Dongfang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9999209/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of a Multifunctional Graphene Oxide-Based Magnetic Nanocomposite for Efficient Removal of Cr(VI). Langmuir, 2017, 33, 7007-7014.	1.6	99
2	Sandwich-like Nanosystem for Simultaneous Removal of Cr(VI) and Cd(II) from Water and Soil. ACS Applied Materials & Interfaces, 2018, 10, 18316-18326.	4.0	57
3	Infrared-Light-Responsive Controlled-Release Pesticide Using Hollow Carbon Microspheres@Polyethylene Glycol/α-Cyclodextrin Gel. Journal of Agricultural and Food Chemistry, 2021, 69, 6981-6988.	2.4	37
4	Fabrication of Fe3O4/ZIF-8 nanocomposite for simultaneous removal of copper and arsenic from water/soil/swine urine. Journal of Environmental Management, 2021, 290, 112626.	3.8	31
5	TiO ₂ /Biochar with Light-Switchable Wettability as a Herbicide Safener and Foliar Fertilizer Adhesive. ACS Sustainable Chemistry and Engineering, 2020, 8, 1121-1128.	3.2	14
6	Functionalized nanocomposite for simultaneous removal of antibiotics and As(<scp>iii</scp>) in swine urine aqueous solution and soil. Environmental Science: Nano, 2018, 5, 2978-2992.	2.2	12
7	Electrochemically reduced graphene oxide/Cu-MOF/Pt nanoparticles composites as a high-performance sensing platform for sensitive detection of tetracycline. Mikrochimica Acta, 2022, 189, 201.	2.5	12
8	Simultaneously removal of Cr(VI) and Cd(II) from water using a flower-like primary battery nanosystem. Science of the Total Environment, 2021, 765, 142735.	3.9	11
9	Inhibiting Desertification Using Aquatic Cyanobacteria Assisted by a Nanocomposite. ACS Sustainable Chemistry and Engineering, 2020, 8, 3477-3486.	3.2	8
10	Ferrous ions inhibit Cu uptake and accumulation via inducing iron plaque and regulating the metabolism of rice plants exposed to CuO nanoparticles. Environmental Science: Nano, 0, , .	2.2	5
11	A sodium hyposulfite fuel cell for efficient Cr(VI) removal. Chemosphere, 2022, 294, 133803.	4.2	5
12	Highly Efficient and Simultaneous Removal of Cr(VI) and Imidacloprid through a Ferrocene-Modified MIL-100(Fe) Composite from an Aqueous Solution. Langmuir, 2022, 38, 6579-6591.	1.6	5
13	Surface migration of Pb(II) from water and soil using an aerogel/graphite felt primary cell system. Chemosphere, 2022, 294, 133666.	4.2	3
14	Carbon Nanotubes-Based Fuel Cell for Cr(VI) Removal and Electricity Generation. Langmuir, 2022, 38, 9021-9029.	1.6	3
15	Synthesis of Iron-Based Carbon Microspheres with Tobacco Waste Liquid and Waste Iron Residue for Cd(II) Removal from Water and Soil. Langmuir, 2022, 38, 5557-5567.	1.6	2
16	Tobacco Waste Liquid-Based Organic Fertilizer Particle for Controlled-Release Fulvic Acid and Immobilization of Heavy Metals in Soil. Nanomaterials, 2022, 12, 2056.	1.9	1