Nicolas Rapin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/99980/publications.pdf

Version: 2024-02-01

51 papers	5,674 citations	28 h-index	233338 45 g-index
53	53	53	13629
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PTBP1 promotes hematopoietic stem cell maintenance and red blood cell development by ensuring sufficient availability of ribosomal constituents. Cell Reports, 2022, 39, 110793.	2.9	3
2	Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nature Communications, 2021, 12, 3341.	5.8	197
3	Mutant CEBPA directly drives the expression of the targetable tumor-promoting factor CD73 in AML. Science Advances, 2019, 5, eaaw4304.	4.7	28
4	The splicing factor RBM25 controls MYC activity in acute myeloid leukemia. Nature Communications, 2019, 10, 172.	5.8	42
5	Oral vitamin C supplementation to patients with myeloid cancer on azacitidine treatment: Normalization of plasma vitamin C induces epigenetic changes. Clinical Epigenetics, 2019, 11, 143.	1.8	55
6	ERG Controls B Cell Development by Promoting Igh V-to-DJ Recombination. Cell Reports, 2019, 29, 2756-2769.e6.	2.9	7
7	BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Research, 2019, 47, D881-D885.	6.5	172
8	Characterization of the enhancer and promoter landscape of inflammatory bowel disease from human colon biopsies. Nature Communications, 2018, 9, 1661.	5.8	78
9	SinaPlot: An Enhanced Chart for Simple and Truthful Representation of Single Observations Over Multiple Classes. Journal of Computational and Graphical Statistics, 2018, 27, 673-676.	0.9	37
10	Human adult HSCs can be discriminated from lineage-committed HPCs by the expression of endomucin. Blood Advances, 2018, 2, 1628-1632.	2.5	10
11	Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors. Cell Reports, 2018, 23, 2744-2757.	2.9	45
12	Differences in Cell Cycle Status Underlie Transcriptional Heterogeneity in the HSC Compartment. Cell Reports, 2018, 24, 766-780.	2.9	40
13	Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. Journal of Clinical Investigation, 2018, 128, 4260-4279.	3.9	97
14	Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types. Genome Biology, 2017, 18, 18.	3.8	97
15	EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nature Medicine, 2017, 23, 483-492.	15.2	392
16	The Mechanisms By Which Mutant-NPM1 Uncouples Differentiation from Proliferation Are Reversed By Several Drugs, Enabling Rational Multi-Component Non-Cytotoxic Differentiation Therapy. Blood, 2017, 130, 878-878.	0.6	0
17	MicroRNA-941 Expression in Polymorphonuclear Granulocytes Is Not Related to Granulomatosis with Polyangiitis. PLoS ONE, 2016, 11 , e0164985.	1.1	7
18	SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nature Communications, 2016, 7, 13875.	5.8	170

#	Article	IF	CITATIONS
19	Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality. Nucleic Acids Research, 2016, 44, 4037-4051.	6.5	26
20	The splice factor PTBP1 regulates hematopoietic stem cell function and red blood cell development. Experimental Hematology, 2016, 44, S95-S96.	0.2	0
21	The PRC2 component JARID2 is dispensable for hematopoietic stem cells, but critical for maintenance of leukemic stem cells. Experimental Hematology, 2016, 44, S47.	0.2	0
22	BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic Acids Research, 2016, 44, D917-D924.	6.5	242
23	TGIF1 is a negative regulator of MLL-rearranged acute myeloid leukemia. Leukemia, 2015, 29, 1018-1031.	3.3	17
24	Cellular origin of prognostic chromosomal aberrations in AML patients. Leukemia, 2015, 29, 1785-1789.	3.3	8
25	Loss of <i>TET2</i> in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes and Development, 2015, 29, 910-922.	2.7	213
26	ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation. Genes and Development, 2015, 29, 1915-1929.	2.7	71
27	Bloodspot: A Web Resource Facilitating the Analysis of Transcriptional Programs in Normal and Malignant Hematopoiesis. Blood, 2015, 126, 2358-2358.	0.6	1
28	Oncogenic fusion proteins expressed in immature hematopoietic cells fail to recapitulate the transcriptional changes observed in human AML. Oncogenesis, 2014, 3, e106-e106.	2.1	6
29	C/EBPα Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors. PLoS Genetics, 2014, 10, e1004079.	1.5	85
30	Initiation of MLL-rearranged AML is dependent on C/EBPα. Journal of Experimental Medicine, 2014, 211, 5-13.	4.2	62
31	An atlas of active enhancers across human cell types and tissues. Nature, 2014, 507, 455-461.	13.7	2,269
32	Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients. Blood, 2014, 123, 894-904.	0.6	133
33	Lack of the p42 form of C/EBPα leads to spontaneous immortalization and lineage infidelity of committed myeloid progenitors. Experimental Hematology, 2013, 41, 882-893.e16.	0.2	8
34	Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries. Genome Research, 2013, 23, 592-603.	2.4	73
35	HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis. Nucleic Acids Research, 2013, 41, D1034-D1039.	6.5	65
36	Hemaexplorer 2.0: A Free Access Internet Platform For Visualization Of Gene Expression In AML Patients and The Normal Hematopoietic Hierarchy. Blood, 2013, 122, 2590-2590.	0.6	0

#	Article	IF	CITATIONS
37	Improving The Analysis Of Gene Expression Profiles By Comparing AML Blasts With Their Nearest Normal Counterparts. Blood, 2013, 122, 2568-2568.	0.6	0
38	HemaExplorer: a Web server for easy and fast visualization of gene expression in normal and malignant hematopoiesis. Blood, 2012, 119, 6394-6395.	0.6	32
39	Intestinal transporters for endogenic and pharmaceutical organic anions: the challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug–drug interactions. Journal of Pharmacy and Pharmacology, 2012, 64, 1523-1548.	1.2	30
40	Arrested Differentiation in Acute Myeloid Leukemia (AML) with Silenced Ankyrin Repeat and SOCS Box Protein 3 (ASB3) Expression. Blood, 2012, 120, 1232-1232.	0.6	0
41	Bistability in autoimmune diseases. Autoimmunity, 2011, 44, 256-260.	1.2	12
42	CTLs' repertoire shaping in the thymus: A Monte Carlo simulation. Autoimmunity, 2011, 44, 261-270.	1.2	10
43	Gaboxadol has affinity for the proton-coupled amino acid transporter 1, SLC36A1 (hPAT1)—A modelling approach to determine IC50 values of the three ionic species of gaboxadol. European Journal of Pharmaceutical Sciences, 2011, 42, 192-198.	1.9	7
44	Simulating kinetic parameters in transporter mediated permeability across Caco-2 cells. A case study of estrone-3-sulfate. European Journal of Pharmaceutical Sciences, 2011, 44, 218-226.	1.9	7
45	Immune system simulation online. Bioinformatics, 2011, 27, 2013-2014.	1.8	82
46	ImmunoGrid: towards agent-based simulations of the human immune system at a natural scale . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2799-2815.	1.6	39
47	Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System. PLoS ONE, 2010, 5, e9862.	1.1	535
48	The MHC Motif Viewer: A Visualization Tool for MHC Binding Motifs. Current Protocols in Immunology, 2010, 88, Unit 18.17.	3.6	32
49	MHC motif viewer. Immunogenetics, 2008, 60, 759-765.	1.2	60
50	ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization. Briefings in Bioinformatics, 2008, 10, 330-340.	3.2	36
51	Modelling the Human Immune System by Combining Bioinformatics and Systems Biology Approaches. Journal of Biological Physics, 2006, 32, 335-353.	0.7	19