space, there is a surface of points C which flow 

into S* under coarse-graining. Because S* has only one unstable direction, C divides 

system space into two phases. To the left of C, the systems will have one large, system-

spanning avalanche (a snapping noise). To the right of C, all avalanches are finite and 

under coarse-graining they all become small (popping noise). Our model, as it crosses C 

at the value Rc, goes through a phase transition. 

Our model at Rc is not self-similar on the shortest length scales (where the 

square lattice of domains still is important), but because it flows into S* as we coarse-

grain we deduce that it is self-similar on long length scales. Some phase transitions, like 

ice melting into water, are abrupt and don't exhibit self-similarity. Continuous phase 

transitions like ours almost always have self-similar fluctuations on long length scales. 

Also, we must note that our model at Rc will have the same self-similar structure as S* 
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does. Indeed, any experimental or theoretical model lying on the critical surface C will 

share the same long-wavelength critical behavior. This is the fundamental explanation 

for universality. 

 
Figure 5: Flows in the space of earthquake models. A model for earthquakes will have a force F applied 
across the front. In models ignoring inertia and velocity-dependent friction30, there is a critical force Fc 
that just allows the fault to slip forward. (a) Coarse-graining defines a flow on the space of earthquake 
models. The fixed point S*eq will have a different local flow field from other renormalization-group fixed 
points, yielding its own universality class of critical exponents and scaling functions. The critical 
manifold C, consisting of models which flow into S*eq, separates the stuck faults from those which slide 
forward with an average velocity v(F). (b) The velocity varies with the external force as a power law 
v(F)~Fβ. The motion of the continental plates, however, does not fix the force F across the fault: rather, it 
sets the average relative velocity to a small value vs (centimeters per year). This automatically sets the 
force across the fault very close to its critical force Fc. This is one example of self-organized 
criticality.38,39 
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The flows in system space can vary from one class of problems to another: the 

system space for some earthquake models (figure 5a) will have a different flow, and its 

fixed point will have different scaling behavior (yielding a different universality class). 

In some cases, a fixed point will attract all the systems in its vicinity (no unstable 

directions, figure 6). Usually at such attracting fixed points the fluctuations become 

unimportant at long length scales: the Navier-Stokes equation for fluids described 

earlier can be viewed as a stable fixed point.74,75 The coarse-graining process, averaging 

over many degrees of freedom, naturally smoothens out fluctuations, if they aren’t 

amplified near a critical point by the unstable direction. Fluctuations can remain 

important when a system has random noise in a conserved property, so that fluctuations 

can only die away by diffusion: in these cases, the whole phase will have self-similar 

fluctuations, leading to generic scale invariance.76,77  

 
 Figure 6: Attracting fixed point. Often there will be fixed points that attract in all directions. These fixed 
points describe phases rather than phase transitions. Most phases are rather simple, with fluctuations that 
die away on long length scales.74 When fluctuations remain important, they will exhibit self-similarity 
and power laws called generic scale invariance.76,77 
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Sometimes, even when the system space has an unstable direction like in figure 

4, the observed behavior always has avalanches of all scales. This can occur simply 

because the physical system averages over a range of model parameters (i.e., averaging 

over a range of R including Rc in figure 4). For example, this can occur by the sweeping 

of a parameter78 slowly in time, or varying it gradually in space – either deliberately or 

through large-scale inhomogeneities. 

One can also have self-organized criticality,38,39 where the system is controlled 

so that it naturally sits on the critical surface. Self-organization to the critical point can 

occur via many mechanisms. In some models of earthquake faults (figure 5b), the 

external force naturally stays near the rupture point because the plates move at a fixed, 

but very small22 velocity with respect to one another (figure 5b). (This probably does 

not occur during large earthquakes, where inertial effects lead to temporary strain relief 

.30,79) Sandpile models self-organized (if sand is added to the system at an infinitesimal 

rate) when open boundary conditions80 are used (which allows sand to leave until the 

sandpile slope falls to the critical value). Long-range interactions81-83 between domains 

can act as a negative feedback in some models, yielding a net external field that remains 

at the critical point. For each of these cases, once the critical point is understood adding 

the mechanism for self-organization is relatively easy. 

The case shown in figure 4 of plain old criticality is what’s seen in some17,66-69 

but not all81-85 models of magnetic materials, in foams,44 and in some models of 

earthquakes.30 

Beyond Power Laws 

The renormalization group is the theoretical underpinning for understanding 

why universality and self-similarity occur. Once we grant that different systems should 
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sometimes share long-distance properties, though, we can quite easily derive some 

powerful predictions.  

To take a tangible example, let’s consider the relation between the duration of an 

avalanche and its size. In paper crumpling, this isn’t interesting: all the avalanches seem 

to be without internal temporal structure.14 But in magnets large events take longer to 

finish, and have an interesting internal statistical self-similarity (figure 7a). If we look at 

all avalanches of a certain duration T in an experiment, they will have a distribution of 

sizes S around some average <S>experiment(T). If we look at a theoretical model, it will 

have a corresponding average size <S>theory(T). If our model describes the experiment, 

these functions must be essentially the same at large S and large T. We must allow for 

the fact that the experimental units of time and size will be different from the ones in 

our model: the best we can hope for is that <S>experiment(T) = A <S>theory(T/B), for some 

rescaling factors A and B. 

Now, instead of comparing to experiment, we can compare our model to itself 

on a slightly larger time scale.88 If the time scale is expanded by a small factor B=1/(1-

δ), then the rescaling of the size will also be small, say 1+a δ.  

<S>(T) = (1 + a δ) <S>( (1-δ) T) 

Making δ very small yields the simple relation a <S>=T d<S>/dT, which can be solved 

to give the power law relation <S>(T) = S0 Ta. The exponent a is called a critical 

exponent, and is a universal prediction of a given theory. (That means that if the theory 

correctly describes an experiment, the critical exponents will agree.) In our work, we 

write the exponent a relating time to size in terms of three other critical exponents, 

a=1/σνz. 
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Figure 7: Scaling of avalanche 
shapes.  (a) Voltage (number of 
domains flipped) pulse during a 
single large avalanche 
(arbitrary units). Notice how 
the avalanche almost stops 
several times: if the forcing 
were slightly smaller, this large 
avalanche would have broken 
up into two or three smaller 
ones. The fact that the forcing 
is just large enough to on 
average keep the avalanche 
growing is the cause of the self-
similarity: on average a partial 
avalanche of size S will trigger 
one other on size S.  (b) 
Average avalanche shapes86 for 
avalanches of different 
durations for our model (A. 
Mehta and K. A. Dahmen). Our 
theories don’t only predict 
power laws: they should 
describe all behavior on long 
length and time scales (at least 
in a statistical sense). In 
particular, by fixing parameters 
one can predict what are called 
scaling functions. If we average 
the voltage as a function of 
time over all avalanches of a 
fixed duration, we get an 
average shape. In our 
simulation, this shape is the 
same for different durations. (c) 
Experimental data of 
Spasojević et al.,87 showing all 
large avalanches averaged after 
scaling to fixed duration and 
area. The experimental average 
shape is very asymmetric and is 
not described correctly by our 
model. 
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To take a tangible example, let’s consider the relation between the duration of an 

avalanche and its size. In paper crumpling, this isn’t interesting: all the avalanches seem 

to be without internal temporal structure.14 But in magnets large events take longer to 

finish, and have an interesting internal statistical self-similarity (figure 7a). If we look at 

all avalanches of a certain duration T in an experiment, they will have a distribution of 

sizes S around some average <S>experiment(T). If we look at a theoretical model, it will 

have a corresponding average size <S>theory(T). If our model describes the experiment, 

these functions must be essentially the same at large S and large T. We must allow for 

the fact that the experimental units of time and size will be different from the ones in 

our model: the best we can hope for is that <S>experiment(T) = A <S>theory(T/B), for some 

rescaling factors A and B. 

Now, instead of comparing to experiment, we can compare our model to itself 

on a slightly larger time scale.88 If the time scale is expanded by a small factor B=1/(1-

δ), then the rescaling of the size will also be small, say 1+a δ.  

<S>(T) = (1 + a δ) <S>( (1-δ) T) 

Making δ very small yields the simple relation a <S>=T d<S>/dT, which can be solved 

to give the power law relation <S>(T) = S0 Ta. The exponent a is called a critical 

exponent, and is a universal prediction of a given theory. (That means that if the theory 

correctly describes an experiment, the critical exponents will agree.) In our work, we 

write the exponent a relating time to size in terms of three other critical exponents, 

a=1/σνz.  

There are several basic critical exponents, which arise in various combinations 

depending on the physical property being studied. The details of the naming and 

relationships between these exponents aren’t a focus of our paper. Briefly, the cutoff in 

the avalanche size distribution in figure 2 gets larger as one approaches the critical 
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disorder as (R-Rc)−1/σ (figure 2). The typical length of the largest avalanche goes as (R-

Rc)−ν. At Rc, the probability of having an avalanche of size S goes as S−(τ+σβδ) (figure 2); 

if one sits just at the critical field, it goes as S−τ. (Don’t confuse the small change in 

scale δ with the critical exponent δ.) The fractal dimension of the avalanches is 1/σν, 

meaning the spatial extent L of an avalanche is proportional to the size Sσν. The duration 

T  of an avalanche of spatial extent L goes as Lz… 

 
Figure 8: Critical exponents in various dimensions. We test our ε-expansion predictions72 by measuring69 
the various critical exponents numerically in up to five spatial dimensions. The various exponents are 
described in the text. All of the exponents are calculated only to linear order in ε, except for the 
correlation length exponent ν, where we use results from other models.71,72 The agreement even in three 
dimensions is remarkably good, considering that we’re expanding in ε where ε=3! We should note that 
perturbing in dimension for our system is not only complicated, but also controversial89 (see also section 
VI.C of Ref. 72 and section V of Ref. 69). 

To specialists in critical phenomena, these exponents are central; whole 

conversations will seem to rotate around various combinations of Greek letters. Critical 

exponents are one of the relatively easy things to calculate from the various analytic 
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approaches, and so have attracted the most attention. They are derived from the 

eigenvalues of the linearized flows about the fixed point S* in figure 4. Figure 8 shows 

our numerical estimates69 for several critical exponents in our model in various spatial 

dimensions, together with our 6-ε expansions71,72 for them. Of course the key challenge 

is not to get analytical work to agree with numerics: it’s to get theory to agree with 

experiment. Figure 9 shows that our model does rather well in describing a wide variety 

of experiments, but that two rival models (with different flows around their fixed 

points) also fit. 

 
 

Figure 9: Experiments vs. Theory: Critical Exponents. Different experiments on crackling noise in 
magnets measure different combinations of the universal critical exponents. Here we compare 
experimental measurements81,87,90-101 (see table I of Ref. 66) to the theoretical predictions for three 
models: our model,17,66-69 the front-propagation model48-53,100 and mean-field theory. (In mean-field theory 
our coupling J in equation [1] couples all pairs of spins: such long-range interactions occur because of the 
boundaries in models with magnetic dipolar forces.83 Mean-field theory is equivalent to a rather 
successful single-degree of freedom model.102,103) Power laws giving the probability of getting an 
avalanche of a given size, duration, or energy at the critical point are shown; also shown is the critical 
exponent giving the power as a function of frequency86 (due to the internal structure of the avalanches, 
Figure 7a). In each pair of columns, the first column includes only avalanches at external fields H in 
equation [1] where the largest avalanches occur, and the second column (when it exists) includes all 
avalanches. The various combinations of the basic critical exponents can be derived from exponent 
equality calculations similar to the one discussed in the text.66,71,86 Many of the experiments were done 
years before the theories were developed: many did not report error bars. All three theories do well 
(especially considering the possible systematic errors in fitting power laws to the experimental 
measurements: see figure 2). Recent work suggests a clumping of experimental values around the mean-
field and front-propagation predictions.100 
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Critical exponents are not the be-all and end-all: many other scaling predictions, 

explaining wide varieties of behavior, are quite easy to extract from numerical 

simulations. Universality extends even to those long length scale properties for which 

one cannot write formulas. Perhaps the most important of these other predictions are the 

universal scaling functions. For example, let’s consider the time history of the 

avalanches, V(t), denoting the number of domains flipping per unit time. (We call it V 

because it’s usually measured as a voltage in a pickup coil.) Each avalanche has large 

fluctuations, but one can average over many avalanches to get a typical shape.  Figure 

7b shows the average over all avalanches of fixed duration T. Let’s call this <V>(T,t). 

Universality again suggests that this average should be the same for experiment and a 

successful theory, apart from an overall shift in time and voltage scales: 

<V>experiment(T,t) = A <V>theory(T/B, t/B). Comparing our model to itself with a shifted 

time scale becomes simple if we change variables: let v(T,t/T) = <V>(T,t), so v(T,t/T) = 

A v(T/B,t/T). Here t/T is a particularly simple example of a scaling variable. Now, if we 

rescale time by a small factor B=1/(1-δ), we have v(T, t/T) = (1 + b δ) v(t/T, (1-δ) T). 

Again, making δ small we find b v = T ∂v/∂T, with solution v = v0 Tb. However, the 

integration constant v0 will now depend on t/T, v0 =V(t/T), so we arrive at the scaling 

form 

<V> (t,T) = TbV(t/T),      [2] 

where the entire scaling function V is a universal prediction of the theory.  

Figures 7b and 7c show the universal scaling functions V for our model86 and an 

experiment.87 For our model, we’ve drawn what are called scaling collapses, a simple 

but powerful way to both check that we’re in the scaling regime, and to measure the 

universal scaling function. Using the form of the scaling equation Eq.[2], we simply 

plot T–b <V>(t,T) versus t/T, for a series of long times T. All the plots fall onto the same 

curve. This tells us that our avalanches are large enough to be self-similar. (If in your 
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scaling collapse the corresponding plots do not all look alike, then any power laws you 

have measured are probably accidental.) It also provides us with a numerical evaluation 

of the scaling function V. Note that we use 1/σνz-1 for the critical exponent b. This is an 

example of an exponent equality: easily derived from the fact that  <S>(T) = ∫ <V>(t,T) 

dt = ∫ Tb V(t/T) dt ~ Tb+1, and the scaling relation <S>(T) ~T1/σνz.  

Notice that our model and the experiment have quite different shapes for V. The 

other two models from Figure 9 also give much more symmetrical forms for V than the 

experiment does.86 How do we react to this? Our models are falsified if any of the 

predictions are shown to be wrong asymptotically on long length and time scales. If 

duplication of this measurement by other groups continues to show this asymmetry, 

then our theory is obviously incomplete. Even if later experiments in other systems 

agree with our predictions, it would seem that this particular system is described by an 

undiscovered universality class. Incorporating insights from careful experiments to 

refine the theoretical models has historically been crucial in the broad field of critical 

phenomena. The message we emphasize here is that scaling functions can provide a 

sharper tool for discriminating between different universality classes than critical 

exponents.  

Broadly speaking, most common properties that involve large length and time 

scales have scaling forms: using self-similarity, one can write functions of N variables 

in terms of scaling functions of N-1 variables: F(x,y,z) = z−α F(x/zβ, y/zγ). In the inset to 

figure 2, we show the scaling collapse for the avalanche size distribution: D(S,R) = 

S−(τ+σβδ) D( (R-Rc) / S−σ). (This example illustrates that scaling works not only at Rc but 

also near Rc; the green unstable manifold in figure 4 governs the behavior for systems 

near the critical manifold C.) 
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Figure 10: Fractal spatial structure of an avalanche.67 Fractal structures, as well as power laws, are 
characteristic of systems at their critical point. This moderate-sized avalanche involved the flipping of 
282,785 domains in our simulation. The colors represent time: the first domains to flip are colored blue, 
and the last pink. So far, there have not been many experiments showing the spatial structure of 
avalanches.104 When experiments become available, there are a wealth of predictions of the scaling 
theories that we could test. Other systems105,55,30 have seen a qualitatively different kind of avalanche 
spatial structure, where the avalanche is made up of many small disconnected pieces, which trigger one 
another through the waves emitted as they flip. 

Many other kinds of properties beyond critical exponents and scaling functions 

can be predicted from these theories. Figure 10 shows the spatial structure of a large 

avalanche in our model: notice not only that it is fractal (rugged on all scales), but that it 

is longer than it is wide,106 and that it is topologically interesting.107 (It has tunnels, and 

sometimes during the avalanche it forms a tunnel and later winds itself through it, 

forming a knot. It’s interesting that the topology of the interfaces in the three-

dimensional Ising model have applications in quantum gravity.107) The statistics of all 

of these properties, in other systems, have been shown to be universal on long length 

and time scales. 
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Continuing challenges 

Do not be fooled: our understanding of crackling noise is far from complete. There are 

only a few systems30,34,50,51,54.2,54.4,71-73 where the renormalization-group framework has 

substantially explained even the behavior of the numerical models. There are several 

other approaches63,64,80,108-110 that have been developed to study crackling noise, many 

which share our view of developing effective descriptions on long length and time 

scales. But the successes remain dwarfed by the bewildering variety of systems that 

crackle. Getting a global perspective on the universality classes for crackling noise 

remains an open challenge. 

An even more important challenge is to make quantitative comparison between 

the theoretical models and experimental systems. We believe that going beyond power 

laws will be crucial in this endeavor. The past focus on critical exponents has 

sometimes been frustrating: it’s too easy to find power laws over limited scaling 

ranges,111 and too easy to find models which roughly fit them. It also seems unfulfilling, 

summarizing a complex morphology into a single critical exponent. We believe that 

measuring a power law is almost never definitive by itself: a power law in conjunction 

with evidence that the morphology is scale invariant (e.g., a scaling collapse) is crucial. 

By aggressively pursuing quantitative comparisons of other, richer measures of 

morphology such as the universal scaling functions, we will be better able both to 

discriminate among theories and to ensure that a measured power-law corresponds to a 

genuine scaling behavior. 

Another challenge is to start thinking about the key ways that these complex 

spatiotemporal systems differ from the phase transitions we understand from 

equilibrium critical behavior. (The renormalization-group tools developed by our 

predecessors are seductively illuminating: it’s always easy to focus where the light is 

good.) For example, in several of these systems there are collective, dynamical 
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“memory” effects17,112-115 that even may have practical applications.116 The quest for a 

scaling theory of crackling phenomena needs to be viewed as part of the larger process 

of understanding the dynamics of these nonlinear, nonequilibrium systems. 

A final challenge is to make the study of crackling noise profitable. Less noise 

from candy wrappers14-16 in movie theaters is not the most pressing of global concerns. 

Making money from fluctuations in stock prices is already big business.58,59 Predicting 

earthquakes over the short term probably will not be feasible using these approaches,117 

but longer term prediction of impending large earthquakes may be both possible79 and 

useful, say, for guiding local building codes. Understanding that the large-scale 

behavior relies only on a few emergent material parameters (disorder and external field 

for our model of magnetism) leads one to study how these parameters depend on the 

microphysics: one has dreams, for example, of learning how to shift an active 

earthquake fault into a harmless, continuously sliding regime by adding lubricants to the 

fault gouge. In the meantime, crackling noise is basic research at its elegant, 

fundamental best. 
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