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A consistent set of embedding functions and pair interactions for use with the embedded-atom
method [M.S. Daw and M. 1. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empiri-
cally to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals.
The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice
constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solu-
tion of the binary alloys. The validity of the functions is tested by computing a wide range of prop-
erties: the formation volume and migration energy of vacancies, the formation energy, formation
volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries
of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities

to (100) surfaces.

I. INTRODUCTION

Many problems in solid-state physics and materials sci-
ence require a detailed understanding of the energetics and
structure of nonuniformities in metals and alloys. Due to
the lower symmetry and long-range strains generally
found around defects and surfaces, the study of these
problems requires techniques that can handle a large num-
ber of atoms. This, in turn, requires a model of a solid
which is both accurate and computationally simple. His-
torically, these problems have been addressed with various
pair-potential models of the energetics of the constituents
of the solid.! =~ This approach is certainly useful in many
circumstances. However, there are some significant prob-
lems associated with the application of the pair potentials
when the local environment is substantially different from
the uniform bulk. This includes such problems as sur-
faces, grain boundaries, internal voids, and fracture pro-
cesses.

Daw and Baskes*> have proposed an alternative to the
pair-potential approach based on density-functional ideas,
which they call the embedded-atom method (EAM). As
with pair-potential models, the energetics of an arbitrary
arrangement of atoms can be calculated quickly, but the
ambiguity of the volume dependence inherent in pair-
potential models® is avoided. This new method has al-
ready been applied to several problems with good results.
The applications to bulk pure metals include phonon spec-
tra,’ structure of liquid metals,® dislocation propagation,’
and fracture properties.*> It has been applied to surfaces
and shown to provide realistic values for both the surface
energies and geometries® including the prediction of the
(1X2) surface reconstruction of Pt(110).!° Furthermore,
this approach has been applied successfully to segregation
phenomena in Ni-Cu alloys.!! The EAM has also been
used to study hydrogen interactions with metals. It has
predicted the ordered structures and critical temperatures
of hydrogen adsorbed on Pd(111) (Ref. 12) and the influ-
ence of hydrogen on dislocation motion® and fracture.*>
Because the EAM provides a more realistic description of
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the metallic cohesion, it appears to be a desirable alterna-
tive to pair-interaction models.

As will be discussed below, in the EAM, the energy of
each atom is computed from the energy needed to embed
the atom in the local-electron density as provided by the
other atoms of the metal. This electron density is approx-
imated by the superposition of atomic-electron densities.
Since this density is well defined at surfaces and in alloys,
there are no ambiguities involved in this approach. Com-
putationally, the EAM energy can be evaluated with about
the same amount of work as simple pair potentials.
Therefore, it is still feasible to perform large-scale com-
puter simulations of a wide variety of phenomena. Thus
the EAM provides a powerful new technique for atomistic
calculations of metallic systems.

The purpose of this paper is to present a consistent set
of embedding functions and short-range repulsive pair in-
teractions which are suitable to describe the fcc metals
Cu, Ag, Au, Ni, Pd, and Pt as well as all the alloy com-
binations of these elements. (While the parametric form
for these functions may not be the only or best possible
choice for a specific metal or alloy system, it is useful to
have a common set of functions that provide a good
description of a large set of metals and alloys. This facili-
tates the determination of trends over a range of metals or
alloys.) These functions have been determined empirically
by fitting the predicted results to the equilibrium density,
sublimation energy, elastic constants, and vacancy-
formation energy of the pure metals as well as to the heats
of solution of the binary alloys.

The validity of these EAM functions will then be tested
by calculating several properties of both the pure metals
and the binary alloys. For the pure metals, the parame-
trization used here forces the lattice constant, sublimation
energy, and bulk modulus to be exactly reproduced, as
will be discussed below. As tests, the migration energies
and formation volumes of vacancies and the formation
energy, formation volume, and migration energy of diva-
cancies and self-interstitials are computed and compared
with the available experimental data. Also, the surface
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energies and relaxed, but unreconstructed, surface
geometries of the low-index faces of the pure metals are
determined. For the alloys, the dilute limit of the segrega-
tion energy to (100) surface is computed for all the binary
alloys.

II. THEORY

Within the framework of density-functional theory, the
total electronic energy for an arbitrary arrangement of nu-
clei can be written as a unique functional of the total-
electron density. The starting point of the EAM is the
observation that the total-electron density in a metal is
reasonably approximated by the linear superposition of
contributions from the individual atoms. The electron
density in the vicinity of each atom can then be expressed
as a sum of the density contributed by the atom in ques-
tion plus the electron density from all the surrounding
atoms. This latter contribution to the electron density is a
slowly varying function of position. By making the sim-
plification that this background electron density is a con-
stant, the energy of this atom is the energy associated with
the electron density of the atom plus the constant back-
ground density. This defines an embedding energy as a
function of the background electron density and the atom-
ic species. In addition, there is an electrostatic energy
contribution due to core-core overlap. These ideas have
been developed by Daw and Baskes® and Daw,'’ who
show that these ideas lead to an approximation for the to-
tal energy of the form

E=3Flpn)+1 2 X 6;(Ry) . (1)
i i (D)
In this expression, py ; is the host electron density at atom
i due to the remaining atoms of the system, F;(p) is the
energy to embed atom i into the background electron den-
sity p, and @;;(R;;) is the core-core pair repulsion between
atoms i and j separated by the distance R;;. (Note that F;
only depends on the element of atom i and ¢;; only de-
pends on the elements of atoms i and j.) The electron
density is, as stated above, approximated by the superposi-
tion of atomic densities,

pri= 2 Pj(Ry), (2)
J (i)

where pj(R) is the electron density contributed by atom j.
With this approximation for the electron density, the ac-
tual computations using this method do not require signi-
ficantly more work than the use of pair-interaction
models. Note that the embedding function F;(p) is
universal, in that it does not depend on the source of the
background electron density. Thus the same embedding
function is used to calculate the energy of an atom in an
alloy that is used in the pure material. This universality
makes the EAM particularly appealing for studies of al-
loys.

To apply this method, the embedding functions, pair
repulsions, and atomic densities must be known. The
atomic densities will be taken from Hartree-Fock calcula-
tions'*!® as discussed below. Approximate values of the
embedding functions and pair interactions can be calculat-
ed from the formal definitions of these quantities within
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the density-functional framework as described by Daw.'?
These functions, however, only give qualitatively correct
predictions of the material properties, so it is necessary to
determine these functions empirically in order to obtain
an accurate description. The first-principles calculations
do give the following important information about the
general behavior of these functions. The embedding ener-
gy (defined relative to the free-atom energy) must go to
zero for zero electron density and should have a negative
slope and positive curvature for the background electron
densities found in metals. The pair-interaction term ¢(R)
is purely repulsive. This analysis also shows that the pair
interaction between two different species can be approxi-
mated by the geometric mean of the pair interaction for
the individual species. This observation, along with the
Coulombic origin of the pair-interaction term, suggest
writing the pair interaction between atoms of types A4 and
B in terms of effective charges as

¢ 48(R)=Z 4(R)Zg(R)/R . (3)

The effective charge is constrained to be positive and to
decrease monotonically with increasing separation.

Daw and Baskes® showed that it is possible to empiri-
cally obtain embedding energies F(p) and effective
charges Z(R) that accurately describe the energetics of
pure Ni and Pd. They assumed functional forms for F(p)
and Z (R) which meet the general conditions described in
the preceding paragraph and adjusted the parameters to
fit known bulk properties. In particular, they fit to the
sublimation energy, lattice constant, elastic constants,
vacancy-formation energy, and internal energy of the bcc
phase. They also obtained functions for hydrogen and
helium. These functions cannot be used to study alloys,
though. The information used in their empirical fits actu-
ally only determines F(p) and its first two derivatives for
electron densities near the average host electron density
Peq of the bulk pure materials at equilibrium. While this
provides sufficient information about F(p) to perform
many calculations for pure materials, the atoms in an al-
loy are embedded in electron densities substantially dif-
ferent from that in the pure material. In a subsequent pa-
per, Foiles'' showed that the zero-pressure equation of
state of the pure material could be used to determine the
embedding energy, F(p) for a larger range of electron den-
sities. This procedure was then applied to the Ni-Cu alloy
system where it was used to investigate surface-
segregation phenomena. The main objective of this work
is to apply this same procedure to obtain a consistent set
of embedding functions and pair interactions for the fcc
metals Cu, Ag, Au, Ni, Pd, and Pt.

The information about F(p) for densities well away
from p,, is obtained through the equation of state of the
expanded or compressed metals for which the electron
density at each lattice site is substantially different from
Peq- Rose et al. 16 have shown that the sublimation energy
of most metals as a function of lattice constant can be
scaled to a simple universal function,

E(a)=—Egy(1+a*)e=" . 4)

In this expression, E,, is the absolute value of the sub-
limation energy at zero temperature and pressure. The
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quantity a* is a measure of the deviation from the equili-
brium lattice constant,

a*=(a/ag—1)/(Eqw/9BQ)? . (5

Here, B is the bulk modulus of the material, a is a length
scale characteristic of the condensed phase, which we will
take to be the fcc lattice constant, ag is the equilibrium
lattice constant, and () is the equilibrium volume per
atom. This expression has been shown to given a good fit
to the equation of state of numerous metals over a wide
range of both expansion and compression. Further, the
only input data needed are the equilibrium density, sub-
limation energy, and bulk modulus of the material, which
are generally readily available.

Note that if the atomic electron densities p(R) and the
pair interaction ¢(R) are both known, then the embedding
energy can be uniquely defined by requiring the total ener-
gy of the homogeneous fcc solid, computed using Eq. (1)
to agree with the universal equation of state given by Eq.
(4). The problem then, is to determine the atomic electron
densities and pair interactions.

The atomic electron density is assumed to be well
represented by the spherically averaged free-atom densi-
ties calculated from Hartree-Fock theory by Clementi and
Roetti'* and McLean and McLean.!> There is one ambi-
guity in using these atomic densities for the bulk. While
the optimum electronic configuration is known for the
free atom, it is not clear that this configuration will be the
best representation of the electron density in the solid.
For a pure material, this is not a serious problem. The
main effect of changing the relative number of s and d
electrons is to simply change the electron density for the
distances that are actually used in these calculations by a
multiplicative factor. This reflects the fact that the d-
electron wave functions are quite small at the nearest-
neighbor distance. Changing the atomic density by a con-
stant factor, though, does not change the properties com-
puted for a single element, because this change simply re-
sults in a rescaling of the argument of the embedding
function as determined above. For a multicomponent sys-
tem, however, changing the atomic density used for one of
the components will strongly affect the mixing energies of
the alloy. Thus it is essential for the alloy systems that a
consistent choice be made for the electronic configura-
tions assumed for the different metals.

The atomic densities in this work are computed from
the Hartree-Fock wave functions by

pYR)=n,p,(R)+ngps(R) , (6)
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where n; and n; are the number of outer s and d elec-
trons and p, and p, are the densities associated with the s
and d wave functions. (There are wave functions avail-
able for different atomic configurations, i.e., different oc-
cupations of the s and d orbitals. The configurations used
in the current calculations are indicated in Table I. They
have the number of s electrons closest to the values of n;
that are determined here in the manner discussed below.)
The total number of s and d electrons, ng+ny, is fixed to
be 10 for Ni, Pd, and Pt, and 11 for Cu, Ag, and Au.
Thus the atomic density of each species depends on the
single parameter, n,. As will be discussed below, this pa-
rameter will be determined so as to give the proper heats
of solution of the alloys.

The last quantity that is needed is the pair-repulsion
term. In this work, we assume a simple parametrized
form for Z(R):

Z(R)=Zy(1+BRY)e R . (7)

The pair interaction ¢(R) is related to Z(R) by Eq. (3).
The value of Z, will be assumed to be given by the num-
ber of outer electrons of the atom, i.e., Z;=10 for Ni, Pd,
and Pt, while Zy=11 for Cu, Ag, and Au. Thus there
remain three parameters, a, 3, and v, to be determined.
Empirically, it was found that the choice v=1 leads to a
good representation of the elastic constants for Ni, Pd,
and Pt, while v=2 worked better for Cu, Ag, and Au.
With the above assumptions, there are three adjustable
parameters, a, 3, and ng, needed to determine the pair po-
tential, atomic electron density, and embedding function
for each material. These have been determined for the
elements Cu, Ag, Au, Ni, Pd, and Pt so as to yield the
elastic constants and vacancy-formation energy of each
material as well as the dilute limits of the heats of solu-
tion of the binary alloys (when such information is avail-
able). Note that, due to the definition of the embedding
function in terms of the equation of state of the pure ma-
terials, the equilibrium lattice constant, sublimation ener-
gy, and bulk modulus are guaranteed to be correct for the
pure materials. The values of a and B are primarily deter-
mined by both the shear moduli of the pure materials and
the vacancy-formation energy. The relative values of n;
are primarily determined by the heats of mixing of the al-
loys. Since n, is primarily determined by the heats of al-
loying, there is an overall scale factor for the set of values
for n; which is undetermined by the fitting. The ng for
Cu is therefore arbitrarily chosen to be 1. Note that for
this parametrization, there are 17 free parameters to be
adjusted. The data for each pure metal provides three

TABLE 1. Parameters defining the effective charges for the pair interactions [Eq. (7)] and atomic
electron density [Eq. (6)]. The last row specifies the atomic configuration used to calculate p; and p,.

Cu Ag Au Ni Pd Pt
Zy 11.0 11.0 11.0 10.0 10.0 10.0
a 1.7227 2.1395 1.4475 1.8633 1.2950 1.2663
B 0.1609 1.3529 0.1269 0.8957 0.0595 0.1305
v 2 2 2 1 1 1
ng 1.000 1.6760 1.0809 1.5166 0.8478 1.0571
Atomic 3d 45! 44°5s? 5d'%s! 3d%s? 44°5s! 5d°6s!

configuration
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TABLE II. Pure metal properties used to determine the functions: equilibrium lattice constants, sub-
limation energy, bulk modulus, elastic constants, and vacancy-formation energy. Where two numbers
are given, the top number is the value calculated with these functions and the lower number is the ex-

perimental value.

Cu Ag Au Ni Pd Pt
ao (A) 3.615 4.09 4.08 3.52 3.89 3.92
Eb (V) 3.54 2.85 3.93 4.45 3.91 5.77
B (ergs/cm®)* 1.38 1.04 1.67 1.804 1.95 2.83
C,, (ergs/cm’)® 1.67 1.29 1.83 2.33 2.18 3.03
1.70 1.24 1.86 2.465 2.341 3.47
Ci; (ergs/cm?) 1.24 0.91 1.59 1.54 1.84 2.73
1.225 0.934 1.57 1.473 1.76 2.51
Cy4 (ergs/cm’) 0.76 0.57 0.45 1.28 0.65 0.68
0.758 0.461 0.42 1.247 0.712 0.765
Ef (V) 1.28 0.97 1.03 1.63 1.44 1.68
1.3¢ 1.1¢ 0.9¢ 1.6 1.4f 1.5¢

2Reference 17.
®Reference 18.
‘Reference 19.
dReference 20.
“Reference 21.
fEstimated from melting point, see Ref. 22.

conditions (vacancy-formation energy and two conditions
from the elastic constants, because the bulk modulus is al-
ready determined.) In addition, the mixing enthalpies
provide 22 conditions. (Although there are 30 possible
mixing enthalpies, experimental data are not available in
eight cases.) Thus there are a total of 40 conditions used
here to fit these 17 parameters.

The parameters derived from the fit to define the pair
interactions and electron density are given in Table I. The
properties used in the fitting process are listed in Table I1.
The resulting functions are shown in Figs. 1 and 2. Note
that the effective charges Z (R) tend to group in pairs of
similar curves for the elements on the same row of the
Periodic Table. The embedding energies also show sys-
tematic trends with the functions becoming larger in mag-

Z(R)

FIG. 1. The effective charge Z(R) used to define the pair in-
teraction [see Eq. (3)] for Cu, Ag, and Au (solid lines) and for
Ni, Pd, and Pt (dashed lines). Z is in units of electron charge
and R is in A.

nitude as one moves down each column of the Periodic
Table.

The calculated values for the elastic constants and
vacancy-formation energy of the pure materials are com-
pared with the experimental values to which they were fit-
ted in Table II. The agreement is generally good, though
in some cases the difference between the predicted and ex-
perimental elastic constants remain as large as 20%. The
vacancy-formation energies agree well with the experi-
mental estimates. The typical difference is about 0.1 eV
and in no case is larger than 0.2 eV.

The heats of solution calculated from these functions
are compared in Table III with the experimental values to
which they were fitted. The experimental values are ob-
tained from the composition derivatives of the enthalpy®*

F(p)

-15.0 : — N
0.00 0.02 0.04 0.06

p (A3)

FIG. 2. The embedding functions F(p) as a function of back-
ground electron density for Cu, Ag, and Au (solid lines) and for
Ni, Pd, and Pt (dashed lines). The embedding energy is in eV
and the electron densities in A —3.
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TABLE III. Alloy heats of solution for single substitutional impurities used to define the functions.
The top number is the value calculated with these functions and the lower number is the experimental

energy from Ref. 23. The energies are in eV.

Host
Cu Ag Au Ni Pd Pt
Cu 0.18 —-0.12 0.06 —0.33 —0.38
0.25 —0.13 0.11 —0.39 —0.30
Ag 0.11 —0.11 0.42 —0.36 —0.18
0.39 —0.16 —0.11
Au —0.18 —0.11 0.30 —0.15 0.07
—-0.19 —0.19 0.28 —0.20
Ni 0.04 0.38 0.08 —0.15 —-0.25
0.03 0.22 —0.09 —0.33
Pd —0.34 —0.24 —-0.12 0.07 0.03
—0.44 —0.29 —0.36 0.06
Pt —0.54 —0.07 0.09 —0.28 0.04
-0.53 —0.28

evaluated at the two extremes of the composition range
for each alloy pair. The available thermodynamic data
are for high temperatures, typically around 1000 K.
There has been no attempt here to extrapolate these values
to zero temperature, in effect assuming that the finite-
temperature effects on the excess enthalpy is zero.

The agreement between the calculated and experimental
heats of solution in Table III is generally good, in most
cases within 0.1 eV. The largest discrepancies are found
for Cu-Ag, Pd-Ag, and Pd-Au. For four of the alloy
pairs, detailed thermodynamic data are not available. The
resulting heats of solution calculated here are then predic-
tions. In all cases, though, the values obtained here are
consistent with the phase diagrams of the alloys. The
Ni-Ag system is immiscible up to the melting point.2*
This is consistent with the large positive heats of solution
found here. For the Pt-Au system, there is a miscibility
gap over a large part of the composition range.* This
suggests positive heats of solution as found here. The
Pd-Pt system forms a continuous series of solid solutions
at high temperatures, though there is evidence that there
is a miscibility gap near 1050 K.?* This suggests that the
heats of solution should be small but positive. The Pt-Ag
system forms a variety of ordered phases.’* The forma-
tion of ordered phases suggests that the Pt-Ag interaction
is attractive relative to the Pt-Pt and Ag-Ag interactions.
This, in turn, suggests that the heat of solution should be
negative as found here.

III. PROPERTIES OF BULK METALS

There is nothing in the fitting procedure used here that
insures that the fcc structure will emerge as the most en-
ergetically stable structure predicted by these functions.
Accordingly, the energy of the bcc and hep phases of all
six metals have been computed. In computing these ener-
gies, the lattice constants and ¢ /a ratio of the hcp struc-
ture were both varied to obtain the minimum energy for
each of these phases. In all cases, the fcc structure was

found to be energetically favored over the hcp and bec
structures. The energy differences between these struc-
tures was found to be quite small. The energy of the bcc
phases is 0.02—0.05 eV above the fcc structures, while the
energy of the hcp structures is 0.003—0.01 eV higher than
the fcc phases. The ¢ /a ratio of the minimum energy hcp
structures is calculated to be within 0.01 of the ideal value
¢/a=1.633 for all of these metals.

As a further test of these functions, the formation
volume and migration energy of vacancies and the forma-
tion energy, formation volume, and migration energy of
divacancies and self-interstials have been determined. The
calculations are performed with a computational cell of
about 500 atoms with periodic boundary conditions. (Cal-
culations with more atoms yield the same results to within
less than 0.005 eV.) In all cases, the defect energy is mini-
mized with respect to the atomic coordinates of all the
atoms in the computational cell. In addition, the energy is
minimized with respect to the dimensions of the periodic
cell. The change in volume of the computational cell then
gives the formation volumes of the vacancies and self-
interstitials.

The predictions of the point-defect calculations are
presented in Table IV along with experimental estimates,
where available. (The vacancy-formation energies are
presented in Table II since that value was used in the fit-
ting.) The vacancy migration energies calculated for Cu,
Ag, and Au are in good accord with the experimental esti-
mates. For Ni and Pt, the agreement is poorer with the
calculated migration energies smaller than the experimen-
tally determined values. This may reflect a deficiency in
the functional form of the effective charge chosen for
these metals. The migration energy depends on interac-
tions at shorter range than the interactions entering
the elastic constants and vacancy-formation energy.
Vacancy-formation volumes follow the trends of the
available data.

For divacancies, the binding energy is reported rather
than the formation energy. The divacancy binding energy
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TABLE IV. Calculated point-defect properties: vacancy migration energy E,", vacancy-formation
volume AV, divacancy binding energy E 4., divacancy migration energy E7,, self-interstitial formation
energy E{j, self-interstitial formation volume AV, and self-interstitial migration energy EZ. € is the
equilibrium atomic volume. The upper values are the theoretical results and the lower values are experi-

mental values where available.

Cu Ag Au Ni Pd Pt
EM (V) 0.72 0.83 0.71 1.08 0.82 0.85
0.71° 0.66° 0.832 1.3 1.432
AVI/Q —0.26 —0.15 —0.39 —~0.10 —0.34 —0.45
—0.22¢ —0.06¢ —0.55¢
E%, (eV) 0.27 0.22 0.22 0.40 0.34 0.45
0.12¢ 0.38f 0.2—0.6* 0.33¢ 0.1-0.2°
ET (eV) 0.38 0.56 0.50 0.66 0.48 0.57
0.71f 0.57% 0.70% 0.838 1.1
E{; (V) 2.76 3.92 2.46 5.05 3.42 3.51
AVE/Q 1.74 2.05 1.47 2.11 1.52 1.40
1.45¢
EZ (V) 0.09 0.09 0.06 0.14 0.08 0.07
0.12" 0.063"

0.14h

2Reference 20.
YReference 21.
‘Reference 26.
dReference 27.

is the difference between the energy of two first-neighbor
vacancies and two well-separated vacancies. A positive
value indicates an attraction between the vacancies. The
calculations are again in good agreement with the experi-
mental values, with the exception of Pt, for which the cal-
culated binding is larger than the experimental estimates.
In all cases, the formation volume of the divacancy was
found to be within 0.03 atomic volumes of twice the for-
mation volume of two monovacancies. The migration of
divacancies proceeds by the motion of an atom in a lattice
site adjacent to both of the vacancy sites into one of the
vacancy sites. The barrier for this motion is calculated to
be between 0.4 and 0.7 eV. This agrees well with the esti-
mates from radiation-damage experiments for Ag and Au.
The experimental values for divacancy migration energies
in Pt is significantly higher than the values obtained here,
though. This is probably related to the low migration en-
ergy calculated for the monovacancy in Pt.

The calculated lowest-energy configuration for self-
interstitials is the [100] dumbbell configuration for all of
these metals. In this configuration the interstitial atom
and a lattice atom form a symmetric pair centered on a
lattice site with the axis of the dumbbell along the [100]
crystal direction. This agrees with the experimental con-
clusions about self-interstitial structure based on x-ray
scattering analysis.?® For all cases the energetically next
best orientation for the self-interstial dumbbell is along
the [110] direction. The formation energy of self-
interstitials is computed to be large ranging from 2.5 to
5.0 eV. The formation volume is also computed to be
large. The only experimental data on the formation
volume is for Cu where the experimental result is in
reasonable agreement with our calculations. The migra-

“Reference 28.
fReference 29.
8Reference 30.
hReference 31.

tion energy for self-interstitials is computed to be on the
order of 0.1 eV. These values agree well with the esti-
mates from radiation-damage experiments for Cu, Ni, and
Pt.

IV. PURE METAL SURFACES

The present functions have been used to calculate the
surface energy and geometry of the low-index faces, (100),
(110), and (111). In all cases, the relaxation from the
bulk-terminated geometries was allowed to occur, but no
effort was made in these calculations to search for ener-
getically favored reconstructions. The EAM is a good
tool for the investigation of reconstruction, though. In
particular, Daw has shown that these functions predict
that the (1 X2) missing-row reconstruction of the Pt(110)
surface is lower in energy than the unreconstructed sur-
face.'® This result agrees with the experimental observa-
tion of a (1X2) reconstruction of that surface.’> A sys-
tematic study of the possible reconstructions of the clean
surfaces of these metals is in progress.

The surface energies obtained for the low-index faces of
these six metals are presented in Table V. The surface en-
ergies are calculated by comparing the energy of a period-
ic slab of atoms to the energy of the same number of
atoms in the bulk material. For all cases, the close-packed
(111) face has the lowest energy, followed by the (100) and
(110) faces. This table also contains the estimates, due to
Tyson and Miller,® of the surface energy based on
liquid-metal surface energies. The calculated surface en-
ergies are consistently lower than these estimates. This
difference may be due, in part, to the presence of less en-
ergetically favorable faces and defects on the average sur-
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TABLE V. Calculated surface energies of the low-index faces and the experimental average surface

energy from Ref. 33 in units of ergs/cm?.

Cu Ag Au Ni Pd Pt
(11n 1170 620 790 1450 1220 1440
(100) 1280 705 918 1580 1370 1650
(110) 1400 770 980 1730 1490 1750
Experimental 1790 1240 1500 2380 2000 2490

(average face)

face for which these estimates are intended. In addition,
there is significant uncertainty in the estimates of the sur-
face energy, as evidenced by the wide range of values ob-
tained by different researchers.’® The trends from ele-
ment to element in the surface energies calculated here do
agree with the trends found also in the experimental data.

The change in the interlayer spacings, Az, computed for
the relaxed surface geometries relative to the spacings for
the truncated bulk geometries are presented in Table VI.
Note that all the top-layer spacings show a small contrac-
tion. Further, the rougher (110) surfaces show larger re-
laxations than do the smoother (100) and (111) faces.
Both of these general features agree with the trends found
in the experimental data.>> There have been many experi-
ments performed to determine these relaxations using
low-energy electron diffraction and ion scattering. Below,
we compare our calculated values for the surface relaxa-
tions with the recent experimental results of which the au-
thors are aware.

The relaxations of the (100) and (111) faces of Cu have
been found experimentally to be fairly small, about —0.02
A3 This agrees well with our results. The first-layer
contractions determined experimentally for the (110) sur-
face of Cu (Ref. 37) range from —0.07 to —0.11 A, in
reasonable agreement with our values. The second-layer
spacing for this surface is experimentally found to in-
crease by 0.03—0.04 A. While our results do show a small
second-layer expansion, it is smaller by about an order of
magnitude. The same general conclusion holds for Ag.
There, the experimental c‘:,ontraction37 of the (111) face
was found to be <0.05 A, consistent with our calcula-
tions. The experimental determinations of the change in
the first- layer spacing of the (110) face range from —0.08
to —0.11 A.> The second-layer spacing is found to in-
crease by 0.03—0.06 A. Detailed comparison of our re-
sults for Au are unfortunately not possible since both the
(100) and (110) surfaces reconstruct and the authors are

not aware of any recent measurements of the relaxation
on the (111) face. The relaxations for the Ni(100) and
Ni(111) have been measured to be very small, <0.02 A.
This is in agreement with our results. The (110) relaxa-
tions were measured to be somewhat larger than our re-
sults, namely —0.06 or —0.10 A. No results were found
for the relaxation of the clean surfaces of Pd and compar-
ison with the (100) and (110) faces of Pt is not possible
since they undergo reconstruction. In general, the trends
found in our results for the surface relaxations agree well
with experiment but the magnitude of the effects, espe-
cially for second-layer relaxations, may be underestimated
by the present functions.

V. ALLOY SURFACES

The segregation of alloying elements at inhomogeneities
such as a surface is of great importance. In order to test
the ability of these functions to correctly predict segrega-
tion, the zero-temperature energetics of an impurity atom
near a (100) surface have been computed. Table VII
presents the energy of a substitutional impurity atom in
either the first or second atomic layer of a (100) face of a
pure metal slab, computed relative to the energy of that
substitutional impurity in the bulk. A negative value of
this energy thus implies that the impurity in question will
be enriched in that atomic layer. A positive value implies
depletion of that element. Of course, these energies are
computed in the dilute limit and can change substantially
if there is a significant concentration of the impurity near
the surface. The utility of these numbers is that they indi-
cate the segregating species and suggest the magnitude of
the segregation.

The segregating species is known experimentally for 18
of the cases examined here.’®=*° In all of these cases, the
calculations predict that the experimentally observed
segregating species will be enriched in either the first or

TABLE VI. Surface relaxation of the top-layer spacing Azy,, and of the second layer spacing Az,;,
for the ]ow index faces. These values are calculated for unreconstructed geometries. Distances are ex-

pressed in A.
Cu Ag Au Ni Pd Pt
(100) Az, —0.026 —0.038 —0.128 —0.004 —0.085 —0.135
Azy; —0.006 —0.001 0.011 —0.002 —0.001 0.012
(110) Az, —0.063 " —0.074 —0.220 —0.029 —0.155 —0.244
Az 0.003 0.005 0.031 0.001 0.016 0.036
(111) Az —0.029 —0.031 —0.100 —0.011 —0.072 —0.109
Az,; —0.001 0.001 0.015 0.000 0.006 0.017
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TABLE VII. The energy of a single impurity in the first and second atomic layers of a (100) surface
relative to the energy of the impurity in the bulk of the host material. The energies are given in eV.
The first line is the energy in the first atomic layer and the second line is the energy in the second atom-

ic layer.
Host
Cu Ag Au Ni Pd Pt
Cu 0.10 0.15 —0.18 0.03 —0.04
—0.01 —0.07 0.02 —0.12 —0.09
Ag —0.46 —0.07 —-0.75 —0.25 —0.44
—0.04 —0.03 —0.03 —0.15 —0.06
Au —0.40 0.11 —0.94 —0.18 —0.49
—0.01 0.01 —0.03 —0.08 0.04
Ni 0.11 0.11 0.15 0.02 —0.01
—0.03 —0.03 —0.13 -0.19 —0.20
Pd —0.13 0.24 0.21 —0.62 —-0.23
0.04 0.02 0.04 0.02 0.12
Pt 0.15 0.42 0.38 —0.32 0.22
0.01 —0.01 —0.05 0.00 —0.10

second atomic layer. There are two interesting features in
these results. First, in many cases the sign of the segrega-
tion energy differs for the two planes. This suggest that
the composition profile may oscillate in these cases. Such
behavior was found in the study of the Ni-Cu system us-
ing the EAM,!! as well as in field-ion-microscopy studies
of the composition profile of that system.*! Second, for
Cu or Ni in Pd or Pt hosts, the segregation energy is
larger for the second layer than for the first. This sug-
gests rather interesting composition profiles for these
cases.

VI. SUMMARY

This paper presents a set of embedding energies, pair
interactions, and atomic densities to be used with the
EAM to describe pure metals and alloys containing Cu,
Ag, Au, Ni, Pd, or Pt. These functions were determined
by assuming simple functional forms which were adjusted
to yield the bulk sublimation energy, elastic constants,
vacancy-formation energies, and binary alloy heats of
solution. We have endeavored here to use the simplest
parametrized forms possible with the fewest number of
parameters. The use of more flexible functional forms
may produce functions that more accurately describe a
given metal or alloy. The simple functional forms used

here with the relatively small number of adjustable pa-
rameters were chosen to make the fit to a large number of
alloy combinations computationally feasible. Thus, better
fits may be possible for describing a smaller number of
elements. Further, more experimental data could be used
in the fitting process to determine the functions more reli-
ably.

The validity of these functions has then been tested by
applying them to a wide variety of bulk and surface prop-
erties of both the pure metals and the alloys. The calcu-
lated properties for the pure metals include point-defect
properties and surface energies and geometries. The cal-
culated alloy properties are the segregation energies of
substitutional impurities to the (100) surface. The agree-
ment between the calculations and the available experi-
ment data is generally quite good, especially considering
the wide range of properties determined. In addition,
some interesting predictions have been made about the de-
tails of surface segregation.
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