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Flux-tube model for hadrons in QCD
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We extract from the strong-coupling Hamiltonian lattice formulation of QCD a model for had-
rons based on the use of quark and flux-tube degrees of freedom. The ordinary quark model of
mesons and baryons is recovered as an appropriate limit, but the properties of hybrids, pure glue,
and multiquark hadrons are-also predicted by the model. The basic tenets of the model can be tested
by lattice Monte Carlo simulations.

I. INTRODUCTION

Although QCD seems to be the correct theory of the
strong interactions, its application to the main phenome-
na of strong-interaction physics, such as hadron masses
and hadron decay and production characteristics, is still
in a rudimentary state. Lattice simulations have now
given a convincing demonstration that QCD confines, but
attempts to calculate the masses of the low-lying mesons
and baryons on the lattice, while qualitatively encourag-
ing, have not yet reached a satisfactory conclusion. It is
unclear, moreover, how much further these ab initio cal-
culations can be taken with foreseeable computer capacity.

By contrast, the quark model has had considerable suc-
cess in systematizing many of the details of meson and
baryon spectra, intrinsic moments, and couplings, espe-
cially after the naive quark model was supplemented
with certain simple dynamical features characteristic of
QCD. In this form the quark model has even been ap-
plied with some success to such complicated problems as
deriving the nucleon-nucleon potential which underlies
nuclear physics.

We present here a model for hadrons extracted from the
strong-coupling Hamiltonian

'

lattice formulation of
QCD. The model contains the ordinary quark model in
an appropriate limit, but it includes as well pure glue
states, hybrids (which have both quark and gluonic de-
grees of freedom in evidence), and other exotics. The
model is not QCD, but it may be useful as a guide in the
present period where rigorous solutions of QCD are un-
available. Indeed, given its complexity, we will probably
always want to have models which can provide simple
pictures of the dynamics of QCD, so we do not view such
model building as having only temporary value.

We should stress that the spectrum of QCD will inevi-
tably be richer than that of the naive quark model. For
example, even if we remove the quarks from QCD, there
would remain a nontrivial SU(3) Yang-Mills theory which
must have its own spectrum of states. These states, possi-
b)y transformed in various ways by the presence of
quarks, will become the "glueball" states of QCD. It is,
however, unclear how the quark model should be extended

to incorporate such gluonic degrees of freedom. One
widely adopted approach is to proceed by analogy with
the "constituent quark" to posit the existence of a "con-
stituent gluon" with the quantum numbers ( J = I
color octet) of a gluon of weak-coupling perturbation
theory. We pursue the opposite point of view in this pa-
per, basing our picture on QCD in the strong-coupling re-
gime in which the gluonic degrees of freedom have con-
densed into collective stringlike flux tubes. It seems to us
plausible that the strong-coupling limit in which quarks
are confined may be more relevant to an understanding of
hadrons than the weak-coupling limit in which they are
free. At any rate, it certainly seems to us worth pursuing
the implications of the fact that in strong coupling there
is no direct analog of the gluon, though there is of the
quark.

This observation, that in strong coupling quarks and
flux tubes are the natural degrees of freedom, is basic to
our model. A flux tube (or "flux link" on the lattice) is a
directed element (or "string") in which the scalar quantity

(where E, is the color-electric field) has a
definite nonzero eigenvalue. As we shall see below, a
quark (antiquark) acts as a unit source (sink) of flux; in
addition, three units of flux all directed toward (away
from) a "junction" can annihilate (be created) there. Such
observations immediately lead to an understanding of the
linear confinement potential of heavy quarkonia, to (ap-
proximately) linearly rising Regge trajectories, and to the
idea that QCD is similar to the dual relativistic string
theory of a decade ago.

In the following we will extract our model from Hamil-
tonian lattice QCD, and then discuss in turn its general
characteristics and its application to the simplest types of
hadrons. Later we shall introduce some topics (multi-
quark states, decay via flux-tube breaking, exotic-hadron
phenomenology, . . . ) which we are continuing to study,
but concerning which we have some preliminary con-
clusions. In the final section of the paper we survey both
what has been done and also the much larger body of
work that remains to be done. A preliminary report on
some of the results of this paper has been published else-
where. Some of the physical considerations presented in
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with a the lattice spacing and g the corresponding cou-
pling constant. Here C1 is defined in terms of the eight
generators Ei'+ of SU(3) transformations of Ui at the be-
ginning ( —) or the end ( + ) of the link

gfEi+ Ui]=— (2)

fEi —,Ui ]=+ Ui
2

(3)

Ci ——g (Ei'+ ) = g (Ei' )
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arriving at our model from QCD are similar to those of
Ref. 8. Its application to the simplest meson topology (see
Sec. III A) is related to the work of Ref. 9.

II. ORIGIN OF THE MODEL

A. Hamiltonian lattice QCD

We begin the derivation of our model by reviewing
Hamiltonian lattice QCD. As there are many excellent
reviews available on the foundations of this subject, we
will mainly just quote those results which are important
for our development.

In the Hamiltonian formulation of QCD on a cubic
spatial lattice, the quark degrees of freedom "live" on the
lattice sites while the gluonic degrees of freedom "live" on
the links between these sites (see Fig. 1, where we also de-
fine some of our terminology). Let us consider first the
theory without quarks: we describe this theory in terms
of link variables Ui which (before quantization) are 3&(3
SU(3) group elements. The pure gauge-field Hamiltonian
is then the sum of two parts, one involving only the U's

and one which has nontrivial commutation relations with
the U's:

g 2

Hglue =
2a l,

.„k, 1

1
Trf2 —(Ui, Ui, Ui, Ui, +H.c. )]

+g plaquettes

P (11121314)

In the second term the product of the U's is taken in or-
der around the plaquette. To complete lattice QCD one
simply adds to (1) a lattice Hamiltonian Hq„„k for the
quarks interacting with the glue. With the quark fields as
site variables we have

1
Hquark g inq g 9nCn+ g Ij UI .ill. .li (4)

flavors q sites n flavors q
links 1;.

where ai is the Dirac matrix in the direction of the link
Jt

lJg ~

Our complete Hamiltonian

lattice
~QCD ~glue +Hquark

has HQcD in A =O gauge as its naive continuum limit; it
is, furthermore, invariant under arbitrary time-
independent gauge transformation at the lattice sites.
Gauss' law takes the form of a constraint in the theory
that the only physically relevant states are those which are
gauge invariant. Finally, we mention that the quark
Hamiltonian as written suffers from what is known as the
"species-doubling problem, "but there are several methods
for correcting this problem and this technical point need
not concern us here.

In this formulation of QCD the lattice spacing a plays
the role of the regulator mass in normal quantum field
theory. I.atticizing the theory also has another advantage:
it allows one to set up a strong-coupling perturbation ex-
pansion in which the expansion parameter for lattice
QCD is 1/g instead of g. We may expect to be able to
learn more about the strongly coupled regime of the
theory in terms of such an expansion, and indeed this
seems to be the case: for example, we will see below that
confinement is an automatic property of the g~ oo limit
of lattice QCD. Moreover, the natural degrees of freedom
of the strong-coupling regime are not quarks and gluons,
but rather quarks and flux tubes, the latter being more in
accord with various qualitative ideas on the nature of con-
finement in QCD. Of course, space is not coarse-grained
(at least not on the scale of 10 ' m), so that to relate lat-
tice QCD to real QCD we must consider the limit a —+0.
In this limit, g~O so that a strong-coupling expansion
must fail; this is just the other side of the failure of the
weak-coupling expansion for small Q . Since, however, it
can be shown that the two regimes "match" around g = 1,
thereby proving that lattice QCD as a —+0 is QCD, one
neverthe1ess expects the strong-coupling expansion to be
useful in many situations where large scales dominate, just
as the weak-coupling expansion is useful for short-
distance physics.

A simple analogy may be helpful. Consider approxi-
mating a continuous one-dimensional harmonic oscillator
by a particle hopping along a one-dimensional lattice of
points x =na ( n =. . ., —2, —1,0, 1,2, . . . ) with lattice
spacing a. The lattice Hamiltonian could be chosen to be

~ ~
FIG. 1. A two-dimensional (x,y) slice of the lattice showing

a typical lattice point n ={n,n„,n, ), a typical link l - fromn+x, n

n to n+x, and a typical plaquette p (lll2l3l4).

1 1 2 2 1
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since then the Schrodinger equation

~(t)
i =H~„g„(t)

Bt

becomes

i ' = — + —kx' P(x, t)
. 8 (xt) 1 8 1

r)t 2m, Qx 2 2

(6)

(a) (b) (c)
FIG. 2. Some pure glue states.

as a —+0. Now for a ~ oo the potential-energy term
—,ka n 6~„dominates and the eigenstates correspond to
the particle sitting on single lattice sites; corrections to
this limit are of relative order X= 1/kma and one can
proceed to systematically do perturbation theory in this
hopping strength. Since the characteristic scale of the
harmonic oscillator is a '=(km) '~, one will not get
realistic wave functions or eigenenergies for the harmonic
oscillator for a ~&a ' where lowest-order perturbation
theory works well, but for P-1 one will begin to get good
approximations to the solutions of the continuum problem
if one works to sufficiently high order in P. By contrast,
starting with free-particle solutions to the continuum
Hamiltonian and treating —,

' kx as a perturbation is hope-
less. (The difference, of course, is that the hopping-
parameter expansion for the ground state, for example,
will be accurate if a matrix of dimension of order 1/aa is
diagonalized. )

We are now ready to consider the properties of H&cD'.
We note first that in the strong-coupling limit where a
(and, as we shall see, therefore g) is large, the only terms
which survive are

H.,=', y C, '+pm, q„'q„.
links q, n

The eigenvalues of C~ are just those of the square
Casimir operator of SU(3): 0 for the singlet, —', for 3 or 3,
—"
, for 6 or 6, 3 for the octet, etc. The quark part of Hsc

is, on the other hand, diagonalized by an arbitrary number
of quarks and antiquarks at arbitrary lattice sites (subject
to the exclusion principle). Since, however, the only phys-
ically relevant eigenstates are those which are gauge in-
variant, the strong-coupling eigenstates may be classified
as follows.

(1) The strong-coupled vacuum In this stat. e all links
are unoccupied ( C~ ——0) and there are no fermions; the to-
tal energy E„,is zero.

(2) The pure glue sector There are still .no quarks, but
links are excited in such a way that gauge-invariant states
are produced. The simplest such pure glue states ("glue
loops" ) have a closed path of links in the 3 (or 3) repre-
sentation. These have energy (2g /3a )L where L is the
length of the path; the simplest such state just has the
links around the perimeter of an elementary plaquette ex-
cited: Tr(U~ UI, U~ Ut, ) ~0) where ~0) is the vacuum.

Of course more complicated configurations are allowed,
including those with nontriplet flux and those with more
complicated topology' involving the three flux-link junc-
tions in which the ends of three links are. contracted at a
single site with the invariant tensor e,Jk. See Fig. 2.

(3) The meson sector. The simplest quark-containing

JL

FIG. 3. Some meson states.
(b)

state consists of a quark and antiquark on the lattice
joined by a path of flux links (for gauge invariance).
These will hive energy

mq +m-+ (2g /3a )L

so that we automatically have quark confinement in
strong coupling. See Fig. 3.

(4) The baryon sector The. next simplest quark-
containing state consists of three quarks connected by an
e Jk type f-lux junction. Such quarks will also be confined.
See Fig. 4.

(5) Multiquark sectors. When there are more quarks
than those required for a meson or baryon, then in general
the system will not be completely confined. The simplest
such system consists of two quarks and two antiquarks.
See Fig. 5.

With these examples, the general structure of the eigen-
states of the strong-coupling limit is clear: it consists of
"frozen" gauge-invariant configuration of quarks and flux
lines. Of course these are not the eigenstates of QCD, but
they do form a complete basis (in the limit a~0) for the
expansion of the true strong interaction eigenstates. Note
that this clearly illustrates our earlier remark that there
are more states in QCD than those possible in the quark
model. Consider, for example, the "meson sector" defined
above: in the quark model a meson is defined by the spins
and relative coordinate of the quark and antiquark, but in
QCD one must also specify the state of the flux between
them. " We shall see later how these extra degrees of free-
dom imply the existence of hybrid mesons in QCD.

The full eigenstates of QCD can be found (in principle)
by considering corrections to the strong-coupling limit
from the terms we have neglected so far. These terms can
induce a variety of effects. Consider first of all the
(1/a)q Uaq term. It can, among other things, (1) annihi-
late a quark at one point and recreate it at a neighboring
point with an appropriate flux link [Fig. 6(a)] and (2)
break a three-flux line and create a quark-antiquark pair
[Fig. 6(b)]. This term thus plays a role analogous to both
the quark kinetic-energy term and the quark-gluon cou-
pling term of the weak coupled theory. Next consider the
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(a)

(a)
FIG. 4. Some baryon states.

1 Tr[2 —(Ul Ul U( U( +H.c.)]
ag 4 3 2 1

term. It can, among other things (1) allow flux to hop
across plaquettes [Fig. 7(a)] and (2) change flux topology
[Fig. 7(b)].

We now consider an instructive calculation on the
departures from the strong-coupling limit: we will exam-
ine the effects of such departures on quark confinement
by considering two infinitely massive quarks separated by
X lattice sites along an axis of the lattice. In the strong-
coupled limit, ignoring the constant 2m~,

(9)
3a 3a

Since we wish to associate this energy with the linear po-
tential bL of quark models (to be discussed below), we
would require that 2g /3a =b This in. turn shows that
the bare coupling g must be chosen to depend on a:
g (a) =(3/2)ba, and we see already that as we let a de-
crease so that we can recover the continuum limit, we will
eventually encounter values of g that require considera-
tion of corrections to the strong-coupling limit. In the
case at hand the lowest-order corrections will consist of
(1) corrections to E„„via mixing between the strong-
coupled vacuum and states with single excited plaquettes
and (2) corrections to E&& via mixing between the straight
line of flux and flux configurations with (a) kinks, (b) con-
nected loops of flux, and (c) disconnected excited pla-
quettes [Figs. 8(a), 8(b), and 8(c)].

The result of such a second-order calculation is that

(c)
FIG. 6. (a} Quark hopping. (b) Flux-breaking pair creation.

{c) qq "seeding. "

must now choose

g (a) = —,ba 1+ 176
4131b 0

(12)

Clearly this calculation can be carried out in principle to
arbitrarily high order. ' When one does this one will find

,f(g'), (13)

(a)

where f (g ) is a pure power-series expansion in 1/g . If

E(2 ' —E(2' = 2g L 1 —1172 2

204

where +=2/g is the strong-coupling expansion parame-
ter. We see that we still have a linear confinement poten-
tial with

(2} 2g
1 — 112

3a2 51g8

Note that to maintain the same physical string tension we

11 3

(a) (b)
FIG. 5. Some qqq q states

3 ii

(c}

(c)
FIG. 7. (a) Flux-tube hopping. (b) Flux-tube topological mix-

ing by rearrangement. {c)Flux-tube topological mixing by "bub-
ble formation. "
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(b)

(c)
FIG. 8. Some lowest-order corrections to the QQ ground

state.

QCD is to confine then we see that as a —+0 we must be
able to choose g (a) in such a way that b remains fixed at
its physical value. This requirement, along with the re-
quirement that, as a ~0, g (a) must behave as deduced
from weak coupling, shows that confinement, while
natural, is not trivial in lattice QCD. Incidentally, from
the fact that db/da=0 and from knowledge of g(a) from
weak coupling, one can deduce that as a ~0

f(g')=, (I3og') ' ' exp( —1/13og'),2 b 2 11 PO '(14)

where A is a constant', and where Isc= 11/16m and

P&
——102/256m are the first two coefficients in the expan-

sion of the perturbative "P function" of asymptotic-
freedom fame. Note that f(g ) has no power series ex-
pansion near g =0, proving that confinement cannot be
seen in QCD via perturbation theory about weak coupling.
This clearly makes the strong-coupling expansion the
more attractive starting point for understanding hadron

physics.

B. The flux-tube model for QCD

We are now in a position to give a first general defini-
tion of our model. As already stressed, although the
.strong-coupling eigenstates are not the eigenstates of
QCD, they are a complete basis for QCD. Thus if we
could diagonalize Hgg in this basis for sufficiently
small lattice spacing a, we would be able to solve the
theory. We propose that it is useful to reorganize the
Hamiltonian matrix into blocks of a given topology' and
then to diagonalize within each block, before taking into
account interblock mixing. In other words, we first treat
quark hopping and flux-tube oscillation exactly and then
consider the mixing between such topological blocks.
This corresponds to a generalization of the type of Fock-
space expansion that has proved useful in the quark
model: it seems to be a reasonable first approximation
(for low-lying states at least) to neglect meson widths
which correspond to a mixing between the qq and qqq q
sectors of the theory. We hope to treat not only this as-

pect of the (1/a)q Uaq term as a perturbation, but also
all other nontopologically diagonal departures from the
strong-coupling limit. Of course .the utility of this pro-
gram is dubious for processes that are dominated by the
(weak) perturbative regi'me of QCD. We shall deal with
this issue below; we do not think this is an impediment to
the successful treatment of hadronic objects which are in
all presently known cases dominated by the nonperturba-
tive regime.

To illustrate the model in more detail in a simple con-
text, consider first a heavy QQ pair and ignore all pair
creation effects. Then the strong-coupled basis states for
this system will consist of all possible flux-tube topologies
which are consistent with Gauss' law, including a single
flux tube flowing from Q to Q via an arbitrary path in the
lattice, various branching flux tube shapes, and configura-
tions with disconnected flux excitations. As our first ap-
proximation we consider only those departures from
strong coupling which "unfreeze" the quarks and flux
tubes into objects with kinetic energy, but ignore mixing
between these topological sectors. The transition between
frozen and fluid flux tubes corresponds to the "roughen-
ing transition"' seen in numerical lattice work and clear-
ly corresponds to an essential requirement for relating any
lattice calculation to continuum physics (compare to the
harmonic-oscillator example of the previous section). In
the case where the QQ separation r is large, we can expect
to approximate the state of the system in terms of a lattice
of scale a with r &~a-i,o where A,o-b ' is the scale
where g-1 and topological mixing becomes important.
With such a lattice, interblock mixing will be weak and
our model will describe this system in terms of a (per-
turbed) discrete string. For infinitely heavy quarks with
separation r »A, o, the ground state of this system will be
well approximated by a QQ pair with a string in its
quantum-mechanical ground state, the first excited state
will be doubly degenerate with either a.right- or left-
handed phonon excited in the lowest string mode, etc. As
the distance r is slowly varied, the eigenenergy of the
string eigenstate 5 will trace out an adiabatic potential
V (r), and we will associate such potentials with an adia-
batic approximation to the physics of mesons. When the
QQ pair move in the adiabatic potential br of the ground
state of this QCD. quantum string, one recovers the usual
spectrum of mesons in the quark model. When the pair
moves in the adiabatic potential of an excited string, the
resulting hadrons correspond to a new species not con-
tained in the usual quark model: hybrid mesons with both
quark and gluonic degrees of freedom in evidence.

The baryon sector, while more complicated, is analo-
gous to the mesons: the ordinary baryons of the quark
model correspond to three quarks moving in the adiabatic
potential of the ground state of the three-junction ( Y)
string, while excited strings will lead to hybrid baryons.
The phenomenology of hybrid mesons and baryons will be
discussed in a later section.

Even more novel than the hybrid states are those made
of pure glue, which correspond in the model, in the same
approximation, to the various quantum states of a closed
loop of (discrete) string. The phenomenology of such
states will also be discussed below.
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In multiquark systems we are for the first time forced
to go beyond the simple vibrating-string picture to consid-
er an essential role for topological mixing. This is because
in such systems adiabatic surfaces will always cross in the
absence of mixing, as can be seen by considering Fig. 7(b)
for the case when the qqq q system is arranged at the
corners of a square. Such systems are consequently con-
siderably more complicated than those we have already
considered.

Of course the 'simple classification scheme we have
presented here is both incomplete and inaccurate. For ex-
ample, one must expect to find (at high masses) "topologi-
cal meson hybrids" in which the QQ system moves in the
potential of more complicated string topologies. There
will, in addition to mixing between topologies via the

1 Tr[2—( U( U( UI U( +H. c. )]
Qg

4 3 2 1

term, be deviations from the adiabatic limit that mix
states with different phonon excitations. While all such
effects can be described within the context of this model,
its utility will depend on the degree to which they are
weak at least for low-lying states. Perhaps the very suc-
cess of the naive quark model for mesons and baryons
provides some evidence in favor of the viability of such a
separation.

Although we have argued for the validity of this ap-
proximation for large-scale phenomena in QCD, it must
fail at short distances where g~0. As a~0, mixing will
become increasingly strong and the state of the gluonic
degrees of freedom in our QQ example will become an in-
creasingly complicated mixture of flux-tube topologies.
This is to be expected: in this regime QCD is most simply
described in terms of quarks with a weakly coupled octet
of vector gluons, and we know that the linear potential
must be modified. We will more fully discuss this diffi-
cult interface between strong and weak coupling in the
context of the systems we will encounter below.

With this general survey of the model completed, we
are ready to apply it to various specific systems. We will
return in the final sections to consequences of the model
which could be checked with numerical lattice simulations
and to generalizations of the model to other gauge
theories.

III. HADRONS IN THE FLUX-TUBE MODEL
In this section we will present the results of a first,

rough survey of the consequences of the flux-tube model
for hadrons. It will become apparent from the develop-
ment which ensues that a more precise discussion will re-
quire the inclusion of a number of "second-order" effects
(which are presently under study and on which we expect
to report in due course), but we believe this survey should
adequately portray the main features of the terrain.

A. Mesons and meson vibrational hybrids

We first consider again a system consisting of static
quark and antiquark sources a large distance r ~~b
apart. As we have already argued, in this case the system
will behave like a quark and antiquark connected by a
discretized quantum string. The lowest excitations of
such a string will correspond to nonrelativistic, small

y~(g) =S1Ilm7Tg, (17)

It should be noted that the "bare" string tension b0 ap-
pearing in (15) should not be identified with the physical
string tension b which, as we will see immediately, in-
cludes effects arising from the zero-point energy of the
string.

The quantization of (15) for fixed r is of course
straightforward: the eigenstates are characterized by pho-
non occupation numbers n' with the phonons labeled by
their mode m and polarization i; the eigenenergies are ac-
cordingly

E(n')=b0r+ g(n' + —,
'

)co
m, l

(19)

For most purposes the continuum approximation (15) to
our string is adequate, but to discuss its zero-point energy,
we must recall that the string should be considered to be
discrete on a scale a. The modifications required to effect
this discretization are minimal: in (15) replace g by

, where (%+1)a =r, recognize that g should take
on the discrete values na/r (n =. O, . . .%+I), and in the
harmonic approximation take

y~(n) =sin men
%+1 (20)

co =—sin (1&m &X) .2 . m7T

a 2K+I (21)

The zero-point energy can be evaluated exactly in this ap-
proximation to give

2

ED b0r= g g —,'co-
m=li =1

r

~2 sin[m&/4(N + 1)]
a sin[sr/4(X + 1)]

(22)

7

~a Q 12I"
(23)

transverse displacement oscillations and so should be well
described by the Hamiltonian of a continuous string

'2
Hs =60r + X g (~~~~+ —.~~'b0'r'q' q' ),

&o&

where q~ and m~ are string normal coordinates and their
conjugate momenta defined in terms of the transverse
string displacement vector y(g) with 0 & g & 1 by

y(k)=geq'y (4), (16)
l, P7l

where y~(g) is the mth normal mode, e; (i =1,2) are unit
vectors orthogonal to the interquark separation r =rq —r,
and gr is the distance along the undisplaced string of the
displacement y(g). In the harmonic approximation ap-
propriate to the low-lying excitations, one would have
simply
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4a, (r)
E (r)= — +c+br

3I'
(24)

We see explicitly in this example that the zero-point ener-

gy contributes to the physical string tension, and also that
it produces a constant term, a Coulomb-type term, and so
on.

We believe that one must interpret these terms with
some care: it is important to realize that the relevant
quantity is not the absolute energy of the system we are
considering, but rather its energy relative to the vacuum.
In this regard, recall that the structure of the vacuum will
be modified from that of the strong-coupling vacuum at
the small scale A,p-b '

by vacuum fluctuations. Al-
though these fluctuations are strictly speaking the effects
of mixing between topologically distinct sectors of the
theory and should not therefore logically be considered at
this stage, their existence will have an effect on the energy
of the static gg system, which we are considering. It fol-
lows that (23) is incomplete: the presence of the string
will modify these fluctuations and therefore affect

E&& E„„(s—ee Sec. IIA for an explicit example). We
should not be surprised that we are unable to calculate the
physical string tension: this is analogous to the situation
in QCD where the physical string tension sets the scale of
the whole theory and where it (or some substitute for it
like AQcD) must be used as input to the renormalization
program. In contrast, the constant term in (23) is in prin-
ciple calculable from QCD, but here we are forced to in-
troduce such a constant term c as a parameter which we
can only constrain very roughly to have the order of mag-
nitude b '~ . Finally, we consider the —m /12r term which
has some celebrity since, unlike any of the other terms in
(23) (including those omitted), its precise coefficient

vr/12 has b—een shown to have a very general validity.
From our point of view, however, the existence of this
term is rather irrelevant. It is, to be sure, the term which
arises from the zero-point motion of our stringlike degrees
of freedom, but topological mixing effects, which produce
departures from the "thin-string" approximation, will

modify this idealized behavior. Indeed we know that the
sum of all such effects must produce a transition from a
gluon field with energy br at large distances to a ground
state of the gluon field with energy —4a, (r)/3r at dis-
tances r &b ' . It is thus natural to assume the usual
two-component Coulomb + linear model for the
ground-state energy of the gluon fields in this situation

E'(r) = — +c +br +—(1—e f ")
3I' r

(25)

with f a number of order unity. Fortunately, as we shall
see, our results will not be very sensitive to this short-
distance cutoff parameter f. (Our original results were
for f= ao. )

We are now ready to discuss the meson and meson vi-
brational hybrid spectra and quantum numbers in a very
rough fashion. For the ordinary mesons we use the effec-
tive quark Schrodinger equation

gy E (r) of the gluon field. From this point of view we
can see that the quark model should work in conditions
where it treats states of quarks moving in this lowest adia-
batic potential which are well separated in energy, on a
scale set by the quark oscillation frequencies, from the
next (excited gluon state) adiabatic potential of the same
quantum numbers. The flux-tube model thus automati-
cally recovers the quark model for heavy-quark spectros-
copy and tells us how to systematically correct the quark
model in situations where there are violations of its condi-
tions of validity. '

The flux-tube model also gives us new kinds of mesons,
the simplest being the "vibrational hybrids" which, in the
adiabatic limit, correspond to a quark and antiquark mov-
ing in an excited string adiabatic potential E (r) for S&0.
We will devote most of the remainder of this subsection to
the derivation of the masses and quantum numbers of the
lowest-lying such states.

Consider the lowest hybrid adiabatic potential with one
m=1 phonon. We expect the appropriate adiabatic po-
tential E'(r) to be modified from E (r) in two ways: it
will include a term + m/r from exciting the phonon, and
at small r the Coulomb term —4a, /3r appearing in E (r)
will be replaced by the appropriate short-distance gluon-
field energy which evolves adiabatically from the excited
string. (Very roughly speaking, at short distances these
states will display a gluonic field with a local excitation
but clearly this excitation need not be closely related to a
weak-coupling gluon. ) As r —+0 the q and q will lie on
top of one another, but the excitation in the gluon field,
which will carry the memory of its adiabatic ancestry ex-
plicitly in its quantum numbers, will have an extension
b ' . It is thus natural to assume that as r —+0 the m/r
does not blow up, but rather evolves to some fixed finite
value of order mb '~ . We therefore take

and to presume that the transition region will be smoothly
interpolated by this model.

We can now continue to consider further consequences
of (15). In the presence of static sources we see that the
gluon field has a sequence of states S with energy levels
characterized by the phonon mode occupation numbers
n~ As a first app. roximation, valid in the limit of heavy
quarks, we will treat these eigenenergies E (r) associated
with the string states S as adiabatic potentials in which
the quarks move.

The ordinary mesons of the quark model thus corre-
spond to a quark and antiquark moving in the adiabatic
potential (24) corresponding to the ground-state eigenener-

~p 1 8 I.(L+1)
2+ +E r

2p Br 2pr
(26)

1.1 for u, d, s mesons,

3 0.5 for cc and bb

where p is the qq reduced mass. Taking the standard
string tension b=0.18 GeV, the constituent quark masses
m„=md ——0.33 GeV, m, =0.55 GeV, m, =1.77 GeV, and
rnb ——5.17 GeV, the constant c = —0.7 GeV, and taking a
mean value of
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then gives a reasonable picture of the gross level structure
(before spin-dependent interactions) of ordinary meson
spectroscopy. This procedure thus sets all of our parame-
ters except f.

Now consider the mesons which live on E'(r). There
are two transverse polarization states of the string, which
may be taken to be clockwise and anticlockwise about the
quark-antiquark axis. In general if n~+ (n~ ) is the
number of clockwise (anticlockwise) phonons in the mth
mode and A = g (n + n —), the dependence of the
string wave function on the angle y about the axis is e' ~.
The quantity A is therefore the angular momentum com-
ponent about this axis. Since clockwise and anticlockwise
polarizations interchange under the parity operation, the
states for nonzero A will occur in parity doublets. This
parity doubling is a well-known property of the adiabatic
limit for systems which have the symmetry of a sym-
metric rotator. As shown in the Appendix, for such a sys-
tem the quark angular wave function for orbital angular
momentum L and axial component M is DMA($, 8, —P)
and the centrifugal barrier, ignoring transitions between
adiabatic surfaces, is

L(L+1)—A +(Ls )

dependent perturbations. Some may consider our neglect
of these relativistic corrections less serious than our use of
the Schrodinger equation to describe the quark motion
and the use of the small oscillation, nonrelativistic ap-
proximation for the string motion in the first place.
Indeed, we agree that relativistic effects are very impor-
tant, especially in the light mesons and for short strings,
but we believe that a large fraction of these effects can be
successfully subsumed into the choice of the parameters
of a nonrelativistic model.

We reserve a discussion of the phenomenology of these
states to Sec. VI.

B. A nonrelativistic model of glue loops

The pure glue sector of the model appears in principle
to be simpler than the meson sector just discussed. How-
ever, the absence of the static quark limit means that
there is no natural adiabatic limit such as that used for
mesons. It nevertheless seems reasonable to suppose that
the simplest topology, the single loop of flux, will form
the basis of the lowest-lying states. We describe position
on this torus of flux by the cylindrical coordinates (z,p, @)
where +z defines the orientation of the loop's arrow by
the right-hand rule. Expanding about a circular loop of
flux with z=0 and mean radius pp we then have

Here I,
&

is the quark angular momentum operator and the
two components of Lz are the raising and lowering
operators of the angular momentum component along the
axis. We drop the last term in (28). Its effect is to raise
somewhat the lowest hybrid masses' (see also Sec. VA).
Using the effective radial Hamiltonian for the first hybrid
surface

p(@)=p po+ g (a~~sinm @+@'cosm 4)
m=2

+z g (a' sinm@+13' cosm&P)
m =2

(30)

O' I.(I +1)—A'
2+ +E r

2p BI" 2pI'
(29)

we get the predictions for hybrid masses listed in Table I.
The quantum-number assignments shown in Table I are
also derived in the Appendix.

We stress that the mass estimates of Table I are rather
crude: we would estimate their reliability to be no better
than +100 MeV for the center of gravity of each flavor
sector. In addition we recall that in this same approxima-
tion the Aq(1320), 8(1235), and A&(1250) are all degen-
erate: we have not considered here the question of spin-

and we treat po and the Fourier-expansion coefficients
a~~, P~,a~,P~ as quantum variables. The Fourier sum
starts at m =2 since the I= 1 modes correspond to pure
translation and rotation. In addition to these variables the
system (in its rest frame) requires two further variables
(8,$) to specify the orientation of the (body-fixed) z axis
in space.

We now assume that the motion in (p0, 8,$) may be
treated by the adiabatic approximation in the same way as
was the motion in ( r, 0,$) for the meson string in the pre-
vious section. For fixed (p0, 8,$) the Hamiltonian of the
closed string is

TABLE I. Some low-lying meson hybrids.

Flavor

I=1
1I=—
2

J"or Z'

2—+, 1 —+,0—*,1+—+—

2-+, 1+,0-+, 1-+

2++ 1++ 0+~ 1++

Mass (GeV}

for f=l
1.67
1.80

1.67

(GeV}

0.08
0.10

0.08

(GeV)

0.19
0.17

0.19

(GeV)

—1.9
-2.0
—1.9

I=O (ss)
CC

bb

2++, 1 —+,0—+ +, 1 ——
2+~ 1+T- 0+~ 1++
2+~'1+~ 0++ 1++

1.91
4.19

10.79

0.12
0.18
0.28

0.14
0.06
0.02

-2.1

-4.3
-10.8

'Contribution to the mass from nonadiabatic effects, taken from Ref. 14.
"A "best guess" based on the previous columns.
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m mbo.2 2

Hs =2nbopo+ g + Vl
2~&opo 2Po

(31)
8' (p)=2mpb+c'+ (1—e ) .

P
(34)

where y; are the normal coordinates a~,P,a', g for
each m and the n; are their conjugate momenta. If as in
Sec. III A we apply a short-wavelength cutoff by discretiz-
ing the string at a scale a -A,o, then we get a ground-state
zero-point energy 8'o as a function of the mean circumfer-
ence X =2mpo of the glue loop given by

In Eqs. (33) and (34), we have introduced a parameter f'
to play a similar role to the parameter f we introduced for
the hybrid states. In the adiabatic approximation in
(po, 8,$) each eigenstate of Hs will yield such a potential
surface for an effective Schrodinger equation in the vari-
able p. Changing to the variable g =p

~ this takes the
form

8'o bo@—= 4 13m
ma'

(32) ,+, + & (g'~') f(g) =EP(g) (35)
dg 2m/

to be compared with (23). For a large loop the excluded
small-scale vacuum fluctuations per unit length should be
the same as for a long straight flux tube; it therefore
seems clear, since the coefficient of K in (32) and r in (23)
are identical, that the "renormalized" string tension in
this case should as in mesons be b. The absence of a con-
stant term in (32) is cutoff dependent and in any event, in
view of the effect of the loop on vacuum fluctuations, we
must expect that there will be a constant c' associated
with the glue-loop zero-point energy. The Coulomb-type
—13m./3K term is, like the —m/12r term in mesons, cut-
off independent. However, as in that case we would argue
that the effects of topological mixing at small scales make
this fact irrelevant. For mesons we could argue that the
lowest-lying adiabatic potential should connect smoothly
onto 4a, /—3r, but unfortunately here we have no such
limit to guide us. We must therefore allow for a generic
effective potential in this case of the form

8' (p) =2m pb +c' —~(1—e ~) (33)
P

and are forced to accept the fact that we will be unable to
predict the ground-state glue-loop mass with precision. In
addition to its ground state, (31) has vibrationally excited
states, the lowest of which are four degenerate m=2
states with excitation energy 2/p which have A=2 about
the z axis; we expect for these states an energy

with the boundary condition that P(0) =0. The spectrum
is quite complex. It consists of the following states.

(1) The ground-state "breathing mode" and its radial
excitations with J =0++.

(2) A set of orbitally excited states with
J =1+,2++,3+ . . . built on each 0++ "breathing
mode" state.

(3) A further set of two parity doublets of opposite C
with A=2, J=2 each with their radial and orbital excita-
tions.

(4) A set of states with two m=2 phonons with A=O
and J=0 which are low-lying since they avoid the
centrifugal-barrier effect in (35).

(5) Many further states at higher mass.
Table II gives a summary of the lowest glue-loop quan-

tum numbers and masses. Note, incidentally, that the
lowest 0 + state lies more than 1 GeV above the ground
state.

C. Baryons and baryon vibrational hybrids

The baryons of the usual quark model correspond in
thi's picture to three quarks moving in the adiabatic poten-
tial generated by the ground-state energy eo(rt, rz, r3) of
the three flux-tube junction tying together quarks at posi-
tions r&, r2, and r3, excitations of the normal modes of
this flux tube configuration correspond to baryon vibra-

TABLE II. Some low-lying pure glue states. The similar masses given in Ref. 7 were for the values
c'=c, y =0, and f'= oo. As discussed in the text, the true values of these parameters are unknown; the
values chosen for the masses given here are only suggestive. Note that splittings are relatively insensi-
tive to this choice, but in general absolute masses are not. The exceptions to this comment on the stabil-
ity of splittings are the four degenerate J=2 vibrational states which have moved down by 0.4 GeV and
the four degenerate J=O states (not mentioned in Ref. 7) which would be considerably higher in mass
with f' = oo .

JPC

0++
1+—
Q++
Q++ Q+ —0—+ 0——
2+ +
2++ 2+ —2—+
1+
3+

Mass (GeV) for

c'=0, y= 6, f'=1

1.52
2.25
2.75
2.79
2.84
2.84
3.25
3.35

dm
dc

dm

(Gev)

—0.32
—0.29
—0.28
—0.31
—0.27
—0.29
—0.27
—0.26

dm
df'

(GeV)

—0.18y
—0.13y
—0.12y
+ 0.17(4—q)
—0.11'
+ 0.13(2—q)—0.11@
—0.09@
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tional hybrids.
The quantization of these flux-tube degrees of freedom

would obviously be a formidable task, and we have not yet
attempted it. We nevertheless believe that there are some
useful observations which can be made, based on the fact
that when two of the quarks in a baryon are close to one
another, the flux-tube structure of the system will resem-
ble that of a meson so that its energy should be the meson
energy in that limit. If we make the simple assumption
that the linear part of eo should depend only on the
minimum string length l(r&, r2, r3) defined by r~, rq, and
r3, then it must have the form

ep ——bl+c3+. . . (36)

where c3 may differ from c since this constant term will
in general depend on the number of string ends, but where
b is the same as in mesons since in the limit r&

——r2, I
would play the role of r in mesons. If we make the usual
condition that at short distances e must match the one-
gluon-exchange potential, then we have

2a, (I';, )
E (r&, rz, r3) =bl (r&, r2, r3)+c3

~&j ~J

(37)

We note that the constant term may differ from what one
would have expected if the baryon effective potential were
a sum of two body potentials each with half the meson
strength, though the Coulomb term has this property and
the linear term has it as an approximation.

Studies of three quarks moving in a potential such as
this have shown that it can give a reasonable description
of the spin-independent spectrum of baryons, ' and it is
reasonable to expect that when supplemented with some
spin-dependent interactions this picture wiH reproduce the
successful phenomenology of more naive models. Therein
lies a certain danger, however, since our present under-
standing of baryon phenomenology makes it very difficult
to accommodate any further states below about 2 GeV,
where one might have expected baryon hybrids. We con-
sider it one of the successes of our model that, in contrast
to other models for hybrids, one here expects the lowest-
lying hybrids to appear only above 2 G-eV. That this is so
can be seen from the meson-baryon connection discussed
above and the fact that the corresponding gap in mesons
is around 1.3 GeV, while the spin-averaged ground-state
S-=0 baryons are at 1.1 GeV.

On the basis of such an estimate we expect the lowest-
lying baryon vibrational hybrids to be SU(6) 70-plets with
their spin-averaged strangeness S members at about 2.4
GeV + —,

~

S
~
(Mn —M&). Since baryons cannot have

exotic quantum numbers, it may be rather difficult to
disentangle such states from the very rich spectrum of or-
dinary baryons at these masses.

mesons in which the quark and antiquark move in the ef-
fective potential generated by more complex flux-tube to-
pologies. We have, as might be imagined, not quantized
such string configurations, but we observe that each new
loop introduced into the simplest topology will generate
not only an extra length of flux tube but also two junction
points each of which has a longitudinal degree of free-
dom. If the hadron in question is characterized by a size
5, then a topology with A, extra loops will have on the or-
der of an extra length iN of flux tube and the zero-point
motion of 2A, junctions each constrained to a distance of
order —,5. This will give an extra energy of order
iNb+4A, /5 which is always greater than 4b'~ A,=1.7A,

GeV, indicating that meson topological hybrids should be
above about 2.3 GeV, baryon topological hybrids above
2.8 GeV, and pure glue topological hybrids about 1.7 GeV
above the 0++ glue-loop ground state. It therefore seems
plausible that in each case vibrational hybrids will be the
lowest-lying new states, though it would be desirable to
make these arguments more quantitative.

E. Multiquark hadrons

We complete our discussion of hadrons in the flux-tube
model by considering states with quark content larger
than qq and qqq. In such states we encounter for the first
time a situation in which topological mixing must be con-
sidered even when all the internal separations in the sys-
tem are large. This point is illustrated by the example of
qqqq in the plane configurations shown in Fig. 9. The
adiabatic potentials corresponding to these two flux-tube
topologies cross at x =y so the usual quark-model ap-
proximation of neglecting all but the lowest adiabatic sur-
face with given quantum numbers must fail here. Such a
system therefore cannot be properly discussed without ex-
plicit consideration of topological mixing: when the two
levels approach one another they will certainly mix and
repel. Figure 10 illustrates, very schematically, the effect
such a mixing might have on the adiabatic surfaces of
three of the lowest-lying qqq q topologies.

This example makes it clear that the dynamics of mul-
tiquark states are highly nontrivial and one should beware
of models in which they, like mesons and baryons, are au-
tomatically confined. It is also clear that any more de-

D. Topological hybrids

%'e have consistently assumed in the preceding sections
that the lowest-lying hybrid mesons, hybrid baryons, .and
excited pure glue states would have the character of vi-
brating strings or loops of string. However, at some ener-
gy we must expect to encounter, for example, hybrid

(b)
FIG. 9. (a) Two low-lying configurations of qqq q. (b) Topo-

logical mixing between these two configurations.
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tailed discussion of such states will depend on understand-
ing topological mixing; we will accordingly return to this
topic below.

IV. MIXING EFFECTS IN THE FLUX-TUBE MODEL

We discuss in this section the two kinds of effects that
cause mixing between given topological blocks: flux-tube
topological mixing induced by the

1
~ g Tr[2 —(U( U( U( U( +H.c. )]

term [as illustrated, for example, in Figs. 7(b) and 7(c)]
and quark pair creation (or annihilation) induced by the
(1/a) gq Uaq term [see, for examples, Figs. 6(b) and
6(c)].

A. Flux-tube topological mixing

Flux-tube topological mixing can be very important in
several situations. Perhaps the clearest case is in the
lowest qq adiabatic potential at small r &A,o where g~ 1

and the Tr UUUU term becomes very strong. As already
mentioned, we know that in this case the effects are very
striking: the flux tube with its associated linear potential
is converted into a superposition of flux configurations
corresponding to an asymptotica1ly. free Coulomb's law.
Another important example of the effect of this sort of to-
pological mixing occurs when adiabatic surfaces cross; we
mentioned a specific case of this type in Sec. III E on mul-
tiquark hadrons.

A more subtle effect of flux-tube topological mixing is
to give an internal structure to the flux tube on scales
below A,o. Our model focuses on an imagined lattice spac-

l)3 I@4

~I2 ~34
I l

r/J3 X r/J3 X

(b) {b')
FIG. 10. The adiabatic potentials of the flux-tube model and

of the two-body potential for two qqq q arrangements: (a) and
(b) show the potentials of the model of the text before (shown by
solid curves) and after (shown schematically by dashed curves)
topological mixing, while (a') and (b') show the related potentials
of the two-body F;.FJ model used in Ref. 17.

ing a —A,o when discussing the stringlike properties of
QCD: with this resolving power the flux tube is string-
like. However, one could imagine studying the flux tube
at smaller scales using a lattice spacing a & Ao for which
g&1. On such a lattice flux-tube topological mixing
would become important and the flux tube would be re-
vealed to have a finite width tu b-'/ inside of which it
was "frothy. " At a fine enough scale one would discover
that the flux tube could allow high-frequency excitations:
the gluons of QCD weak-coupling perturbation theory.

Since flux-tube topological mixing is an effect which
becomes important for g&1 where accepting guidance
from strong coupling perturbation theory becomes risky,
we cannot provide a very quantitative description of this
process. Nevertheless, there are some qualitative features
of this mixing which we believe we can safely expect and
which are sufficient to form a basis for discussing most of
its effects. Consider the example of qqq q depicted in Fig.
9(a) once again. We would like to know the amplitude for
conversion between these two topologies as a function of
x and y. To estimate this function we first imagine that
both x and y are much greater than A,o so that a lattice
spacing a -A,o where g —1 can be used to describe the sys-
tem. In this regime topological mixing is not especially
weak, but we can expect that a lowest-order treatment will
give a qualitatively sensible picture of the physics. Such
lowest-order mixing can occur when the two (discrete)
strings find themselves, in the tail of their vibrational
wave functions, in a situation where they each have an
element occupying a link on opposite sides of an elemen-
tary plaquette [see Fig. 9(b)]. They can then mix with an
amplitude of order 1/ag —I/Ao. The amplitude that
they find themselves ready to mix is, however, damped
like a Gaussian in the required displacements of the
strings from equilibrium so that even after summation
over all of the possible locations for applying the

1
Tr[2 —(UUUU+H. c. )]

ag

perturbation, the mixing will be very small if x and y are
both much larger than Ao. Conversely, if there is good
overlap between all four relevant string wave functions
(the two initial and the two final ones), then this mixing
amplitude will be of order go '-b' and -will be strong.

One of the more interesting applications of these ideas
is to the question of long-range forces between hadrons.
Using the qqq q system of Fig. 9 as a prototype again, we
note that if y corresponds to typical hadronic dimensions
and x ~~y, flux-tube topological mixing between the
ground states of the two short (vertical) flux tubes to any
states of the two long (horizontal) flux tubes will be
suppressed. We conclude that the residual forces between
color-singlet hadrons will have no long-range (power-law)
tail in this model, in accord with experiment and in con-
trast to potential models for confinement in which such
screening does not occur. ' (There is, incidentally, a
second mechanism which tends to suppress such van der
Waals —type forces: flux-tube breaking due to pair
creation weakens the effect of the linear potential at large
distances and thereby also screens such effects. ) Con-
versely, for distances of the order of 1 fm we can expect
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strong topological mixing between color singlets which
could lead to molecular-type bound states. Recent calcu-
lations, ' within the context of potential models but in-
cluding analogous adiabatic surfaces and mixing effects
(see Fig. 10), indeed seem to offer insight into the nature
of the attractive region of the nucleon-nucleon force along
these lines.

B. Pair-creation effects

Topological mixing can also occur by the creation and
annihilation of quark-antiquark pairs via the ( I/a)q Uaq
perturbation. The most important effect of such a term is
to allow hadrons to decay, and we devote much of this
subsection to a discussion of this process.

Since pair creation is suppressed for large a, it is, like
flux-tube topological mixing, a phenomenon-which must
be considered at short distance and which is therefore dif-
ficult to discuss quantitatively in the strong-coupling pic-
ture. In contradistinction to flux-tube topological mixing,
however, a simple model for pair creation immediately
suggests itself and turns out to be very successful at
describing such effects. The model is based once again on
considering flux tubes of length r »A, o with a lattice
spacing a -A,o-b ' . In this case we have the pleasant
situation that weak-coupling theory tells us that pair
creation is weak for small a ~&ko while strong-coupling
theory tells us it is weak for a »A, o so that it is plausible
that conclusions based on the scale a -ko may be an ex-
cellent guide to the physics.

The obvious model is to assume that pair creation
occurs [as in Fig. 6(b)] by breaking the flux tube with
equal amplitudes anywhere along its length and in any
state of transverse oscillation. ' ' Thus, for example, a
flux tube of length r in the state S would decay by pair
creation with an amplitude y(gr, y) that is proportional to
the string wave function 1' (g,y). Its amplitude to decay
to any particular final state would depend on the overlap
of the original wave function of the quark and string with
two final state quark and string wave functions. An in-
teresting point arises in the derivation of the effective
quark pair-creation operator in the flux tube. Since pair
creation is only important for a -A,o, it is incorrect to as-
sume that the flux line being broken is oriented along the
direction r: for such a, the string flux has become
roughened. This means that the line of flux to be broken
will have a random orientation and so the pair-creation
amplitude y(gr, y) should represent an average over orien-
tations of the amplitude ( I/a)q Uaq. It is satisfying that
this forces one to a pair-creation amplitude which is the
local version of the very successful I'0 model. More-
over, a recent phenomenological study' has shown that
any residual asymmetry of y(gr, y) along the axis r must
be quite small: the best fit value for yq/yI~ from this
study was 1.00+0.02, implying only a very small devia-
tion from the spherical value is allowed.

The amplitude yoo(gr, y) for a ground-state string to
break at some point (gr, y) into two ground-state strings is
a complicated function. However, it can be shown to be a
Cxaussian function of y with a (g-dependent) width of or-
der b '~ . In Ref. 19 it was assumed that y(gr, y) was of

the form appropriate to a flux tube of constant width with
"end caps, "

V. FURTHER CONSIDERATIONS

A. Corrections to the adiabatic approximation

The discussion of hadrons in Sec. III was made in the
context of an adiabatic approximation. For hadrons con-
taining quarks, in addition to neglecting transitions be-
tween different topological sectors, we also neglected tran-
sitions between the different adiabatic surfaces E (r)
within a given topological sector. The validity of this
latter approximation has now been investigated for
mesons, and the results are reported in detail elsewhere. '"
This has been done on the basis of a Hamiltonian which
generalizes Eq. (15) to include a nonrelativistic kinetic en-
ergy term for a quark and antiquark constrained to be on
the ends of a string. It is found that the main correction
to the discussion of Sec. III A may in fact be regarded not
as a breakdown of the adiabatic approximation but rather
as corresponding to a change in the form of the adiabatic
surfaces in the region where the string energy br becomes
comparable to or larger than the quark masses. One
modification is to include a string rigid-body moment of
inertia in the centrifugal-barrier term of the effective radi-
al Hamiltonian, i.e., the term

L (L +1)—A'

2pT

of Eq. (29) becomes

L (L +1)—A'

2p, I' + 6 b7"
(40)

The other alteration in the potential surfaces comes about
because (for example) the string vibrational frequency
which is m/r for infinitely heavy quarks takes the form

—b2y 2
'Voo= Toe

where y is the shortest distance from the point of creation
to the line between the quark and the antiquark. Such a
model provides an excellent description of meson decay
into ordinary mesons in terms of the one free parameter
3'o.

One of the most interesting programs for the future will
be to analyze the decays of hybrid mesons into ordinary
mesons in the same picture. ' These parameter-free calcu-
lations are essential for understanding the properties of vi-
brational hybrid mesons and, in particular, may be crucial
for designing an experiment to detect such states. We
reserve a full discussion of these matters to Sec. VI on
phenomenology below, but note here that the amplitude
yoo for a string in its lowest vibrational mode to break
into two ground-state mesons is proportional to the trans-
verse vector y. Since y carries a unit of axial orbital an-
gular momentum, this means that hybrid mesons cannot,
in this approximation, decay into two S-wave mesons but
that they will rather preferentially decay into one S-wave
and one P-wave meson. This state of affairs has a pro-
found impact on the discussion of the phenomenology of
vibrational hybrids.
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A(r. )lr where A(r)~1 for br &&M~ and A(r)~2 for
br &&Mg. This latter effect, which is the more substan-
tial, has the result that the hybrid mass estimates of
column three of Table I should be regarded as lower
bounds (see column five), although the increase is small
for heavy quarks (-60 MeV for charmonium). For
light-quark systems these effects are more substantial, but
even for such systems genuine nonadiabatic effects are
quite modest for the lowest few adiabatic surfaces.

The above results provide some justification for the suc-
cess of the potential model in the quantitative description
of heavy quarkonium, and are, in accord with the view
that, with suitable modification to take account of relativ-
istic effects, it should also provide a qualitative descrip-
tion of light mesons. We note that these nonadiabatic
corrections correspond to the non-potential-like behavior
of chromodynamics which has been discussed for char-
monium in the context of the QCD sum rules as the
condition M~ —M~ &&co ~„,.

It is also possible to examine in a similar way deviations
from the adiabatic limit in the glue-loop spectrum al-
though this has not yet been done.

B. Connection to relativistic string models

It is amusing that attempts at a string description of the
phenomenology of hadrons actually predate QCD. We
refer to the dual model of Veneziano, put into the form
of a relativistic string theory by Nambu and Gotto, and
later generalizations of it. The satisfactory quantization
of fully relativistic string theories is a difficult problem.
Our meson string Hamiltonian (15) may be obtained as a
nonrelativistic small oscillation approximation to the
Nambu-Gotto string Lagrangian with the boundary con-
dition that the ends of the string are fixed. Apart from
these approximations the main difference between our
meson spectrum and that of the Veneziano model is the
possibility in our model of producing excitations in the
quark radial motion, as well as orbital and vibrational ex-
citations. (The vibrational hybrids of Sec. IIIA corre-
spond to the "daughter states" of the Veneziano model. )

A model with masses attached at the ends of a Nambu-
Gotto string was written down by Chodos and Thorn,
but they were unable to quantize this theory. They did,
however, obtain from it a classical relation between energy
E and angular momentum J for purely rotational motion.
This relation, which leads for large J to the result
E=(2~bJ) ~ of the Veneziano model, is well approxi-
mated by a Hamiltonian in which the string motion is
treated nonrelativistically.

Vibrational string excitations have been considered in
the context of the relativistic quark-confining string
model by Giles and Tye. Their lowest vibrational hybrid
potential surface is similar to ours, but we do not agree
with the centrifugal barrier and angular momentum as-
signments they make.

Our model of glue loops may similarly be obtained as a
nonrelativistic approximation to the closed dual string, al-
though in its original form the dual string is not orient-
ed. The question of string orientation is discussed in the
third, part of Ref. 26. If the breathing modes of the rela-
tivistic dual string are quantized in a manner analogous to

that of Sec. III B, one finds for the effective radial Hamil-
tonian

H=[(2mbpo) +so ]

the expansion of which, for large p0, yields our nonrela-
tivistic Hamiltonian with the constant @=0. The non-
relativistic Hamiltonian for general y may be obtained
from the expansion of

Hy ——[(2mbpo) +~0 4m—by] ~

whose eigenvalues corresponding to g(0) =0 are

E„=[4~b(2n+ —,
' —y)]', n =0, 1,. . . .

In the third of Ref. 8 it is shown that the closed dual
string in 3+1 dimensions has a zero-point energy corre-
sponding to the value y= —,', somewhat smaller than the
value '6' we obtained from the nonrelativistic string in the
adiabatic approximation.

We should also stress the differences between our ap-
proach and those which have sought a relativistic quan-
tum string theory of hadrons. In addition to making sim-

plifying approximations to make the problem of quantum
string motion tractable, we have also emphasized that the
string picture is in our view only an approximation valid
at distance scales r ~~b ', where topological mixing ef-
fects may be neglected. It has been suggested that an ex-
act string representation of QCD is attainable, for exam-
ple, in the large-X limit. If so its consequences are likely
to be qualitatively similar to those presented here. On the
other hand, we know that for lattice spacing a «b
excitation of flux in arbitrary group representations will
become important. It is quite likely that this cannot be
represented by a finite number of string degrees of free-
dom. Because of the limitation of the string picture to
phenomena on a scale r ~&b ' there is in our view no
need for the existence of an exact relativistic string repre-
sentation underlying it.

VI. PHENOMENOLOCzICAL IMPLICATIONS

Discovering experimental evidence for gluonic degrees
of freedom in hadron spectroscopy is, in our estimation,
the most important outstanding qualitative test for QCD.
While definitive statements on many of the predicted
characteristics of these states must await the completion
of detailed calculations, it is already possible to draw
some important conclusions.

A. Uibrational hybrids

We begin by considering hybrids which contain only -u,

d, and s quarks. We have predicted that at around 2 GeV
the density of such states will begin to far exceed that of
the quark model. In particular, we predict that this infla-
tion will begin with two new 36-plets of meson (with their
I= 1 states around 1.9 GeV) and two 70-plets of baryons
(with their S=O states around 2.4 CxeV). Our detailed
predictions for the masses and quantum numbers of these
states were given above in Sec. III A. The predicted quan-
tum numbers are certain but, as discussed there, the
masses have an uncertainty of roughly 100 MeV.
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TABLE III. The dominant decay modes of the exotic hy-
brid s.

$$

0
$$

1

0
$$

Meson
Jp

2+
2+
2+
1

1

1

0+
0+
0+

Favored final states
( P wave 5 wave)L

{A, ~)p, {A,m) p, (II~)p
(Bm)p
(K*(1420)I7)p, (QiK)p, (Q2I7)p
(8~)s (D~)s
(Aim)s
(Qi&)s (Q2&4
(A (m)p, (Hm)p
(Bm)p
( QiI7)p, (Q2I7)p

Although there will be ordinary meson and baryon
states in these regions, it is conceivable that the hybrid
states could be identified as simply being extra states once
all of those expected in the usual quark model have been
seen. More likely to succeed, however, is a strategy which
focuses on a property peculiar to the hybrids. The most
obvious such characteristic, applicable in the case of the
meson vibrational hybrids, is that three of the lowest-lying
predicted meson nonets have members with exotic J
quantum numbers: 0+, 1 +, and 2+ . The presence of
a resonant signal in one of these channels would be strong
evidence for the discovery of a hybrid, so it seems sensi-
tive to begin any experimental search for such states in
the I=1 and I=O meson sectors which can reflect this
exotic character.

The next question is obvious: in which final states
should one look? It would be natural to look in simple
channels like the pm P wave, which in its I=1 channel
has J =1 +. However, as we stressed above, these
states will decay preferentially to one S- and one P-wave
meson so that these double-S-wave channels should be
unrewarding. ' We note that this selection rule could
even explain why hybrid mesons have not already been
found. In any event, we predict that hybrid mesons will
couple most strongly to a series of final states which, so
far as we are aware, have not been very thoroughly ex-
plored. These dominant decay modes are given in Table
III, but we would like to make several supplementary
comments. It is clear from the table that the sighting of
these states may not be easy. One immediate worry is
that the 1 + states, which all have S-wave decays with
generous phase space, may be too broad to be readily seen.
In many other cases the favored final states contain a P-
wave meson (such as the 2 &, H, Q&, and Q2) which were
themselves broad and difficult to detect. Nevertheless,
there are some channels, such as Bm, which should be
clear even if difficult (recall B~corp, cg~3rr, so this is a
5m final state). Of course at this stage there is also no
guarantee that the coupling to a specific allowed mode
will be sizable, ' better advice on where to look must there-
fore await calculations of the actual widths. ' At the
same time the likelihood that many of these states are
very broad further alleviates any difficulty with the fact
that they have not already been seen.

Without the help of exotic quantum numbers, hybrid

baryons will be more difficult to sort out from the "back-
ground" of ordinary baryons;- However, it may prove use-
ful in searching for them to consider that they may also
decay preferentially to negative-parity baryons of the
[70,1 ] supermultiplet with a ground-state meson and to
P-wave mesons with a ground-state baryon.

Our comments up to this point have concentrated ex-
clusively on hybrids made of the SU(3) quarks u, d, and s.
Of course such states will occur in every flavor sector and
in Table I we explicitly show our predictions for the bb
and cc systems. These systems are particularly interesting
because the physics of the ordinary quark-model states is
better understood for them and also the experimental situ-
ation is considerably cleaner. Unfortunately, it does not
seem likely that the low-lying vibrational hybrids will be
more easily seen in these sectors. The J =1 states
are not only above the strong decay threshold but they
will also have a suppressed direct production since the
centrifugal barrier in (29) forces the quark-antiquark wave
function to vanish at the origin. It would therefore seem
that such states could only be seen in hadronic production
decaying to P and S-w-ave charm or b-flavor mesons;
given the fact that no such P-wave mesons have yet been
seen, this approach would appear to be very difficult.

While e+e colliders may be unable to directly pro-
duce the low-lying cc or bb hybrids, we note in conclud-
ing this subsection that the limited number of
e+e ~three-jet events may be a useful production
mechanism for ordinary hybrids: the fragmentation of
the (perturbative) gluon should lead to such states, so that
a cut on planar events should produce an enhanced sam-
ple of hybrids. Of course it is unclear if they can be seen
against the combinatorial background in such events. In
contrast, in hadronic collisions there is no such signal for
events which might contain hybrids, but in compensation
they should be produced copiously with typical hadronic
cross sections above threshold.

B. Glue loops

Guidance to the phenomenology of glue loops is much
harder to provide. In the first place their masses are
much more uncertain: with the present calculational limi-
tations of the model, the whole spectrum can be displaced
by a constant, and uncertainties regarding short-range in-
teractions and the (here more dubious) adiabatic approxi-
mation make our excitation energies considerably more
uncertain than our absolute masses in meson hybrids.
Glue loops are also less helpful in providing exotic quan-
tum numbers which would single them out from ordinary
mesons: the first exotic states with J =0+,0, and
2+ are not expected until the 3-CxeV region. %'e foresee
another difficulty as well. Glue loops decay by a second-
order pair-creation process which we expect may be visu-
alized as a decay dominated by a transition through a vir-
tual vibrational hybrid meson. However, we have seen
that vibrational hybrids decay preferentially to final states
with excited mesons. Thus once again it may be ill ad-
vised to look for pure glue states in the apparently most
natural channels such as mm. and KK. This, and the high
predicted masses of most glue loops, may account for why
they have not yet been seen. Indeed, our model le'ads us to
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believe that it may be easier to find hybrid mesons than
pure glue states.

%'e close this section by observing that lattice Monte
Carlo calculations of glueball masses may at present also
suffer from an uncertainty. If, as we believe, the "univer-
sal" —13/6p term in the glue-loop string potential is an
artifact, and if present lattices are only small enough to
probe the stringlike properties of QCD, lattice glueball
masses may be temporarily scaling at values in which this
string zero-point effect is playing an important but spuri-
ous role.

VII. FINAL COMMENTS

The flux-tube model we have described here is, it will
be apparent, in a rudimentary stage of development.
Some features of the model which are crucial to its foun-
dations (e.g., the corrections to the adiabatic limit' ) or to
its phenomenological applications (e.g., the decay widths
of vibrational hybrids ') are under study, but much
remains to be done in both areas.

A. Checking the foundations

It should be possible to check some of the foundations
of the flux-tube model at the most fundamental level via
direct comparison of various features of the model with
results of numerical calculations using (Euclidean) lattice
QCD. Among the possible checks that could be or have
been carried out are the following.

(1) For static 3,3 sources well separated on the lattice,
in the absence of light quarks, one should see the series of
adiabatic potentials V (r) It is of c.ourse now established
that the ground-state gluon configuration does indeed cor-
respond to a linear potential at large r. There are, more-
over, indications that the first excited adiabatic surface
exists with a shape and excitation energy comparable to
our expectations. There have also been indications from
lattice studies for the —m. /12r term expected from
string zero-point motion, indicating that for presently ac-
cessible lattice spacings the gluon field is indeed behaving
like a string. Another somewhat more primitive indica-
tion of stringlike behavior is the existence of what appears
to be the string roughening transition for g -1. '

(2) The flux-tube model makes predictions for the adia-
batic potentials for systems other than 3,3. As examples,
it predicts that static 6,6 sources (or any other nonzero
triality sources) exhibit an asymptotically linear lowest
adiabatic potential with the same slope as 3,3 (the lowest
adiabatic surface for 6, 6 corresponds to the flux-tube to-
pology in which two 3's emerge from the 6, fuse into a 3
which then carries the flux a large distance to the vicinity
of the 6 where it splits again into two 3's which terroinate
on the 6 sink). In contrast, it predicts that triality-zero
sources such as 8, 8 and 10, 10 will not be confined (for
example, for 8, 8 the lowest-energy state of the gluon field
asymptotically will correspond to a 3 and 3 of Aux emerg-
ing from each of the 8's and then annihilating in their
respective vicinities). A more complicated example of the
same type, which could be of some interest to the nuclear
force problem, would involve measuring on the lattice the
adiabatic surfaces V (x,y) of the qqq q system depicted in

Fig. 9. This would check Inany of the basic features of
the model and could in addition be used to measure the
strength of the topological mixing at the point x =y to
check that it indeed falls off rapidly for x =y & b

(3) While the flux-tube model framed here is a model
for QCD, its basic principles ought to apply to the confin-
ing phase of other gauge theories as well. The simplest
example is SU(2) where the analogy is very strong, but
where there would still be some important differences.
For example, since the 2 of SU(2) is self-conjugate, the
"glue-loop" spectrum of SU(2) would correspond to that
of a nonoriented rather than an oriented string (see the
Appendix). All gauge groups SU(N) with N ~ 3 are simi-
lar to SU(3) in this respect and the excitation spectrum of
their lowest-lying "mesons" and "glue loops" would be ex-
pected to be very similar to that of QCD. The differences
of these spectra from that of QCD is another measure of
the importance of topological mixing and topological ex-
citation. Of course the 3-junction of SU(3) becomes an
N-junction in SU(N) whose termination by N quarks
gives. the simplest baryon of SU(N). [It has been suggest-
ed ' that the presence of the X-junction between lines of
fundamental flux for N& 2 is responsible for a difference
in the orders of the finite-temperature phase transitions of
SU(N) gauge theory without quarks for N=2 and N ~ 2.]

The limit of SU(N) as N mao (g N—fixed) has been a
subject .of intense interest, since a weak-coupling
analysis shows that the meson spectrum is stable in this
limit. This is also seen in the strong-coupling analysis of
Sec. II. The transition amplitude of a state of meson to-
pology to one containing two disconnected pieces neces-
sarily involves either the pair-creation amplitude q~Uaq
or the plaquette term

Tr[2 —( UUUU +H. c. )] .

In the former case the meson decay amplitude is propor-
tional to X ' and in the latter case to N '. The lead-
ing decay amplitudes for mesons and pure glue states of
SU(N) are indeed proportional to N '~ and
respectively, exactly as in the weak-coupling analysis. As-
suming an approximately fixed radius, the flux-tube
model of an SU(N) "baryon" necessarily breaks down at
large X when the mean interquark spacing becomes very
much less than b ' . Since topological mixing in the
sense we have defined it is not suppressed at large %, it
seems unlikely that there is an exact simple string repre-
sentation in this limit.

It may be worth adding here a few words of speculation
about what is superficially the simplest gauge theory of
all: pure electrodynamics. In its lattice formulation as a
theory with a compact U(1) local-symmetry group, one
simply replaces the Casimir operators of Sec. II by
squared integers n and the operators U~, U by raising
and lowering operators of n, . This theory also confines at
large g, but in 3+1 dimensions has a trivial continuum
limit as g —+0. The resolution of this paradox is that the
lattice theory has a phase-transition point at a critical
value of g separating the confining and nonconfining
phases. In 2+1 dimensions this theory is believed to ex-
hibit linear confinement for all g (Ref. 34). We suggest
that a flux-tube model should also give an approximate
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representation of the excitation spectrum of the confining
phase of the U(1) gauge theory. To our knowledge, the
only lattice calculation to date which bears on this ques-
tion is consistent with this speculation.

We close this survey by noting an apparent paradox
which, appears when one compares the block sub-
Hamiltonians of different gauge theories, for example, in
the sector of the .simplest meson topology. The sub-
Hamiltonian in each has the form of a discretized string,
but the wave velocity appears to depend on the specific
gauge theory. We believe that the resolution of this prob-
lem lies in the observation that, in going to the continu-
um limit of the lattice Hamiltonian theory, the "velocity"
of light gets renormalized, and that to be precise such lat-
tice Hamiltonians should be multiplied by a renormaliza-
tion constant whose value is only 1 in the limit g~0.

B. Other applications of the flux-tube model

There are a number of other applications of the flux-
tube model which we have not discussed here. One im-
portant omission from our discussion is quark fragmenta-
tion and jet formation. Semiclassical models of string
dynamics have had considerable success in this area, and
it would certainly be interesting to try to use the flux-tube
model to correct and elaborate such models. As just one
example, we note that the treatment of baryon production
in such models is rather ad hoc; the flux-tube model pro-
vides definite mechanisms which could be applied to the
description of such processes.

As a more speculative example, one could imagine dis-
cussing hadronic cross sections in this picture. It would
be interesting to try to understand such simple empirical
relations as

cr„„~(meson-baryon) =—,a „„i(baryon-baryon)

in terms of a picture of interacting flux tubes.
Finally, we mention that it should be possible to study

the spin-spin and spin-orbit properties of the long-range
interquark potentials in this picture; such forces could
play a significant role in hadron spectroscopy.

VIII. CONCLUSIONS

We believe that the flux-tube model presented here has
many attractions as a picture for hadronic physics in
QCD which allows one to proceed beyond the naive quark
model. While it reduces to this successful model in an ap-
propriate limit, it makes many predictions for new phe-
nomena, such as hybrids and pure glue states. These pre-
dictions all appear to us to be phenomenologically sensible
and, especially when supplemented in the future with an
understanding of various corrections to the crude spectro-
scopic results presented here and with predictions for de-
cay widths, would seem to offer a reasonable guide to the
experimental search for such states. In this regard we
have especially emphasized that the new states are unlike-
ly to be seen in the usual decay channels involving two S-
wave final states, and have offered a preliminary sketch of
the territory in which they are likely to be found. In addi-
tion to experimental tests of the model, we have pointed
out several ways in which its basic tenets have been and

can be tested against the rigorous predictions of QCD as
deduced by lattice Monte Carlo methods.

Finally, we have discussed, usually in very general
terms but occasionally in some detail, the application of
the flux-tube model to other phenomena. We believe that
it is possible that this model will prove to be useful in dis-
cussing QCD in any situation where the physics of con-
finement dominates.
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APPENDIX: MESON AND GLUE-LOOP
QUANTUM NUMBERS AND EFFECTIVE

HAMILTONIANS

We quoted in Secs. III A and III 8 effective Hamiltoni-
ans for vibrational meson hybrids and for glue loops of
given total orbital angular momentum. We also listed the
possible P and C quantum numbers of the corresponding
states; we come back to these questions here. From a
quark-string state defined with respect to a certain axis,
the z axis say, one can use operators of finite rotation to
produce a state oriented with respect to a different axis.
The wave functions of states of definite total angular
momentum I. and component ML may be obtained in
terms of these. It is convenient in this general discussion
to use the standard phase conventions of Jacob and Wick
for the relation between states oriented along different
axes.

In subsection 1 below, we show that the action of the
parity operator I' on a hybrid state of total orbital angular
rnornentum L„component ML, total spin S, component
Mq, and component of angular momentum along its axis

A= g(n + n~ ), —

where n + are the mode occupation numbers, is

P
~
LMLSMS qiqj; In~+ n~

=gz ~
LML SMs'q~ qj

'
I nm n~ + I

—&~—
with gz ——( —1) + +', and that the action of the charge-
conjugation operator C is

C
I
LMI.SMs qq, ;In +,n 'jA&

=pc
~
LML, ~Ms~qzqi~ ( nm ,n +I —mA—) (A2)



2926 NATHAN ISGUR AND JACK PATON

with

=( —1) + + +[(—1) ]

and corresponding complex normal coordinates

The quark labels are here flavor labels so for quarks and
antiquarks of the same flavor, uu, dd, etc., i =j and these
states are eigenstates of CP with eigenvalue qcgz, which
is thus for ordinary mesons, with all n + ——n

=0,( —1) +' as usual. We have CP=( —1) for the
lowest hybrids with one m=1 phonon, leading to, among
other possibilities, the exotic quantum numbers
J =0+, I +,2+ . The complete set of quantum num-
bers corresponding to one m = 1 phonon are for S= 1,
Z"=a+-,2-+, 1+-,1-+,0+-,0-+, and for S=o,
J'c=1++,1--.

In subsection 2, we obtain the corresponding result for
the J quantum numbers of the glue-loop states.

1. Meson vibrational hybrids

Consider first the quark and antiquark at the positions
(r/2)z and —(r/2)z along the z axis, with spin com-
ponents s,s, respectively, with respect to an independent
fixed axis. (In order to work in the normal spin-orbital
basis of the nonrelativistic quark model, we shall not ro-
tate the quark spins when we rotate the quark string sys-
tem. ) We define complex basis vectors

so that the string transverse displacement is

y(g)= g e q~sinmmg . (A4)

The states may now be written
r

f r(r,—,(rz)) = q;
—zs q)

——z,s; fn +,n f),

A=+(n + —n ).
To obtain a state

~ P,,(r)) in a Jacob-Wick-type phase
convention we apply a rotation operator:

~ g,,(r) ) =R
i P,—,(rz))

(A6)

(A5)
where n q. gives the degree of excitation of the mth nor-
mal mode with o.=+. Clearly under a rotation of the
quark string system by angle y about the z axis this state
will just change by a phase factor e' ~ where

e+- = (x+i y)V2
(A3)

and we calculate the overlap with a state
~ P,,(rLML, )) of

total orbital angular momentum I., component Ml ..

, (rLML, )
] lp,—,—(r))= y &I/J,,(rLMI ) [E ( 1/J,, (—rLMI))&y,—,(rLMI ) [ 1/J,,(rz))

ML

=D~, A(4 ~ 0)CI*.(r t& —+ & I»— (A7)

where the angle dependence is in the first factor, a rotation-group-representation matrix, and the second factor is in-
dependent of MI . It follows that if the spin quantization axis is the z axis then the state with orbital and spin quantum
numbers I.,ML, S,Mz is

«MiSMs)&= 2 &
—'~2~ ISMs& f d'r

I @„-( )&r&0;, ( )1r0;,(« (A8)
$$

Now use Eq. (A5) and normalize by

&P,-, ,(r')
~ f,—,(r)) =5, ,5, -,5 (r' —r), &-f(r'L'MLS'Ms )

~
g(rLMLSMs)) =5ss5, 5L L5, r 5(r' r), —

with Kronecker 5 s in the suppressed labels for quark flavor and string excitation I n~+, n ]. Writing out in full the
labels of the state vector

i P(rLMI. SMs) ) we have

~
nLMI SMs, q;q~; In +,n 'I )

1/2

= g( —,'s —,'Z(Ss)qs) I d'r f„,z(„„)(r)&sr,s(4, q, —.()) q, —,s q)
——,s, f» s,n fl,

$$

(A9)

where the radial wave function is

fnL[n +n )
r

2L +1(r)=
1/2

CI (r, I n ~,n I )

(A 10)

normalized to r 5(r' r) and n—is a radial quantum num-
ber.

Equation (A9) is the main result of this section. It
gives a state of the system with total orbital angular
momentum L„component ML as a superposition of adia-
batic states with quarks fixed at positions +r/2. To get
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an effective adiabatic Hamiltonian for the quark radial
motion [the generalization of Eq. (26)] it is simply neces-
sary to find the expectation value in the states of Eq. (A9)
of the total Hamiltonian for quark and string motion.
This Hamiltonian is obtained in Ref. 14. If it is assumed
that the quarks are much more massive than the string, it
has the form

it follows that

P 'geq (r)P= —pe ~ ( —r) (A15)

and since we are using a helicity convention for the flux-
tube states we have

, + 2+E (r),1 () ~q N

P Br 2pr
(A 1 1)

Xe 'e ~e '
i

1o.(z) )
where E (r), as in Eqs. (24) and (25), is the total energy
of the string and L», the quark angular momentum opera-
tor, may be written as (L—Ls). L is the total angular
momentum operator and Lq, the string angular momen-
tum vector, may be written

1 )(Te '((T' (T)(()

This specifies that the basis vectors e,—and e —,are relat-
ed by —e,e transforming in the same way as

~
1+ ),

~

1 —), respectively. So we have from (A16)
Ls= g (n + n)r+L—s, (A12)

—e ( —r)=e '~e+(r),
An expression for I,& which raises and lowers the quan-

turn number A of I &.r is given in Ref. 14. The expecta-
tion value of the second term in Eq. (All) is Eq. (28).

To find the effect of the parity operator P on the state
of Eq. (A9) it is necessary to find the action of P on the
flux-tube state

~ In +,n j ). Equations (A3) and (A4)
may be generalized to a set of basis vectors e,— and a
string displacement operator y,(g) which may be expand-
ed in terms of normal coordinates q

—(r) by the analog of+

Eq. (16)

e+( —r) = —e '» e (r),
(A17)

and hence from (A15)

P 'q (r)P =e+-'~q—+( —r) . (A18)

Since this is also true for the creation and annihilation
operators of flux-tube excitation, we have finally the re-
sult

y,(g)= g e, q (r)sinmmg .

P y,(g)P = —y, (g)

(A13)

(A14)
I

P
~ I ~n+(r) ~n(r)j)

=e +
~

In ( r)n +—( —r)j ),
where the phase factor is e ' &, i.e., parity interchanges
positive and negative "helicity" occupation numbers.
Hence acting on the full quark —antiquark —flux-tube
state, Eq. (A9), the parity operator gives

P ~nLMISMs, q;q;In +,n j)
0

g ( —,'s —,'s
~ SMs) I d're, i., (n„,n

$$

XDtr, g(4, (), —()) e; ——,s qg
—,r;(n ( —r)n ~( —r))) . (A19)

Changing integration variables from r to —r and using the fact that the radial wave function f„I („„)(r)is sym-
metric under interchange of the string excitation quantum numbers n + and n, gives the final result, Eq. (A1).

For the charge-conjugation operator C, we note that

(A20)

which leads to

C 'q~(r)C =-( 1) q~( —r)e-+"—
so that

(A21)

C
~ In +(r)n (r)j)=[(—1) ] + e +

~
In ( r)n +( —r—)j)

which leads to Eq. (A2). Combining this with the parity operation we get

(A22)
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CP ~L~L,&Ms, q;q;In +,n j &=g ri-( —1) +[(—1) ] "+
~LML, S'~s, q, q;In

m

and the phase factor may be rewritten ( —1) +'+, where

X= Qm(n ++n ) .

(A23)

2. Glue loops

The procedure here is exactly analogous to that for the meson hybrids, but somewhat simpler because of the absence of
quarks. Corresponding to Eq. (A9) we have

' 1/2

—j In + n —j & J d~IDMQ(P, &, —(t')
~
r; In +,nm j Inm +~nm j&— (A24)

where

A= gm(n~ + n~ +—n~ + n~ )—
in which —and + refer to helicities and p and z refer to mode types. Under the parity operation, P, r does not change
but the mode shapes do change. We have, using the expansion Eq. (30) for p

T

P 'p(N)P =p po+ g [a~~( —1) sinm@+P ( —1) cosm&b) —z g [a' ( —1) sinm4+13' ( —1) cosm@]

(A25)

so that

P 'p+=po, P 'ao P=( —1) a~, P 'P'P=( —1) P'

P 'a~P =(—1) +'a', P '13 P =( —1) +'g~;
the same equations apply to the normal coordinates a~ +iP~ and a~ +i P~

Thus, acting with I' on the glue-loop state we obtain

(A26)

nm ++&m m + m

P [ J~In +n jIn +n j &= g [(—1) '] ' ' g[(—1) * ] ' * IJMIn, + n, -jI",+ ",-j &

m
P Z

(A27)

and these states are parity eigenstates. Hence all glue
loops with no p or z string excitation have positive parity
as do those corresponding to the first z string excitation.
The states corresponding to the first p string excitation
have negative parity. All states built on given string exci-
tation have the same parity independent of J.

The action of C on the glue-loop states changes r~ —'r
and interchanges n + and n~ as well as n + and

P P z

n~, i.e., it has similar action to that of parity on the hy-
Z

brid states. The states will always come in pairs with op-
posite C except for the case n + n——and

p p

I

n~ + ——n . In these cases, which include the breathingg+ z

modes and their orbital excitations, C =(—1) .
Finally we note that in describing the orbital excitations

at the end of Sec. IIIB we have taken account of the
orientation of the glue loop by assuming that the state got
by rotating by I80' about an axis perpendicular to the
body z axis is distinct from any of the states before rota-
tion. For an unoriented glue loop which would presum-
ably be appropriate as a model of states of the spectrum
of the gauge group SU(2), alternate orbital recurrences
would be missing.
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